Cell & Developmental Biology

Cell & Developmental Biology
Open Access

ISSN: 2168-9296

+44 1478 350008

Abstract

In Vivo Proliferation of In Vitro Propagated Sugarcane (Saccharum officinarum L.) genotypes at Tana- Beles Sugar Development Project, North-Western Ethiopia

Belay Tolera

In spite of the costly procurement and secondary acclimatization activities, the Ethiopia Sugar estates use huge quantity of micropropagated sugarcane plantlets to complement the conventional propagation method. The current study was aimed at finding rapid and cost effective propagation method for sugarcane planting materials multiplication to complement in vitro propagation method. In the study, acclimatized sugarcane plantlets were treated with Diammonium phosphate fertilizer (DAP), plant growth regulators and leaf trimming treatments. Plantlets lacking fertilizer, plant growth regulators and without trimming were used as free check. Data were collected on the number of tillers per shoot, average shoot length and number of leaves per shoot after 30 days. Analysis of variance revealed that the interaction effects of genotypes, trimming, DAP and plant growth regulators application was very highly significant (p<0.0001). Treatment combinations containing DAP at 0.16 gm L-1 m-2 with plant growth regulators GA3, BAP and kinetin each at 0.04 mg L-1 m-2 and trimming one-third of the leaves gave optimum in vivo shoot proliferation responses. On this treatment combination, B52-298 gave 6.45 ± 0.51 tillers per shoot with 4.39 ± 1.44 cm average shoot length and 5.12 ± 0.23 leaves per shoot while NCo-334 produced 5.77± 0.79 tillers per shoot with 7.21 ± 0.11 cm average shoot length and 5.51 ± 0.05 leaves per shoot. Similarly, N14 gave 5.36 ± 0.55 tillers per shoot with 5.71 ± 0.15 cm average shoot length and 5.41 ± 0.30 leaves per shoot on the same treatment combination. Thus, the current result can be used as rapid and cost effective sugarcane planting material multiplication system to complement the costly micropropagation technology and hence minimize the cost of sugar production.

Top