ISSN: 2168-9296
+44 1478 350008
Shivannah S Chiatar, Ogechukwu P Eze and Alan R Schoenfeld
Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene are responsible for the VHL hereditary cancer syndrome, and are associated with the majority of clear cell renal cell carcinomas. In this study, scanning electron microscopy of VHL-negative renal carcinoma cells was utilized to examine the effects of VHL re-expression on the morphology of these cells. Significant differences were observed between the morphology of VHL-negative control cells and those with reintroduced VHL, with VHL expression mediating an apical surface that mounded upward, as opposed to the flat surfaces seen with VHL-negative cells. In long term cultures, rounded VHL-expressing cells grew in clusters on top the monolayer, and microvilli were observed on the apical face of these cells, in a manner suggestive of proximal tubule differentiation. In contrast, VHL-negative cells remained flat and did not develop microvilli in longterm cultures. Since VHL is a key member of an ubiquitin E3 ligase complex whose best known target is hypoxiainducible factor alpha (HIF-α), we looked at the effects of HIF-α expression on cell morphology. Knockdown of HIF-2α in cells that only express this isoform had no effect on the morphology of the cells. These results indicate that VHL expression directs three dimensional morphological changes in renal cells indicative of differentiation, and while dysregulation of HIF-α may be necessary for tumorigenesis following VHL loss, it is not the major determinant of these VHL-mediated morphological changes.