Anesthesia & Clinical Research

Anesthesia & Clinical Research
Open Access

ISSN: 2155-6148

Abstract

Monitoring of Sedation during Neuroaxial Blockade

Guerrero OrriachJose Luis, Matute Emilio, Alsina Estibaliz, Del Blanco Brezo and Gilsanz Fernando

Study objective: The arousal state changes during spinal anesthesia. It is not clear if BIS and others devices could monitor the induced neuroaxial blockade sedation. Our objective was evaluate BIS and entropy values when spinal anesthesia is done.

Design: We developed a prospective study. Patients: 40 patients were included in this study, ASA I-III, over 60 years old, undergoing spinal anesthesia, without premedication scheduled for orthopedics procedures.

Intervention: Spinal anesthesia was performed with the unseated volunteer in the lateral decubitus position with a 25-gauge Whitacre needle at L2-L3 space, andanesthesia was done with 12 mg of 0.5% hyperbaric bupivacaine. Patients were positioned supine for 5 min after spinal anesthesia.

Measurements: Observer’s Assessment of Alertness/Sedation OAA/S, response (RE) and state entropy (SE) and BIS, and standard hemodynamic measures.

Main results: Statistical analysis were performed by Wilcoxon test or ANOVA, p<0.05 was considered statistically significant.RE and BIS showed a better correlation with the OAA/S scale values (Pk 0.81 and 0.82) than SE (Pk 0.69). The OAA/S, RE and SE showed significative differences from basal values after 30 min of neuroaxial anesthesia (ANOVA p<0.05). BIS showed differences after 40 min (ANOVA p<0.05). There were no differences between BIS and RE values along the study (ANOVA p>0.05).

Conclusions: The spinal anesthesia decreased the cortical activity and these were founded by OAA/S scale and depth anesthetics monitors. OAA/S was a more sensitive value of this induced sedation. BIS and RE showed a better correlation with OAA/S scale than SE.

Top