ISSN: 2155-9600
+32 25889658
Bereket Abraha, Abdu Mahmud, Habtamu Admassu, Fang Yang, Negasi Tsighe, Mogos Girmatsion, Wenshui Xia, Pasience Magoha, Peipei Yu, Qixing Jiang and Yanshun Xu
This research was aimed to evaluate the physico-chemical and nutritional qualities of biscuit produced from sturgeon fillet protein concentrate (SFPC), based on gross chemical composition, effects of SFPC incorporation, and storage stability for six months. SFPC was used in production of biscuits by replacing low gluten wheat flour by 5%, 7% and 10% to ensure the quality and acceptability of the biscuit. The obtained results for biscuits fortified with SFPC revealed that the nutritional and proximate composition of biscuits were significantly (P ≤ 0.05) improved: moisture (4.75 ± 0.08-4.76 ± 0.11), protein (14.63 ± 0.12-19.52 ± 0.12), fat (16.20 ± 0.06-16.50 ± 0.17), ash (1.53 ± 0.04-1.66 ± 0.12). Total amino acids were: 6.93, 13.15, 13.93, and 17.20; and essential amino acids: 2.43, 5.29, 5.87, and 7.48 gram/100 gram, for 0%, 5%, 7% and 10% SFPC, respectively. Leucine was the major amino acid in 5% and 7% SFP, while Leucine, Phenylalanine and lysine were the major amino acid in 10% SFPC. The obtained results also showed the produced fish biscuit and SFPC had a good physico-chemical quality. In addition that fish biscuit protein characterized with a good nutritional protein quality as it composed of all essential amino acids. Microbial and physico- chemical results revealed that the shelf life of biscuit supplemented with SFPC were more than 6 months. The obtained results also showed the supplementation of SFPC into the wheat flour mix ratio used for making biscuits at level up to 10% improved the most nutritional content, rheological properties of prepared biscuits dough batches and physical, and sensory quality characteristics of the final biscuit products. Therefore, the present results recommended that it should be directed towards the utilization of SFPC products in food products fortification, especially cereal products up to the concentration of 7-10% depending upon the fortified food product.