ISSN: ISSN: 2157-7412
Zafrilla P, Cerda B, Soler A, Xandri JM, Martinez-Cachá A and Mulero J
Objective: Down syndrome (DS) is the most common genetic cause of mental retardation, and affected individuals are more prone to infections, early senescence, Alzheimer`s disease and other anomalies. One of the principal characteristic of this pathology is the stress oxidative. Individuals with DS have increased susceptibility to oxidative stress. The objective of this study is evaluated the degree of oxidative stress in an adult population.
Methods: 17 individuals with Down syndrome, aged from 16 to 37 years, with a mean age of 24.3 ± 4.3 years, participated in the study. Were analyzed several biochemical parameters (glucose, urea, creatinine, uric acid, total proteins, albumin, total bilirubin, cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, glutamic oxalacetic transaminase (GOT), glutamic-piruvic Transaminase (GPT), Alkaline phosphatase, gamma GT, lactate deshidrogenase (LDH), ferritin, saturation transferrin, transferrin, iron, ferritin, vitamin B12 and folic acid); haematological parameters (red blood cells, haemoglobin concentration, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, platelets, mean platelet volume, leucocytes, neutrophils, lymphocytes, monocytes, eosinophils and basophils; selenium and zinc. The oxidation of proteins was analyzed by measuring the carbonyl groups in plasma; furthermore, it has measured the total antioxidant activity in plasma.
Results: There was statistically significant difference (p<0.05) between the values total antioxidant activity of individuals with DS (1.08 ± 0.18 mM Trolox/L) and control groups (0.84 ± 0.15 mM Trolox/L). The levels of protein carbonyls in individuals with DS (0.51 ± 0.09 nM/ mg protein) were significant higher than the levels of protein carbonyls in control groups (0.34 ± 0.03 nM/ mg protein).
Conclusions: These results provide direct evidence that the oxidative stress is increased in individuals with DS. Since oxidative protein damage reflects increased degenerative processes, this data agrees with the reported premature aging, the increased incidence of cataracts and early Alzheimer changes in DS. This opens the possibility that antioxidant nutrient supplementation might help to ameliorate the pathology of DS.