ISSN: 2375-4397
Rafaela Luiza Dias da Cunha, Amanda Santos Franco da Silva Abe, Paulo Sérgio Salomon and Lycia de Brito Gitirana*
Nanoparticles (Np), as single particles with diameters smaller than 100 nm, represent a subgroup of nanomaterials. Their production and consumption have exponentially increased in recent years since they are used in the consumer products by different industrial sectors, for example, agriculture, construction, cosmetic, food and medicine. Nevertheless, researches on contamination caused by nanoproducts in aquatic environments are still scarce. Titanium dioxide (TiO2) has been used in various cosmetic applications due its ability to absorb UV light. Np-TiO2 in sunscreens has the same composition as the larger white TiO2 particles, but in nanoscale TiO2 is transparent, being more cosmetically elegant. The aim of this work was to evaluate the effect of TiO2 nanoparticles (TiO2- Np) on microalgae Chattonella subsalsa exposed to different concentrations of a sunscreen formulation. C. subsalsa was exposed for 30 minutes and 96 hours to 10, 25 and 50 mgL-1 of TiO2-Np under visible light and analyzed by photographic records, cell counting. The oxidative stress was monitored by specific activity of catalase. In this study, C. subsalsa did not form cell clusters but showed significant increase in catalase production after 96 hours of treatment at concentrations higher than 25 mgL-1. Such observations suggest higher resistance of these microalgae to the exposure to the sunscreen formulation based on TiO2-Np when compared to other algae already described in the literature.
Published Date: 2019-08-06; Received Date: 2019-05-11