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ABSTRACT
Multiple kernel learning algorithms typically optimize kernel alignment, structural risk minimization, and Bayesian 
functions. However, they have limitations, including inapplicability to multi-class classification, high time complexity, 
and no analytic solution. Analyzing clustering and classification similarities, we propose a novel Clustering-Based 
Multiple Kernel Learning (CBMKL) algorithm for multi-class classification. This algorithm transforms input space 
to high-dimension feature space using multiple kernel mapping functions. It estimates base kernel function weights 
and constructs the decision function using clustering objectives. This CBMKL algorithm has several advantages. 

•	 It handles multi-class problems directly. 

•	 This algorithm has an analytical solution, avoiding approximate solutions from sampling methods. 

•	 It also has polynomial time complexity. Experiments on two datasets illustrate these advantages.
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INTRODUCTION

Multiple kernel learning algorithms have been widely studied 
recently. It uses a set of base kernel functions combined linearly 
or nonlinearly. This combination constitutes a kernel combination 
function for learning. Multiple kernel learning works in the 
combination space made by multiple features. It uses the mapping 
ability of each base kernel function. This lets the data be more 
accurately expressed in the combination feature space. This is a good 
fix for the problem of weak base kernel function representation 
ability [1]. This method suits large-scale samples and those with 
diverse information. It also works with highdimensional data that’s 
not flat. Multiple Kernel Learning (MKL) algorithms are popular 
in multi-view, object recognition, hyperspectral image classification 
and other task areas [2-4]. It has three optimization objective 
functions: Similarity measure, structural risk minimization, and 
Bayesian function. Those functions are solved by one-step or 
two-step learning methods. One-step method solves basis kernel 
function parameters and weight vectors simultaneously, needing 
Semidefinite Programming solution (SDP), Quadratic Constrain 
Quadratic Programming (QCQP) or complex optimization forms 
such as Second-Order Cone Programming (SOCP) [5-7]. The two-
step learning method needs inner and outer iterations to solve 
parameters. It solves for the basis kernel function and its weight 
vectors, respectively. One-step and two-step methods all have high 
time complexity [8]. In contrast, Bayesian function optimization 

requires Gibbs sampling. This is to construct the objective 
function. It needs to find approximate solutions [9]. Lanckriet et al., 
constructed an SDP problem form using multiple kernel learning 
and later constructed a QCQP problem form [5]. Sonnenburg et 
al., transformed the multiple kernel learning SDP and QCQP 
problem forms to obtain a Semi-infinite Linear Programming 
(SILP) form [10]. Bach et al., proposed a problem form using 
SOCP [7]. Rakotomamonjy et al.. introduced SimpleMKL, a two-
step algorithm solving SVMs [11]. Girolami et al., built a Bayesian 
hierarchical model and derived parameters [12]. They used kernel 
combinatorial functions in Gaussian processes to define weighted 
variance matrices. These matrices combined data from different 
sources. They then performed joint inference for Gaussian process 
and kernel combinatorial parameters [13]. In the last decade, 
multiple kernel learning developed extended MKL methods. 
Localized MKL derives kernel weight vectors by localizing the effect 
[14]. Sampleadaptive MKL specifies kernel switches for different 
sample switches [15]. Bayesian MKL formulates kernel combinations 
through a Bayesian approach [16]. Function approximation MKL 
uses function approximation to find the optimal kernel function 
[17]. These methods include extended forms for different tasks. 
We propose a novel Clustering-Based Multiple Kernel Learning 
(CBMKL) algorithm for multi-class classification in this paper. 
This approach constructs a clustering-based objective function 
using multiple kernel properties. The idea combines clustering 
and classification problems, treating classification as unsupervised 
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clustering. This allows using the clustering objective function to 
construct the multi-class classification one. To unify clustering 
algorithms, kernel clustering mapping requires kernel function 
embedding. The kernel function projects input space to a high-
dimensional feature space. Derivation shows the clustering 
objective function works for multi-class classification here. This 
CBMKL algorithm has several advantages.

•	 It handles multi-class problems directly, unlike most MKL 
algorithms. They only handle binary classification directly, 
though they can adapt to multi-class using methods like One-
VS-All. 

•	 This algorithm has an analytical solution, avoiding approximate 
solutions from sampling methods. 

•	 It also has polynomial time complexity. Here is the 
organization of this paper: Related works covers three classes 
of optimization objective functions in multiple kernel learning 
algorithms and related research. A Clustering-based Multiple 
Kernel Learning algorithm for multi-class classification 
(CBMKL) adapts the clustering problem objective function 
for multi-class classification and introduces a novel CBMKL 
algorithm. Experiment and analysis tests the proposed method 
on handwritten digit and relational extraction datasets. 
Finally, conclusion summarizes the paper and suggests future 
work directions.

MATERIAL AND METHODS 

Related works 

The first method for building multiple kernel learning algorithms’ 
objective functions uses similarity measure law. Shawe-Taylor 
proposed an algorithm measuring kernel function similarity 
called kernel alignment [18]. Given the kernel functions k

1
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2
, 

compute the empirical kernel arrangement as follows:
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 Tyy is called the ideal kernel. Define an arrangement between the 
candidate kernel and ideal kernel as:

( ) ,, yy
,

T
T F

T
F F

K yyA K
K K yy
< >

=
< > < > …… (1)

,
,

T
F

F

K yy
N K K
< >

=
< >

From Equation 1, the maximum kernel alignment value can be 
obtained when the candidate kernel is sufficiently fitted to the ideal 
kernel. Therefore, the kernel alignment is introduced into multiple 
kernel learning to learn the kernel combination weight vector, 
Lanckriet et al., take max (K, )TA yy as the optmization objective 
function, which gives the following optimization equation [5]:

T

1
, yym m

m
max d K

Μ

=
< ∑ >……. (2)

( ). . 1s t trace K ≤

1
0.m m

m
d K

Μ

=
∑ ≥

Where, trace (K) denotes the trace of Kernel combination matrix 

K. 1
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≥∑  denotes the matrix K satisfies the semi-positive 

definite condition. 

Cortes et al., used the cantered kernel alignment values as a 
similarity metric between candidate and ideal kernels [19]. Their 
optimization objective is max c(K , )TCA yy . Where c(K , )TCA yy denotes 
the Cantered Kernel alignment value, and Kc denotes centralizing 
the kernel combination matrix K, i.e.
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Where, l is the number of training samples, and 1 denotes a vector 
whose elements are all 1. Notice that the y of kernel alignment 
can only take values for each element of 1, so it is only directly 
applicable to binary classification problems. Lanckriet et al., 
Express the multiple kernel learning optimization formulation of 
Equation 2 in the following Semidefinite Programming Problem 
(SDP) form [5]:
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Lanckriet et al., also restricted the basis kernel function weight 
vector in the semidefinite programming problem of Equation 3 
to nonnegative values and transformed it into a quadratically 
constrained quadratic programming problem (QCQP) [6]: 

eThe second idea of constructing the objective function of a 
multiple kernel learning algorithm comes from the classical law of 
machine learning-structural risk minimization, which is to reduce 
the VC dimension of the learning machine while guaranteeing 
the classification accuracy (empirical risk) so that the learning 
machine expects the risk to be controlled over the entire sample set. 
Rakotomamonjy et al. have taken the kernel combining function K 

embedded by the feature space mapping (x)φ , substituting it into 
the single kernel learning optimization equation [11]: 
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Then the multiple kernel learning optimization objective function 
is: 
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By transforming it into a convex optimization form and solving it 
in dyadic space using Lagrangian functions, the final requirement 
to solve the optimization problem can be obtained as follows:
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based methods can only yield approximate solutions and not 
analytic solutions. As for some other extended MKL optimization 
objective functions, they will not be repeated as they are not very 
relevant to the topic of this paper.

A Clustering-Based Multiple Kernel Learning algorithm 
for multi-class classification (CBMKL) 

Measures of clustering models: Clustering and categorization 
are similar tasks in machine learning. Both find a mapping from 
training samples to categories. However, the key difference is that 
clustering is an unsupervised learning problem with unknown 
category numbers. Good and bad criteria for both models exist, 
keeping different category samples separate [20]. This principle 
is seen in classification problems and SVM maximum spacing 
principle [21]. It’s more complex in clustering, discussed below.

[Clustering Task Formalization] The clustering task is given 
an unlabelled dataset 1 2 1{x , x ,..., x }S = that finds a mapping 

: {1,2,..., }f S N→ . The clustering objective function depends 
on two factors. First, to meet the same category of training samples 
can be close enough to each other, that is, training samples within 
the class distance should be as small as possible. Second, the training 
samples of different categories should be separated enough, i.e., the 
distance between training samples should be as large as possible. A 
good clustering model should take both into account. [Clustering 
Model Measurement 1] A good clustering model should satisfy

( ) 2

, :
min || ( ) ||

i j

i jf i j f f
x xφ φ

=

−∑

( ) 2

, :
|| ( ) ||

i j

i j
i j f f

x xλ φ φ
≠

− −∑
.... (4)

Where (x)φ is the projection function on the feature space 
F. Equation 4 contains two parts of the algebraic sum of the 
arithmetic. The former is the training sample intra-class distance, 
while the latter is the training sample inter-class distance. λ is the 
trade-off value. Derivation of the latter term of Equation 4.
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Where, A is a constant when the data set is given. Substituting 
Equation 5 into Equation 4 yields
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Sonnenburg et al., transformed the above form of the QCQP 
problem into the form of the SILP problem [10]:
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Bach et al., construct the SOCP problem form as follows [7]: 
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In the above optimization model solving, either using a one-step or 
two-step method time complexity is higher, which is determined by 
the inherent complexity of the model. The third objective function 
of multiple kernel learning algorithm construction is based on 
the Bayesian approach. The Bayesian approach treats the weight 
vector of the basis kernel function as a random variable with some 
prior probability distribution, and then the weight vector and 
the parameters of the basis kernel function are derived through 
inference. Girolami et al. propose a decision function shaped like 
this [12]: 
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Where, d obeys a Dirichlet prior from a Gaussian distribution 
with mean 0 and a reversible prior variance [12]. The algorithm 
performs tasks such as classification or clustering by inference 
through a variational bayesian approach. Girolami et al. later 
extended the algorithm by adding auxiliary variables to obtain a 
valid Gibbs sampling using polynomial likelihood [13]. Bayesian-
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This gives another measure of how good the clustering model is, 
as follows:

(Clustering model measurement 2) A good clustering model should 
satisfy [21]
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Equation 6 contains only the calculation of the training sample 
intra-class distances and does not require the calculation of the 
training sample inter-class distances.

Optimizing the objective function: If the number of training set 
classes is given, a key difference disappears. The second difference is 
clear from Equation 6: Small intra-class distances ensure large inter-
class distances. This analysis leads to a new approach: combining 
multiple kernel learning, converting classification to clustering, 
and using clustering measures as optimization objectives, yielding 
a clustering-based multi-class classification algorithm. Given a 
labelled dataset
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number of training samples in the n class. The kernel combination 
function 1

M
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m
 is the basis kernel function, and 

d is the weight vector. (x)φ is the Eigen function of matrix K, and 
the derivation of Equation 6 is performed:
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Minimizing Equation 7 is the optimization objective for the 
multi-class classification task proposed in this paper. Thus, the 
Clustering-Based Multiple Kernel Learning algorithm for multi-
class classification (CBMKL) can be formalized as the following 
constrained optimization problem:
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Solution of the optimizing problem: When the base kernel 𝑘𝑚 is 
given case, despite the complex form of Equation 8, it is in essence 
a 1l  paradigm 1(|| d || 1)= constrained linear optimization problem. 
The proof is as follows:

The solution process begins with the given K
m
 premise, calculate 
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m i jk x x values of the equation, 
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Then calculate Equation 8 by algebra and expression of the d
m
 

coefficients, where m=1…,M. Currently, the optimization objective 
of Equation 8 is shaped as 
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Among the above equation, am is the coefficient of dm, m=1…,M. 
which takes on real numbers. Then the following optimization 
problem is posed: 
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3 Equation 9 is a 𝑙1 paradigm 1(|| d || 1)=  linear programming 
problem under constraints, and the optimal analytical solution can 
be obtained by the simplex method [22]. In summary, it is easy 
to know that the solution time complexity of the optimization 
problem of Equation 8 is mainly reflected in the calculation of the 

( ) ( )( ),n n
m i jk x and x coefficients, the time complexity of this step is 0 (n2). 

The time complexity of solving the linear programming problem 
by the simplex method is as follows 0 (m2) (Although the general 
time complexity of the linear programming problem using the 
simplex method is exponential level, here is a degenerate linear 
programming problem, which is easier to solve, the time complexity 
is only polynomial level), then the overall time complexity is 0 
(n2)+0 (m2). Since 0 (n2)>> 0 (m2), So the overall time complexity of 
solving this optimization problem is polynomial time 0 (n2). 

Classification decision functions: The CBMKL algorithm for 
multi-class classification optimizes the objective function, i.e., 
Equation 8 contains only the basis kernel function km and weight 
vector d and does not contain the SVM decision hyperplane 

(x) w, (x) bf φ=< > + . Therefore, by solving the optimization 
equation, only the weight vectors d can be obtained, which leads 
to the inability to use the decision hyperplane to give test sample 
labels and other discriminative methods must be used. In this 
regard, according to the clustering perspective proposed in this 
paper, the classification problem is still regarded as a clustering 
problem, and a similar clustering task nearest-neighbour algorithm 
is used to calculate the distance of test samples to the centers of 
various classes, and the shortest class label is taken as the label of 
test samples. The classification decision function proposed in this 
paper is derived as follows: The center of the n class centers can be 

calculated by the following equation ( )( )
1

1 .
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n
n i

in

x
l

φ φ
=

= ∑
Although the mapping function φ  is unknown, it is still possible to 
compute its paradigm using the kernel definition [23], i.e.

Then the distance between test sample (x)φ and the n class center nφ
can be calculated by the following equation:
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Thus, the classification decision function (x)f  satisfies the 
following optimization equation:
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function. This paper compares experimental results from different 
multiple kernel learning algorithms. Two sets of experiments are 
described next. 

Handwritten digit recognition experiment on UCI dataset: 

Experimental setup: The UCI Handwritten Digit Recognition 
DatasetPendigits (STA8) contains digits 0 to 9, a total of 10 
categories. Each sample has a 64-dimensional eigenvector, obtained 
from the 8 × 8 bitmap matrix data, totalling 10992 samples, where 
the training set has 7494 samples and the test set has 3498 samples. 
Considering the property that the feature space possessed by the 
Gaussian kernel function is of infinite dimension, any dataset must 
be linearly divisible in this dimension space [23]. In our experiment, 
the Gaussian kernel function is firstly used for single kernel 
clustering operation, respectively, using the standard deviation of 
𝜎=0.01, 0.1, 1, 10, and 100 to carry out the test. After testing the 
standard deviation, the best clustering result 𝜎=0.1 is achieved. 
Then compare the clustering results with the training set, for a class 
of clustering that contains the most samples of a certain class in 
the training set, the class label of that class is used as the label of 
those samples. Samples that do not meet the above requirements 
are removed. This is done until all clusters are processed and the 
result is obtained as an intermediate data set to be processed in the 
next step. According to the formal characteristics of the algorithm, 
to calculate conveniently, then categorizes the intermediate 
dataset samples according to their labels and uses 0 to 9 order in 
sequence. Next sets the intermediate dataset samples in the 𝜎=0.1 
neighbourhood, every 0.01 obtains new values, and those Gaussian 
kernel functions (from 𝜎=0.01 to 𝜎=0.20, a total of 20) are formed, 
and finally trained using the algorithm proposed in this paper, and 
the model parameters are obtained and then validated on the test 
set. In this paper, we compare the obtained experimental results 
with some other multiple kernel learning algorithms, focusing on 
the test accuracy metrics. To ensure experimental comparability, 
we compare the experimental results given by Gonen et al., for the 
same dataset on the Matlab platform [8]. 

Experimental results and analysis: Table 1, gives the experimental 
results of the UCI handwritten digit recognition dataset. Where 
ABMKL denotes the kernel alignment algorithm proposed by 
Lanckriet et al., CABMKL denotes the cantered kernel alignment 
algorithm proposed by Cortes et al., SimpleMKL denotes the simple 
multiple kernel learning algorithm proposed by Rakotomamonjy 
et al., GMKL denotes the generalized multiple kernel learning 
algorithm proposed by Varma et al., CBMKL (Ours) denotes the 
clustering based multiple kernel learning algorithm for multi-class 
classification proposed in this paper [5,11,19,24]. The performance 
of the CBMKL algorithm can be seen in Table 1, where the 
precision, recall, and F1 values are slightly higher than other 
multiple kernel learning algorithms. It indicates that the CBMKL 
algorithm better represents the high-dimensional feature space and 
can reflect the potential structure of the latent data. This shows 
that the CBMKL algorithm is a better-performing multiple kernel 
learning algorithm for multi-class classification tasks. 
Table 1: Comparison of classification performance between clustering-
based multiple kernel learning model and other multiple kernel learning 
algorithms on pendigits (sta8) dataset.

Arithmetic Precision(%) Recall(%) F1 (%)

ABMKL 91.58 78.89 84.76

CABMKL 92.15 77.48 84.18
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Algorithm I.

A Cluster-based Multiple Kernel Learning algorithm for multi-class 
classification (CBMKL).
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Ensure: Testing data’s label n

It is easy to know that this classification decision function only 
needs to combine the training data X and the base kernel function 
K

m
 and the weight vector d of the base kernel obtained through 

training. In summary, this paper proposes a Clustering-Based 
Multiple Kernel Learning algorithm for multi-class classification 
(CBMKL) as shown in Algorithm I. Algorithm I. begins by 
substituting a training sample to solve for a 𝑙1 Paradigm 1(|| d || 1)=
constrained linear programming problem to obtain the basis kernel 
function K

m
 and weight vector d and then substituting the test 

samples into the classification decision function to obtain their 
category labels. 

RESULTS AND DISCUSSION

Experiment and analysis 

The CBMKL algorithm proposed in this paper has the advantages 
of simple optimization objective functions and low time complexity 
for solving the optimization problems, thus adapting to relation 
extraction applications. To this end, this paper conducts two sets of 
comparison experiments on the UCI handwritten digit recognition 
dataset-Pendigits (STA8)1 and the relation extraction dataset 
Conll042 for validation 

Experimental procedures: This paper improves experiment 
accuracy with single kernel clustering function results. It takes 
consistent samples from the clustered data to form a new dataset. 
The paper’s learning algorithm classifies this new dataset. The 
single kernel function is expanded to form a multiple kernel 
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SimpleMKL 90.37 79.04 84.32

GMKL 92.29 75.08 82.8

CBMKL
(Ours)

92.86 79.52 85.67

Relational extraction experiments on the conll04 dataset: 

Experimental setup: The Conll04 dataset is a benchmark dataset 
for entity recognition and relation extraction. The dataset collects 
entities and their relationships in news reports and provides 
for training and testing algorithm annotation. The Conll04 
dataset consists of sentences annotated with entities and inter-
entity relationships with a total of 5516 samples. The number of 
entities included in it are, Person (1691), Location (1968), and 
Organization (984), and the number of inter-entity relationships 
are Located in (406), work for (401), Organbased_in (452), Live_in 
(529) and Kill (268). There is also a special class of relations Other 
(706), which is used to represent relations other than the above 
five. In this paper, we first pre-process this dataset by removing the 
other relation samples, and for the remaining samples, we utilize 
grammatical rules (e.g., N-grams and lexical annotations, etc.) to 
transform them into 101 dimensional feature vectors [25]. We then 
conduct experiments using the same steps as the UCI handwritten 
digit recognition set described above and compare the results with 
existing experiments on this dataset by Roth et al., and Kate et al., 
[26,27]. 

Experimental results and analysis: Table 2, gives the results of 
the experiments on relational extraction for the Conll04 dataset. 
Where ILP denotes the Integer Linear Programming algorithm 
proposed by Roth et al., CP denotes the Card Pyramid algorithm 
proposed by Kate et al., and CBMKL (Ours) denotes our algorithm 
[26,27]. The experimental results give the relationship between 
various types of entities F1 values. As can be seen from Table 2, 
the CBMKL achieves better results in the five groups experiments. 
Except the relation of Organ based in, other four groups of 
relationships achieve better results than or slightly inferior to 
other control algorithms. It shows that the CBMKL algorithm can 
perform well in most cases, and it is a more stable algorithm. From 
the above experimental results comparing on Pendigits (STA8) 
dataset and Conll04 dataset, the algorithm CBMKL proposed in 
this paper, compared with some common MKL algorithms, has 
higher precision, recall, and F1 value on different datasets, despite 
the different optimization objective functions and optimization 
problems to be solved. It is fully demonstrated that it is a better 
generalized multiple kernel learning algorithm.
Table 2: Comparison of classification performance of clustering-based 
multiple kernel learning model with other classification algorithms on the 
Conll04 dataset.

Arithmetic
Located_in 

(%)
Work_ for 

(%)
Organ based_ 

in (%)
Live_in 

(%)
Kill 
(%)

ILP 56.2 52 51.7 51.6 81.7

CP 58.3 70.7 64.7 62.9 75.2

CB MKL
(Ours)

60.2 64.1 50.2 63.5 79.4

CONCLUSION 

This paper proposes CBMKL, a new algorithm that analyses 
clustering and classification tasks. The CBMKL algorithm 
constructs a new optimization objective function using multiple 

kernel learning the ory. It provides a new method for solving multi-
class classification problems. Compared to previous algorithms, 
our CBMKL algorithm finds an analytical solution in polynomial 
time with good performance. In the future, we can simplify data 
pre-processing by using multiple kernel function clustering. We can 
also reduce the impact of misclassified samples on clustering center 
offset.
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