ISSN: 2168-958X
+44 1478 350008
Steven B Oppenheimer
In response to an invitation from this journal, I am providing this mini-review of recent work from the Oppenheimer lab. Over the past 4 decades we have developed many assays that help us examine the role of specifc glycans in cellular interactions. Recently we have used two model systems for this work, the sea urchin embryo and yeast (Saccharomyces cerevisiae). We have developed two assays using the sea urchin embryo. One involves a microplate method where living sea urchin embryos are incubated with specific glycans or glycosidases. A specific set of cellular interactions, development of the primitive gut?archenteron, is examined over time in the presence and absence of the sugars or enzymes in living embryos. L-rhamnose and polyglucans have been identified as playing a role in mediating these cellular interactions. The second assay involves microdissection of the primitive gut away from the blastocoel roof to which it adheres. Using independently characterized glycosidases, we showed that polyglucans appear to mediate this cellular interaction. In the second system using yeast, we examine yeast disaggregation from lectin-derivatized agarose beads in the presence and absence of specific glycans using a quantitative, kinetic graphic profile assay. We found that D-melezitose was the best adhesion inhibitor and may be therapeutically useful in anti-adhesion venues of pathogen binding to cells and in cancer cell binding.