Journal of Nutrition & Food Sciences

Journal of Nutrition & Food Sciences
Open Access

ISSN: 2155-9600

+32 25889658

Abstract

COVID-19 Prevalence in Countries with Normal Body Mass Index: Implications of Artificial Intelligence and Machine Learning in Healthcare

Clement G. Yedjou*, Richard Long, Victor Eno, Jinwei Liu, Shannon Bright Smith, Pierre Ngnepieba, Kwasi Densu, Monique MsCallister, Lekan Latinwo and Paul B. Tchounwou*

Introduction: Coronavirus disease 2019 (COVID-19) has had a profound impact globally, causing the death of millions of people and deeply affecting socio-psychological, human health, and economic systems, with some nations bearing a disproportionate burden. Despite obesity having been established as one of the major risk factors of COVID-19 severity and other degenerative diseases, the effects that dietary pattern intake plays in COVID-19 outcomes remain poorly understood. The goal of this study is to look into the connection between eating habits, the number of non-obese and obese people, and COVID-19 outcomes in countries with populations exhibiting normal Body Mass Index (BMI), which is an indicator of obesity.

Methods: The analysis includes data from 170 countries. From the 170 countries, we focused on 53 nations where the average, BMI falls within the normal range (18.5 to 24.9). A subset of 20 nations was selected for a more detailed examination, comprising 10 nations with the lowest BMI values within the normal range (18.5-19.8) and 10 nations with the highest BMI values within the normal range (23.5-24.9). We used Artificial Intelligence (AI) and Machine Learning (ML) applications to evaluate key metrics, including dietary patterns (sugar and vegetable intake), obesity prevalence, incidence rate, mortality rate, and Case Fatality Rate (CFR).

Results: The results demonstrate a significant correlation between higher obesity prevalence and increased COVID-19 severity, evidenced by elevated incidence, mortality, and CFRs in countries like North Macedonia and Italy. In contrast, nations such as Iceland and New Zealand with well-established healthcare systems revealed low mortality rate and case fatality rate despite variations in dietary habits. The study also revealed that vegetable consumption appears to provide a slight to significant protective effects, suggesting that dietary patters alone do not consistently predict COVID-19 Outcomes.

Conclusion: Data generated from this study showed the crucial role of healthcare infrastructure along with the testing capacity and data reporting in influencing the success of pandemic responses. It also highlights the need of integrating public health strategies, which focus on obesity management and improvement of healthcare preparedness. In addition, AI-driven predictive modeling offers valuable insights that may guide pandemic response efforts in the future, thereby enhancing global health crisis management and mitigating the impact of future health emergencies.

Published Date: 2025-04-09; Received Date: 2025-03-10

Top