ISSN: 2329-8901
Ryuichi Saito* and Naoki Sato*
Lactiplantibacillus plantarum is commonly used in pharmaceuticals and foodstuffs. Some L. plantarum strains are known as lactic acid bacteria that can inhibit the growth of pathogenic bacteria. A significant reclassification of the genus Lactobacillus was carried out in 2020. However, L. plantarum TO-A, which was isolated and registered in 1997, has not been sufficiently characterized. Therefore, in this study, we conducted a taxonomic re-identification of L. plantarum TO-A and judged that it should be classified as L. plantarum subsp. plantarum. Using in vitro experiments, we also determined that L. plantarum TO-A has a higher lactic acid production capability than other lactic acid bacteria (L. plantarum ATCC14917, L. reuteri NBRC15892, L. gasseri ATCC19992, and L. rhamnosus ATCC53103) and that L. plantarum TO-A inhibits the proliferation of four pathogenic bacteria (Escherichia coli ATCC8739, methicillin-resistant Staphylococcus aureus ATCC33591, Clostridium perfringens ATCC 13124, and Clostridium difficile ATCC17859). In parallel experiments, we used Caenorhabditis elegans to confirm that L. plantarum TO-A prevents bacterial infection of the host in vivo. Consequently, compared with nematodes fed E. coli OP50, nematodes fed L. plantarum TO-A exhibited longer survival in the presence of methicillin-resistant S. aureus. Moreover, in in vitro experiments, we showed that L. plantarum TO-A eliminated up to 65.3 % of mucin adherent methicillin-resistant S. aureus. Our study thus suggests that L. plantarum TO-A used in pharmaceuticals and foodstuffs can help protect the host from various pathogenic bacteria.
Published Date: 2021-11-18; Received Date: 2021-10-28