
1J Adv Med Res, Vol.07 Iss.01 No:1000042

Advances in Medical Research

OPEN ACCESS Freely available online

Commentary Article

Correspondence to: Ashraf Abdullah Saad, Department of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, 
Oman, E-mail: dr.ashraf123321@gmail.com

Received: 26-Sep-2024, Manuscript No. LDAMR-24-34316; Editor assigned: 01-Oct-2024, PreQC No. LDAMR-24-34316 (PQ); Reviewed: 18-Oct-
2024, QCNo. LDAMR-24-34316; Revised: 25-Oct-2024, Manuscript No. LDAMR-24-34316 (R); Published: 05-Nov-2024, DOI: 10.12715/2564-
8942.24.7.042

Citation: Saad AA (2024). Liquid Tumors at a Glance: Innovations, Challenges and Future Directions in Hematologic Oncology. J Adv Med Res. 
7:042

Copyright: © 2024 Saad AA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Liquid Tumors at a Glance: Innovations, Challenges and Future Directions 
in Hematologic Oncology 
Ashraf Abdullah Saad*

Department of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman 

ABSTRACT
Hematologic malignancies, commonly referred to as liquid tumors, encompass a diverse group of cancers such as 
leukemias, lymphomas, and myelomas. Defined by unique genetic, molecular, and clinical characteristics, these 
diseases present significant challenges in diagnosis, treatment, and prognosis. Despite advances in therapeutic 
strategies —including immunotherapy, targeted therapies, and Hematopoietic Stem Cell Transplantation (HSCT)—
patients with high-risk or relapsed disease often face poor outcomes. Notably, multiple myeloma (MM) remains an 
incurable plasma cell malignancy despite recent innovations, underscoring the need for more effective and durable 
treatment strategies. This article offers a comprehensive review of the classification, pathophysiology, and molecular 
features of liquid tumors, with a particular focus on emerging therapeutic approaches and unmet clinical needs. By 
addressing current challenges and future opportunities, this work seeks to contribute to the advancement of care for 
patients with these complex malignancies.
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INTRODUCTION

The first hematologic malignancy was described by Thomas 
Hodgkin in 1832. The disease was called "Hodgkin's disease" 
until it was officially renamed "Hodgkin lymphoma" in the late 
20th century. The published descriptions of other hematologic 
malignancies, such as leukemia and MM, soon followed. 
Hematologic malignancies have distinct genetic and epigenetic 
signatures and are traditionally categorised by site according 
to whether cancer is first detected in the blood (leukemias), 
lymph nodes (lymphomas - Hodgkin and non-Hodgkin) or bone 
marrow (myelomas) [1]. Despite its relatively lower frequency, 
tumor protein 53 (TP53) alterations (including TP53 mutations 
or 17p deletions] are closely linked with complex karyotype, 
poor prognosis, and chemotherapeutic response in hematologic 
malignancies [2]. Somatic TP53 alterations have been reported 
in acute lymphoblastic leukemia (ALL) (16%) [3], acute myeloid 
leukemia (AML) (12%) [4,5], chronic lymphocytic leukemia 
(CLL) (7%) [6,7,8], and myelodysplastic syndromes (MDS) 
(6%) [9,10,11]. As a matter of fact, the tumor suppressor gene 
TP53 is the most frequently mutated gene in human cancers, 
with mutations occurring in more than 50% of human primary 

tumors [12,13]. Interestingly, the frequency of TP53 mutations 
is even higher in tumors that relapse after therapy. Notably, 
the p53 protein (commonly referred to as the “guardian of 
the genome”), made by the TP53 gene, normally prevents the 
propagation of genetically defective cells by supervising the 
repair of damaged DNA. Consequently, defective p53 renders 
cells relatively resistant to chemo- and radiotherapies and 
promotes a “mutator phenotype” prone to rapid accumulation 
of additional mutations [14]. Moreover, patients with germline 
TP53 mutations [the underlying cause of Li-Fraumeni and Li-
Fraumeni-like syndromes] have a twenty-five-fold greater risk 
of early-onset cancers (e.g., leukemia, sarcomas, breast cancer, 
and brain tumors) [15]. The mainstay treatment for high-risk or 
relapsed/refractory (R/R) hematologic malignancies (including 
leukemias) has historically revolved around allogeneic-HSCT 
(allo-HSCT). Despite increasing survival rates, allo-HSCT is 
associated with long-term morbidity and mortality, mainly due 
to chronic graft-versus-host disease (cGvHD) which remains a 
very challenging and serious complication of allo-HSCT. In this 
context, cGvHD is stigmatised by futile treatment options lying 
between the harmful corticosteroids as the standard first-line 
treatment and elusive second-line therapies [16]. In addition, 
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and are associated with poor outcome [34,35]. Approximately 
70% of infants with B-ALL have a KMT2A rearrangement 
(KMT2A-R), and their outcome is particularly unfavorable 
compared to infant ALL without KMT2A rearrangements (often 
referred to as KMT2A germline/KMT2A-G) [36]. In this context, 
infant ALL constitutes another rare ALL subtype for which 
innovative therapies are urgently needed, since their unfavorable 
outcome remains essentially unchanged over the past several 
decades [37]. Strikingly, even though noninfants with KMT2A-R 
ALL have a superior outcome to infants, their outcomes remain 
clearly inferior to those of childhood ALL and even allo-HSCT 
has failed to improve their outcome [38]. Moreover, there is an 
unmet need for developing immunotherapies for the large cohort 
of patients who are deemed unfit for post-remission intensive 
chemotherapy or HSCT in first remission because of toxicity 
to previous chemotherapy or significant co-morbidities [39]. In 
a similar vein, the poor outcome associated with philadelphia 
chromosome (Ph)-like ALL (characterized by a gene expression 
profile similar to that of Ph+ ALL, but lacks the canonical BCR-
ABL1 fusion) which has been improved significantly by the 
early addition of imatinib or related tyrosine kinase inhibitors 
(TKIs) to intensive chemotherapy regimens with or without 
HSCT in first complete remission (CR1) provided a compelling 
rationale to harness targeted therapies or precision medicine 
approaches for ALL [40]. Nevertheless, most molecularly 
targeted approaches have thus far failed to improve long-term 
outcomes in relapsed ALL [41]. Remarkably, the emergence of 
immunotherapies has transformed therapy for relapsed ALL. As 
CD19 is expressed by essentially all B-cell malignancies at clinical 
presentation, the prototype Bi-specific T-cell engager (BiTE) 
therapy (Blinatumomab) and chimeric antigen receptor (CAR)-T 
cell therapy (Tisagenlecleucel) respectively, were granted approval 
by the United States Food and Drug Administration (FDA or 
US FDA) as CD19-targeting B-cell malignancies. Nevertheless, 
relapses with loss or reduction in CD19 surface expression 
were increasingly recognized as a cause of treatment failure 
[42,43,44]. In the case with blinatumomab, the high initial 
overall response rate is frequently accompanied by subsequent 
relapse or refractoriness to treatment [45]. Relapses with loss 
or reduction in CD19 surface expression are being increasingly 
recognized as a cause of treatment failure of blinatumomab. 
Mechanistically, reduction in response may be due to low CD19 
antigen expression or antigen loss from alternative splicing, non-
functional membrane chaperone proteins, transformation to 
myeloid lineages, or CD19 mutations. It is the author’s experience 
that a 21-months old child had developed blinatumomab-induced 
lineage switch of B-ALL with t (4:11) (q21; q23) KMT2A/AFF1 
into an aggressive AML. Intriguingly, similar mechanisms of 
resistance also develop in response to CD19-targeted CAR T-cell 
therapies. In addition, the increased expression level of PD-L1 
in blinatumomab-resistant patients is another explanation for 
tumor escape [46]. Remarkably, blinatumomab does not obviate 
the need for intrathecal therapy due to the lack of sufficient 
evidence to suggest that it crosses the blood-brain barrier (BBB) 
[47]. In this vein, despite that cranial irradiation was omitted 
from treatment protocols for children with newly diagnosed 
ALL, intrathecal therapy alone was strongly associated with 
cognitive impairment [48]. Despite that T-LBL represents the 
second most frequent subtype of Non-Hodgkin lymphoma (NHL) in 
children and adolescents [49], T-LBL and T-ALL have historically 
been considered a spectrum of the same disease. Owing to the 

given the poor prognosis of patients who relapse after allo-
HSCT, targeted immunotherapies have emerged as a promising 
therapeutic option in hematologic oncology [17].

Leukemias

Leukemia is a blood cancer caused by the rapid production of 
abnormal white blood cells and is the most common cancer in 
children and adolescents. Despite advances made in therapeutic 
strategies, allo-HSCT remains a standard-of-care across various 
leukemia subtypes for curative intent [18]. Leukemia classification 
is based on the type of blood cell affected (includes both 
lymphoblastic and myeloid leukemias) and the rate of leukemia 
progression [includes an acute or chronic forms]. Acute leukemias 
represent a clonal expansion and arrest at a specific stage of 
myeloid or lymphoid hematopoiesis [19]. Acute leukemias are 
characterized by greater than 20% blast cells in the bone marrow 
(BM) or peripheral blood (PB) leading to a more rapid onset of 
symptoms. Nevertheless, the 20% blast cutoffs were eliminated 
for most AML types with ‘defining genetic abnormalities’ (DGAs) 
(see below) [20,21,22]. Although allo-HSCT is an important 
therapeutic modality for acute leukemia, its outcomes remain 
unsatisfactory [23]. In contrast, chronic leukemia has less than 
20% blasts with a relatively chronic onset of symptoms [24]. Unlike 
acute leukemias, blast cells in chronic leukemias are more mature 
and can carry out some of their normal functions [25]. Principally, 
leukemia is subdivided into four major subtypes: ALL, CLL, 
AML, and chronic myeloid leukemia (CML) [26]. However, this 
classification is an over-simplification. In the WHO classification, 
precursor B- and T-lymphoblastic neoplasms overlap with their 
corresponding lymphoma i.e., B-cell lymphoblastic leukemia/
lymphoma (B-ALL/B-LBL) and T-lymphoblastic leukemia/
lymphoma (T-ALL/T-LBL) respectively [27]. It is important to 
note that mature B-ALL has been eliminated from the 2008 WHO 
classification of B-ALL as it is inseparable from Burkitt lymphoma 
(mature B-ALL is treated as stage IV Burkitt lymphoma) [28]. In 
addition, CML is classified as a myeloproliferative neoplasm 
(MPN). Importantly, CML is not to be confused with chronic 
myelomonocytic leukemia (CMML). CMML is a hybrid or mixed 
myelodysplastic/myeloproliferative neoplasm characterized by a 
large heterogeneity of clinical features but allo-HSCT remains the 
only potentially curative option. However, the inherent toxicity 
of this procedure makes the decision to proceed to allo-HSCT 
challenging, particularly because patients with CMML are mostly 
older and comorbid [29].

Acute lymphoblastic leukemia (ALL)

ALL is still an important cause of morbidity and mortality in 
children and adults [30]. Accounting for 25% of all childhood 
cancers, ALL is the most common malignant neoplastic disease 
in children. Eighty–five percent of the cases of childhood ALL 
are of the B–lineage (B–ALL) [31]. Despite cure rates exceeding 
90% in children with B-ALL, outcomes of older adolescents and 
young adults with ALL still lag behind those of their younger 
counterparts despite pediatric-inspired chemotherapy regimens 
[32]; and yet, childhood R/R ALL is associated with poor outcomes. 
Altogether, ALL still represents the leading causes of cancer-
related death, underscoring a critical unmet need for effective 
new therapies [33]. Rearrangements of the human Histone-lysine 
N-methyltransferase 2A (KMT2A) or myeloid/lymphoid/mixed 
lineage leukemia genes (MLL), detected in approximately 5% of 
childhood ALL, are most frequent in infants (<12 months of age) 
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red blood cells, while M7 AML starts in immature forms of cells 
that make platelets [megakaryocytes] [70]. Despite that acute 
promyelocytic leukemia (APL or APML; AML-M3) is the most 
curable subtype of AML [71], it is considered a medical emergency 
with a very high pre-treatment mortality [72]. Approximately 
10% of patients with AML-M3 still experience disease relapse 
following front-line therapy [73]. The poor prognosis of AML 
is usually secondary to high-risk genetic features or due to 
antecedent hematologic disorders e.g., myelodysplastic syndrome 
(MDS). More than one-third of newly diagnosed children and 
adolescents with AML continue to relapse and experience 
suboptimal long-term outcomes [74]. On the other hand, AML 
is the most common acute leukemia affecting the elderly, with 
the average age of diagnosis being 70 years old [75], where it 
poses a great therapeutic challenge to the clinical hematologist 
[76]. The 5-year survival rate for adult patients with AML is at 
approximately 40% according to the WHO [77]. The nucleoside 
analogue cytarabine (Ara-C) combined with an anthracycline 
such as daunorubicin continues to be the backbone of therapy 
for AML. However, chemoresistance remains the main cause 
of poor long-term survival associated with high relapse rate in 
AML [78]. The occurrence of AML relapse is attributed to the 
persistence and clonal evolution of leukemic stem cells (LSCs) 
that hijack stem cell programs (such as self-renewal capacity) 
to fuel leukemogenesis and progression [79,80]. Further, LSCs 
show different degrees of inherent treatment resistance and 
may acquire secondary resistance during treatment through 
genetic and non-genetic mechanisms [81]. On the other hand, 
despite that HSCT is an established curative treatment option 
for patients with AML, transplant recipients were at substantially 
higher risk of developing severe/life-threatening conditions and 
premature death [82]. The most frequent genetic alteration 
in AML is mutation of the FMS‐like tyrosine kinase 3 [FLT3] 
gene wich encodes the FLT3 receptor [CD135], emerging as a 
prognostic factor, a new marker for measurable residual disease 
[MRD], and a potential novel therapeutic target in AML [83,84]. 
By the way, FLT3 is a type III receptor tyrosine kinase that 
contributes to normal HSC survival. There are two major types 
of FLT3 mutations: internal tandem duplication mutations in 
the juxtamembrane domain (FLT3‐ITD) and point mutations or 
deletion in the tyrosine kinase domain (FLT3‐TKD). FLT3‐ITD is 
an independent poor prognostic factor that is strongly associated 
with high WBC and an increased blast percentage at diagnosis 
and frequently found in cytogenetically normal AML [85]. FLT3-
ITD in the juxtamembrane region is thought to destroy the self-
suppressing conformation of FLT3 receptor, thereby activating 
downstream pathways continuously, including MAPK/ERK, 
STAT5 and PI3K [86]. FLT3‐ITD is found in approximately 
25% of adult patients but in more than 30% of patients over 55 
years of age [87,88]. In contrast, FLT3‐ITD occur in 10%-15% 
of pediatric de novo AML patients [89,90], and those with high 
FLT3‐ITD AR [> 0.4] have inferior outcomes with survival of 
approximately 50%-65% with HSCT [91]. The ELN introduced 
the allelic ratio [AR] of FLT3‐ITD for risk stratification. Several 
groups demonstrated that high FLT3‐ITD AR (≥0.5) (FLT3‐
ITDhigh) is associated with a poor prognosis but not the low 
FLT3‐ITD AR [<0.5] (FLT3‐ITDlow) [92]. Remarkably, the natural 
history of FLT3-mutated AML changed after the approval of the 
FLT3 inhibitors midostaurin for frontline therapy and gilteritinib 
for R/R patients [93]. Because FLT3 inhibitor-based therapy 
has improved survival [94], the new ELN classification (2022) 

great overlap in their morphological, clinical, and immune-
phenotypic features [50,51], it is often debated whether T-LBL 
and T-ALL are different entities or represent manifestations 
of the same disease [52]. It is worth noting that T-ALL/T-LBL 
accounts for approximately 15% of pediatric and 25% of adult 
ALL [53]. While risk stratification is well-developed for patients 
with B-ALL, it remains challenging for those with T-ALL [54]. 
In addition, immunotherapeutic approaches for T-ALL has 
lagged significantly behind B-ALL [55]. Indeed, the search and 
identification of selective targets for T-ALL blasts not expressed by 
normal T-cells remains the main challenge [56]. Not surprisingly, 
outcomes for T-ALL are still lagging behind those for B-ALL by 
5–10% in most studies [57]. In particular, relapsed T-ALL and 
T-LBL portend a poor prognosis [58]. Given the poor salvage rates 
of <25% and <15%, respectively, early intensification of therapy 
to improve outcomes is essential [59,60,61]. Intriguingly, recent 
evidence demonstrating differential responses to chemotherapy 
raise the possibility that T-LBL and T-ALL are distinct clinical 
and biologic entities [62].

Acute myeloid leukemia (AML)

AML is the most common acute leukemia in adults. AML is not just 
one disease, but rather a heterogeneous group of disorders caused 
by chromosomal translocations and rearrangements resulting in 
the uncontrolled proliferation of myeloid blast cells (myeloblasts) 
in the BM and impaired production of normal thrombocytes, 
erythrocytes, and leukocytes [63,64]. Strikingly, AML is an 
aggressive hematologic malignancy that has been suffering from 
stagnant survival curves for decades. More than 90% of patients 
with newly diagnosed AML fall into an intermediate or poor risk 
category per the European Leukemia Network (ELN) criteria, and 
in this patient population, allo-HSCT in CR1 serve as the only 
chance for cure [65,66]. According to 5th edition of the World 
Health Organization (WHO) Classification of Haematolymphoid 
Tumours (WHO-HEM5, also called WHO 2022), AML 
entities are now grouped into AML defined by differentiation 
[previously known as as AML-NOS] and AML with DGAs 
including PML::RARA, RUNX1::RUNX1T1, CBFB::MYH11, 
RBM15::MRTFA and DEK::NUP214; rearrangements involving 
KMT2A, MECOM (EVI1) and NUP98; and NPM1 mutation. 
However, the biggest difference is the removal of the blast cutoff 
for all genetically defined AML cases except AML with BCR::ABL1 
fusion, AML with CEBPA mutation and myelodysplasia-related 
AML (AML-MR). Notably, the presence of AML-DGA excludes 
a diagnosis of MDS, particularly in cases having >2% and >5% 
blasts in PB and BM respectively [67]. In addition, the remaining 
AML categories retain the 20% blast cutoff, discriminating it 
from MDS [68]. However, in parallel to the WHO-HEM5, an 
alternative International Consensus Classification (ICC) has 
been proposed. In contrast to the WHO-HEM5, ICC sets the 
blast cutoff for AML-DGA to 10%, assigning cases with 10–19% 
blasts without DGA to a new category MDS/AML (several key 
differences between WHO-HEM5 and ICC were highlighted by 
S. Huber et a.) [69]. In contrast to the WHO system (established 
in 2008), the French–American–British (FAB) classification 
(established in 1976) does not take into account chromosomal 
and molecular features but assigns AML into eight subtypes 
[M0-M7] based on the type of cells from which the leukemia 
developed and the maturity of cells [Table-1]. Basically, subtypes 
M0 through M5 all start in immature forms of white blood cells 
called myeloblasts. M6 AML starts in very immature forms of 
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categorized AMLs with FLT3-ITD in the intermediate-risk group, 
irrespective of the allelic ratio or concurrent presence of NPM1 
mutation [95]. The reclassification of FLT3-ITD mutational status 
into the intermediate- risk group was one of most important 
changes provided by the ELN 2022 risk classification [96]. On 
the other hand, the clinical impact of FLT3‐TKD, found in 
about 7% of patients at diagnosis, on the long‐term outcome is 
controversial but in general is not considered a poor prognostic 
factor. Consequently, neither do the National Comprehensive 
Cancer Network (NCCN) or ELN consider the presence of FLT3-
TKD mutations as a recommendation for allo-HSCT [97,98]. 
Nonetheless, the treatment of patients with FLT3-mutated 
AML remains challenging despite the approval of several FLT3 
inhibitors over the last few years [99]. In this vein, Tarlock et al., 
recently demonstrated that FLT3 inhibition is not an effective 
target for therapeutic intervention in ITDpos/NUP98::NSD1 
AML in a large cohort of patients with FLT3-ITD (included 
3033 pediatric and young adult patients, aged 1 month-29 years); 
highlighting that further efforts to study the early intervention 
of novel and targeted therapies are urgently needed for those 
patients [100]. This supports recent studies indicating that FLT3-
ITD cooccurring with WT1, UBTF, or NUP98-NSD1 is associated 
with significantly inferior prognosis [101,102,103,104,105]. 

Table 1: The French–American–British (FAB) AML classification sys-
tem1 

FAB subtype Name

M0 Undifferentiated acute myeloblastic leukemia

M1
Acute myeloblastic leukemia with minimal 

maturation

M2 Acute myeloblastic leukemia with maturation

M3 Acute promyelocytic leukemia (APL)

M4 Acute myelomonocytic leukemia

M4 eos Acute myelomonocytic leukemia with eosinophilia

M5 Acute monocytic leukemia

M6 Acute erythroid leukemia

M7 Acute megakaryoblastic leukemia

Note: 1Society AC. Acute Myeloid Leukemia (AML) Subtypes and 
Prognostic Factors 2018 [Available from: https://www.cancer.
org/cancer/acute-myeloid-leukemia/detection-diagnosis-staging/
howclassified.html.

Myelodysplastic syndromes (MDS)

Myelodysplastic syndromes (MDS) are a heterogeneous clonal 
disease of myeloid neoplasms characterized by inefective 
hematopoiesis, variable degree of cytopenias, and an increased 
risk of progression to AML. The threshold for defining dysplasia 
is recommended as 10% for all lineages; for megakaryocytes, 
micromegakaryocytes are the most specific indicator of MDS, 
and a higher threshold of dysplasia may be warranted when 
other types of dysmegakaryopoiesis are included [106,107]. MDS 
entities are separated into two major groups: MDS with defining 
genetic abnormalities and MDS defined morphologically. MDS 
with defining genetic abnormalities includes the following 

entities: MDS with biallelic TP53 inactivation, MDS with low 
blasts and SF3B1 mutation (MDS-SF3B1) and MDS with low 
blasts and del(5q). MDS defined morphologically includes 
MDS with low blasts, hypoplastic MDS, MDS with increased 
blasts-1, MDS with increased blasts-2 and MDS with fibrosis. 
Although the 20% blast cutoffs were eliminated for most AML 
types with DGAs, this 20% blast cutoff was retained to delineate 
MDS from AML in order to avoid overtreatment of patients. 
In this context, the family of MDS with increased blasts (IBs) 
includes disease with <20% blasts [108]. Despite the approval 
of five MDS-specific therapies in the USA since 2004 and the 
increasing use of allo-HSCT, the prognosis remains dismal for 
most patients with higher-risk MDS (HR-MDS) [109]. Mutations 
in TP53, RUNX1, ASXL1, Janus kinase 2 [JAK2], and RAS 
pathway genes are associated with significantly shorter overall 
survival (OS) or relapse-free survival (RFS) after allo-HSCT, with 
TP53 mutations being particularly adverse [110,111,112]. One 
potential mechanism underlying the poor prognosis associated 
with TP53 mutations is the induction of an immunosuppressive 
microenvironment that permits immune evasion of tumor 
cells [113,114,115]. Supporting this hypothesis, AM Zeidan, JP 
Bewersdorf et al., recently found both a higher T-cell population 
and upregulation of inhibitory immune checkpoint proteins such 
as PD-L1 compared to TP53 wild-type in BM from TP53-mutated 
AML/HR-MDS. Moreover, RNA sequencing analyses revealed 
higher expression of the myeloid immune checkpoint gene 
LILRB3 in TP53-mutant samples suggesting a novel therapeutic 
target [116]. The DNA methyltransferase inhibitors azacitidine 
and decitabine, also known as hypomethylating agents (HMAs), 
have become standard-of-care for patients with HR-MDS [117]. 
Both HMAs are administered parenterally (requiring daily visits 
to a treatment centre for 5 consecutive days or 7 consecutive days 
of every 28-day treatment cycle) which represent a substantial 
burden for the older adult population with this disease (median 
age of 73 years at diagnosis) as well as is associated with so-
called time toxicity [118]. Nonetheless, only half of the HR-
MDS patients treated with HMAs achieves objective responses, 
and most responders (only 10–20% of patients) eventually lose 
response within 1-2 years [119,120,121,122,123]. Unfortunately, 
there are no standard-of-care therapeutic options for patients after 
HMA failure [124]. Up to the present, the prognosis of patients 
with HMA failure remains bleak [125]. Moreover, outcomes 
with allo-HSCT in the context of TP53-mutated MDS/AML are 
quite poor [126]. Consequently, the most appropriate treatment 
recommendation for TP53-mutated MDS/AML is enrollment in 
a clinical trial [127].

Pediatric MDS

Childhood MDS (cMDS, defined as <18 years of age) is biologically 
distinct from adult MDS [128]; for example, MDS with del(5q) 
and MDS with mutated SF3B1 virtually never occur in children. 
Therefore, ‘pediatric-type’ MDS classification criteria often do not 
fit into ‘adult-type’ MDS classification criteria [129]. cMDS can 
either be primary (“de novo”) or secondary, with secondary MDS 
being associated with antecedent or predisposing conditions 
such as certain genetic mutations, inherited bone marrow failure 
syndromes (IBMFSs), prior chemotherapy/radiation therapy 
[therapy-related MDS], or acquired severe aplastic anemia (SAA). 
Notably, MDS in children often occur in the context of IBMFs 
and germ line syndromes [e,g., mutations in GATA2, ETV6, 
SRP72, and SAMD9/SAMD9-L] [130,131,132]. Notably, germline 
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mutations in certain genes may confer substantially increased 
risk of MDS with an onset after age 18, such as ATG2B/GSKIP, 
TET2 [133,134,135], and DDX41. Importantly, cMDS is divided 
into two main categories: (1) refractory cytopenia of childhood 
(RCC)/MDS with low blasts for cases with <2% PB and <5% BM 
blasts and (2) MDS-excess blasts/MDS-increased blasts for cases 
with 2% PB or 5% BM blasts. While the 5th edition of the WHO 
replaces RCC with “childhood MDS with low blasts” (cMDS-
LB), the ICC retained the terminology of RCC for cases meeting 
defined morphologic criteria including <2% blasts in the PB 
and <5% blasts in the BM. WHO classifies pediatric MDS with 
5% blasts in the BM and/or 2% blasts in the PB as “childhood 
MDS with increased blasts (cMDS-IB)”, while the ICC classifies 
pediatric MDS with PB blasts between 2% and 19% and/or BM 
blasts between 5% and 19% as MDS with excess blasts (MDS-
EB) [136]. Strikingly, RCC is the most common subtype of MDS 
in children [137]. In this context, RCC must be distinguished 
from SAA and IBMFs as clinical and histopathologic distinction 
between them is of crucial therapeutic value [138,139]. Notably, 
cMDS has a different biological signature. Monosomy 7 and 
del[7q] are the most common cytogenetic abnormalities in 
pediatric MDS. In contrast to adult MDS cases, the mutational 
landscape of cMDS often contains somatic RAS pathway or 
SETBP1, ASXL1, and/or RUNX1 mutations (the frequently 
mutated genes in adult MDSs including TET2, DNMT3A, and 
TP53 and the spliceosome complex are not involved in disease 
pathogenesis in cMDS) [140,141,142]. The treatment strategies 
for cMDS are context-dependent i.e., depends on the diagnosis 
(with or without excess blasts), clinical scenario, and cytogenetics. 
There are three main treatment strategies for cMDS: watch-
and-wait, immunosuppressive therapy (IST), and HSCT [143]. 
Generally speaking, patients with lower-risk disease may be 
managed conservatively while patients with higher-risk disease 
(particularly with excess blasts, therapy-related MDS, or complex 
karyotype) are optimally managed by allo-HSCT [144].

Myeloid leukemia associated with Down syndrome 

Constitutional trisomy 21 (T21), which results in the development 
of Down syndrome (DS), is a state of aneuploidy associated with 
high incidence of childhood AML. Myeloid leukemia associated 
with DS (ML-DS) phenotypically reflects acute megakaryoblastic 
leukemia (M7 AML) observed in patients without DS. However, 
ML–DS has distinct clinical and biological features reflecting a 
model of step-wise leukemogenesis with perturbed hematopoiesis 
already presenting in utero [145]. ML-DS is preceded by a a pre-
leukemic state called transient abnormal myelopoiesis (TAM). 
While TAM is triggered by truncating mutations in GATA1 
generating a short GATA1 isoform (GATA1s), ML-DS emerges 
due to secondary mutations in hematopoietic clones bearing 
GATA1s [146]. Notably, MDS almost always precedes AML 
in patients with DS [147,148]. It is well recognized that many 
children with ML-DS present with a low blast count and a more 
myelodysplastic picture. While in many cases progression from 
MDS to AML is slow, all cases with MDS will eventually progress 
to full-blown AML. Therefore, it is recommended to commence 
treatment of MDS even with low blast counts. Unsurprisingly, 
ML-DS encompasses both MDS and AML occurring in DS under 
the WHO classification [149,150] Despite the highly favorable 
prognosis in children with primary ML-DS, outcomes for patients 
with R/R ML-DS remain dismal, with no standardized treatment 
recommendation available [151]. Intriguingly, recent evidence 

highlights fenretinide as a novel GATA1-targeting agent in M6 
and M7 AML cells, capable of overcoming chemoresistance, 
synergizing with current standard-of-care therapies, and 
outperforming them as a single agent [152]. Building on this, 
I believe fenretinide could be employed in the context of ML-
DS in a twofold manner: first, as a prophylactic treatment for 
TL-DS by inducing GATA1 loss, thereby eliminating the future 
risk of progression to ML-DS; and second, as a therapeutic agent 
for established ML-DS, either alone or in combination with less 
toxic chemotherapy regimens.

Chronic Myeloid Leukemia (CML)

CML is one of myeloproliferative neoplasms (MPN). CML is 
defined by the BCR::ABL1 fusion resulting from t(9;22)(q34;q11). 
The natural history of untreated CML before the introduction 
of targeted TKIs was biphasic or triphasic: an initial indolent 
chronic phase (CML-CP) followed by a blast crisis (CML-BC), 
with or without an intervening accelerated phase (CML-AP). 
CML treatment improved significantly following development 
of ABL TKIs, such as imatinib, dasatinib, nilotinib, bosutinib, 
and ponatinib. The incidence of progression to advanced phase 
disease has decreased, and the 10-year OS rate for CML is 80–
90% [153]. However, development of drug resistance to TKIs 
due to BCR-ABL point mutations, such as the E255K, Y253F/H 
[P-loop], H396R (activation loop) or the T315I (gatekeeper), 
poses a major challenge in the clinical treatment of CML [154]. 
In particular, the "gatekeeper" mutation T315I confers resistance 
against all approved TKIs, with the only exception of ponatinib, 
a third-generation multi-target kinase inhibitor [155]. Despite 
that ponatinib exhibits good therapeutic activity against the 
T315I mutation, its clinical utility is somewhat limited due to its 
cardiovascular toxicity [156]. Consequently, it is vital to develop 
new therapeutic strategies that are effective against TKI-resistant 
CML cells.

Adult T-cell leukemia/lymphoma (ATLL)

ATLL is a mature T-cell neoplasm most often composed of highly 
pleomorphic lymphoid cells. The disease is caused by the human 
lymphotropic virus type 1 (HTLV-1) [157,158]. In 2018 alone, 
HTLV-1 caused about 3600 cases of ATLL [157]. Most ATLL 
patients present with widespread lymph node involvement as 
well as involvement of PB. ATLL is endemic in several regions 
of the World, in particular south-western Japan, the Caribbean 
basin, and parts of central Africa. ATLL is an aggressive 
malignancy associated with poor prognosis because of intrinsic 
chemoresistance and severe immunosuppression [160]. The 
treatment of ATLL is usually dependent on the ATLL subtype. 
Patients with aggressive forms [acute and lymphoma] have a very 
poor prognosis [161,162,163,164]. Patients with indolent ATLL 
[chronic or smoldering subtypes] have a better prognosis, but 
long-term survival is poor when these patients are managed with 
a watchful-waiting policy or with chemotherapy [165].

Multiple myeloma (MM)

Plasma cell neoplasms including multiple myeloma (MM) and 
lymphoid leukemias are considered B-cell lymphoid malignancies 
in the WHO classification system [166]. MM is an incurable B-cell 
malignancy characterized by monoclonal proliferation of plasma 
cells within the BM. These malignant plasma cells produce and 
secrete a characteristic monoclonal immunoglobulin [M-protein] 
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(particularly thrombocytopenia)- leading to severe (50%) bacterial 
(68%) infections occurring within 30 days (moderate viral 
infections were more prevalent later)- remains a challenge after 
anti-BCMA CAR T-cell therapy [192]. Not surprisingly, most 
physicians believed that post CAR T-cell prolonged cytopenia 
could be a potential barrier to the next-line relapse therapy, 
especially that nearly half of patients were offered a stem cell 
boost [191]. Strikingly, MM with extramedullary disease (EMD), 
defined as paraskeletal or organ involvement with high mortality 
and an average OS time of 36 months [194,195,196], is a well-
established marker of inferior prognosis in MM, even in the 
era of novel therapies [197,198]. Based on current knowledge, 
extramedullary spread of MM may occur either at diagnosis (7%-
18%), during the course of the disease (6%), or at relapse (up to 
20%) [199,200]. Recently, Gagelmann et al., showed that patients 
with organ involvement have significantly worse progression-free 
survival [PFS] despite posttransplant maintenance, while patients 
with paraskeletal involvement appeared to be associated with 
similar outcomes in comparison with patients without EMD 
[201]. In a similar vein, the presence of EMD is an independent 
risk factor for inferior PFS despite CAR T-cell therapy. Among 
351 patients with R/R MM from 11 US academic centers, who 
had EMD prior to Idecabtagene vicleucel (Ide-cel) infusion, have 
demonstrated significantly inferior Day 90 objective response 
rates (ORR) [202,203].

HODGKIN LYMPHOMA AND NON-HODGKIN 
LYMPHOMA 

Hodgkin lymphoma (HL)

HL accounts for approximately 10% of lymphoma cases. It is 
developed in the lymphatic system and occurs mostly sporadically. 
It can also be associated with the Epstein-Barr virus (EBV) or 
HIV/AIDS and originates from the lymph node [204]. Hodgkin/
Reed-Sternberg (HRS) cells are the hallmark cells of HL [205]. 
HL is divided into two distinct categories that demonstrate 
different pathologic and clinical features: classical Hodgkin 
lymphoma (cHL) and nodular lymphocyte-predominant Hodgkin 
lymphoma (NLP-HL). cHL accounts for approximately 95 percent 
of HL and is further subdivided into four subgroups: nodular 
sclerosis (NSHL), lymphocyte-rich (LRHL), mixed cellularity 
(MCHL), and lymphocyte-depleted (LDHL) [206]. cHL is 
characterized by the recurrent genetic rearrangement 9p24.1 that 
shares the locus of PD-L1, PD-L2, and JAK2, leading to enhanced 
PD-L1/PD-L2 upregulation of HRS cells, which constitutes a 
mechanism to escape the immune-mediated anti-tumor response. 
Although PD-1/PD-L1 axis blockade has demonstrated efficacy 
in the treatment of R/R HL, many patients develop primary or 
secondary resistance to these agents, attributed, at least in part, to 
the expression of other immune checkpoints on HRS cells or in 
the tumor microenvironment (TME) such as LAG-3/CD223 and 
TIM-3. NSHL is the most frequently diagnosed subtype of HL 
and tends to occur in young adults, usually under age 50 years. 
Anterior mediastinal involvement is extremely common (90% of 
the cases) in NSHL, with subsequent involvement of cervical and 
supraclavicular lymph nodes, upper abdominal lymph nodes, and 
spleen [207]. Histologically, NSCHL is characterized by collagen 
bands that surround at least one nodule, and by HRS cells with 
lacunar-type morphology.

[167]. This M-protein is crucial for diagnosis and monitoring the 
disease status [168]. MM accounts for 1.8% of new cancer cases 
annually and about 10% of hematological malignancies [169]. 
Patients with MM usually suffer from hypercalcemia, renal damage, 
anemia, bone lesions and immunodeficiency [170]. In particular, 
bone disease is the main cause of MM morbidity. Intriguingly, 
MM exists on a continuous disease spectrum [171,172]. Almost all 
patients with MM begin with an asymptomatic pre-malignant stage 
termed monoclonal gammopathy of undetermined significance 
(MGUS) [173], progressing to an intermediate asymptomatic but 
more advanced pre-malignant stage referred to as smoldering 
multiple myeloma [SMM] which can be recognized clinically [174], 
and lastly to MM. Strikingly, genetic abnormalities, epigenetic 
alterations, and microenvironmental factors co-operate in the 
development of symptomatic MM [175]. Although MM is still 
considered a single disease, it is increasingly recognized as a 
collection of several different plasma cell malignancies [176,177], 
characterized by marked cytogenetic, molecular, and proliferative 
heterogeneity. This heterogeneity is manifested clinically by 
varying degrees of disease aggressiveness [178,179]. In this vein, 
the presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, del 
1p, or p53 mutation is considered high-risk MM. Presence of any 
two high risk factors is considered double-hit myeloma; three or 
more high risk factors is triple-hit myeloma [180]. 

Despite advances in treatment strategies, ranging from 
conventional chemotherapy with alkylating agents and HSCT, to 
the use of antiangiogenetic or proteasome inhibiting drugs, MM 
is still an incurable disease [181], where almost all patients with 
MM eventually relapse or become refractory to treatment at some 
point in their lives [182,183]. As resistance to chemotherapy is 
one of the main challenges in MM management [184], targeting 
tumor antigens with immunotherapy is rapidly emerging as a 
promising avenue for treatment of MM [185]. Nevertheless, 
around 40% of newly diagnosed MM patients treated with 
immunotherapy regimens containing daratumumab, a CD38-
targeted monoclonal antibody (mAb), progress prematurely 
[186]. In this line, the majority of patients treated with either 
daratumumab or isatuximab (both are mAbs that target CD38) 
will ultimately progress while on treatment or relapse after 
therapy. Strikingly, patients progressing after CD38 mAb-based 
therapies are also frequently resistant to other commonly used 
anti-myeloma agents such as lenalidomide and bortezomib [187]. 
In a similar vein, despite that the B-cell maturation antigen 
(BCMA) is preferentially expressed on mature B-cells [188], while 
>70% of patients with R/R MM initially responded to anti-BCMA 
CAR T-cell therapy, clinical relapse and disease progression occur 
in most cases [189]. Intriguingly, Ledergor et al., introduced the 
importance of cell states in vivo as possible predictors of outcome 
after CAR T-cell therapy. By using single-cell transcriptomics to 
study changes in immune cells in patients with MM receiving 
anti-BCMA CAR T-cells, they found that patients with short-lived 
responses had increased frequencies of exhausted cytotoxic CD4+ 
CAR T-cells, whereas those with durable responses possessed 
a significantly higher proportion of CD8+ T-effector memory 
cells. In addition, the relevant exhaustion coexpressed markers 
are TIM-3 and TIGIT, rather than other canonical markers of 
exhaustion such as PD-1 or CTLA-4, which might inform future 
combination therapeutic approaches [190,191]. Furthermore, 
severe (grade ≥ 3) and persistent (40% at day +90) cytopenia 
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Diffuse large B cell lymphoma (DLBCL)

DLBCL is the most common hematologic malignancy as well as 
the most common form of B-NHLs comprising 30–40% of cases, 
with slight over-representation of the male gender [227,228,229]. 
DLBCL belongs to the family of large B-cell lymphomas (LBCL), 
a heterogeneous class of tumors characterized by large lymphoid 
cells of the B-cell lineage that by definition form sheets or clusters. 
“Large cell” cytology is usually defined as a lymphoid cell with a 
nucleus that is larger than that of a macrophage or twice the size 
of a normal lymphocyte [230]. Notwithstanding the significantly 
improved outcomes of R/R LBCL induced by the autologous 
CD19-directed CAR T-cell therapy compared to standard-of-
care salvage chemoimmunotherapy [231], most patients do not 
have durable benefit and post-CAR T-cell relapses are difficult to 
salvage [232]. 

DLBCL is characterized by a striking degree of genetic and 
clinical heterogeneity [233,234,235,236,237]. Based on gene 
expression profiling, three major molecular subtypes have been 
identified: GC B-cell-like [GCB-DLBCL], Activated-B-cell-like 
(ABC-DLBCL) and PMBL [238]. However, around 10%-15% 
of cases are categorized as unclassifiable. The ABC-DLBCL 
and GCB-DLBCL subtypes show differences in chromosomal 
alterations, signaling pathway activation, and clinical outcome. 
The ABC-DLBCL has demonstrated inferior clinical outcome 
compared with the GCB-DLBCL. Although R-CHOP therapy 
remains the mainstay of treatment for DLBCL, this fails to 
achieve remission in about 40% of patients. In addition, despite 
the recent advances in management of DLBCL, outcomes for 
high-risk patients continue to remain suboptimal [239]. Hence, 
research is needed to discover novel therapeutic strategies [240]. 
Mechanistically, B-cell antigen receptor (BCR) signaling that 
activates downstream oncogenic pathways such as the nuclear 
factor kappa-light-chain-enhancer of activated B cell (NF-κB) 
or phosphatidylinositol 3-kinase (PI3K) plays a critical role in 
pathogenesis of B cell malignancies, including DLBCL and CLL 
[241,242,243,244,245]. 

There are two fundamentally distinct mechanisms of BCR 
pathway activation in B cell lymphomas: antigen-dependent and 
antigen-independent BCR signaling [246,247]. The hallmark of 
ABC-DLBCLs is chronic active antigen-dependent BCR signaling 
resulting in constitutive NF-κB activity which blocks apoptosis 
[248]. In fact, ABC-DLBCL cells are highly dependent on NF-
κB for their viability [249,250]. Although chronic active BCR 
signaling in ABC DLBCL shares characteristics with antigen-
dependent BCR signaling in normal B cells, intact BCR signal 
transduction pathway is tightly regulated and self-limited by the 
availability of antigen and other negative controls [251]. 

On the other hand, genomic data have shown that GCB-DLBCL 
lines exclusively use an antigen-independent signal, termed ‘tonic 
BCR signaling’ [252]. Unlike chronic active BCR signaling, tonic 
BCR signaling is mediated by PI3Kα and PI3Kδ/AKT/mTOR 
(but not the NF-κB pathway) to promote the proliferation and 
survival of malignant B cells [253]. In contrast to BL where MYC 
rearrangements are present in almost all of the cases, alterations 
in MYC have been detected in approximately 5% to 15% of 
DLBCL cases. However, MYC overexpression is one of the key 
prognostic and predictive biomarkers for survival in DLBCL, and 
some authors even showed that MYC overexpression is associated 
with the worst survival rates [254,255,256,257,258].

Non-Hodgkin lymphoma (NHL)

NHL includes all lymphomas except for Hodgkin lymphomas, 
which comprises more than 50 different neoplasms that arise 
from immature or mature B-cells, T-cells, or natural killer 
(NK) cells [effector lymphocytes of the innate immune system] 
[208]. The relative frequencies of various subtypes of NHL 
vary significantly in different geographic regions of the World, 
and environmental and lifestyle factors, as well as host genetic 
makeup, appear to contribute to the development of NHL [209]. 
NHL is generally divided into 2 main types, based on whether 
it starts in B lymphocytes (B-NHL) or T lymphocytes (T-NHL). 
NHLs are also classified by whether it is aggressive (fast-growing) 
or indolent (slow-growing). There are huge differences between 
the fast-growing aggressive lymphomas (aNHLs; about 60% 
of all NHL cases) and the slow-growing indolent lymphomas. 
While DLBCL is the most common aggressive form of B-NHL, 
FL, and CLL are slow-growing lymphomas [210]. Notably, apart 
from cHL and primary mediastinal B-cell lymphoma (PMBL) 
[211], combination therapies with PD-1/PD-L1 blockade have 
not resulted in obvious clinical responses in patients with other 
lymphomas [212]. Strikingly, PD-L1 has been reported expressed 
by tumor cells and PD-1 by tumor-associated T cells in DLBCL 
[213,214]. A multicenter cohort study of 288 DLBCL patients 
shows that high level of soluble PD-L1 (sPD-L1) in peripheral 
blood at the time of diagnosis is significantly associated with 
poorer OS for patients diagnosed with aggressive DLBCL, 
particularly for those treated with standard R-CHOP (rituximab, 
cyclophosphamide, doxorubicin, vincristine, and prednisolone) 
[215].

Burkitt lymphoma (BL)

BL is an aggressive mature B-cell lymphoma derived from germinal 
center (GC) or post GC B-cells. BL is characterized by a very high 
proliferation rate and believed to be the fastest growing human 
tumor [216]. With a Ki67 (a cellular marker for proliferation) 
expression of nearly 100%, the clinical course of BL usually is 
highly aggressive requiring prompt institution of therapy [217]. 
In contrast to B-lymphomas with predominant lymph node 
involvement, BL most commonly involves extranodal sites such 
as the jaw, bones, gastrointestinal tract, gonads, or breasts. There 
are three clinical variants of BL: endemic [African-derived], 
sporadic [nonendemic], and human immunodeficiency virus 
(HIV-associated BL. BLs occurring in each of these settings are 
histologically identical but differ in some clinical, genotypic, 
and virologic characteristics. Endemic BL is a pediatric cancer 
accounting for 30–50% of all childhood cancers in regions where 
malarial transmission is year-round [218,219,220,221]. Essentially 
all endemic BLs are latently infected with EBV, which is also 
present in about 25% of HIV-associated tumors and 15% to 
20% of sporadic cases. However, how EBV contributes to the 
BL lymphomagenesis is still to be defined [222]. All forms of 
BL are highly associated with translocations of the MYC gene 
(a potent oncogene located at chromosome locus 8q24.21) that 
lead to increased MYC protein levels. The translocation partner 
for MYC is usually the IgH locus (t (8;14)) but may also be the Ig 
κ (t(2;8)) or λ (t(8;22)) light chain loci.  Rearrangement of MYC 
with immunoglobulin genes is a hallmark of Burkitt lymphoma 
[223]. In addition to BL, dysregulation of MYC has been shown 
to be an independent negative prognostic factor in other aNHLs 
[224,225,226].
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markers [274,275,276,277,278]. Although the expression of these 
markers was found to correlate with the expression of unmutated 
IGHV genes, this correlation is not absolute [279].

Strikingly, novel immunotherapies showed disappointing results 
in CLL, in contrast to several B-cell lymphomas where responses 
were impressive. Mechanistically, the strong immunomodulatory 
effect of CLL causes low response rates to immunotherapy 
strategies [280]. For instance, CLL cells have the ability to transform 
the effector functions of the bystander T cells in the TME, thus 
rendering them a source of trophic signals for the survival and 
proliferation of the malignant clone. Indeed, substantial evidence 
implicates T cells present in the TME in the natural history of the 
CLL as well as in the establishment of certain CLL hallmarks such 
as tumor evasion and immune suppression. Although CLL cells 
are able to manipulate T-cell functionality, T cell abnormalities in 
CLL appear to be reversible, which is why therapies targeting the 
T cell compartment, including CAR-T cells, immune checkpoint 
blockade and immunomodulation, represent a reasonable 
therapeutic option in CLL [281]. Nevertheless, novel targeted 
therapies demonstrated improved PFS and OS that were superior 
to chemoimmunotherapy. Nowadays, Bruton’s tyrosine kinase 
[BTK] inhibitors, Bcl-2 inhibitors, and CD20 mAbs are established 
treatments for CLL, both in frontline and R/R settings [282]. In 
this context, substantial evidence has established the central role 
of chronic BCR-mediated signaling in CLL pathogenesis [283]. It 
is worth noting that BTK, a signal transduction pathway located 
downstream to the BCR, is essential for constitutively active 
pathways implicated in CLL cell survival [284,285,286,287]. 
On the other hand, metabolic reprogramming is a hallmark 
of CLL and underlies disease progression and relapse but the 
exploitation of metabolic dependencies in clinical settings is still 
minimal [288]. Notably, Richter transformation (RT, also known 
as Richter’s syndrome), the progression of CLL into an aggressive 
lymphoproliferative disorder, primarily DLBCL-although HL, 
plasmablastic lymphoma, or other rare lymphomas have been also 
reported [289]- occurs in approximately 2-10% of patients with 
CLL [290]. Intriguingly, RT is associated with poor response to 
chemotherapy and short survival [291], e.g., the overall response 
rates for patients treated with chemoimmunotherapy such as 
R-CHOP are <40% with a median OS of 6–8 months [292]. Since 
RT remains a therapeutic challenge, innovative management of 
this grave complication is warranted [293]. Interestingly, MYC 
aberrations were found in most RT cases [294]. The association 
of MYC translocation with an unfavorable prognosis of CLL/ RT 
patients was confirmed in several studies [295,296,297].

Mantle cell lymphoma (MCL)

MCL results from malignant transformation of B lymphocytes in 
the mantle zones surrounding GCs [298]. MCL is a very rare form 
of aggressive B-NHL with a dismal prognosis.  Similar to CLL and 
ABC-DLBCL, MCL also show activation of the BCR pathway 
and constitutive NF-κB signaling [299,300]. On the other hand, 
primary resistance curbed the initial effectiveness of several 
inhibitors targeting BCR-associated kinases (BTK, spleen tyrosine 
kinase (SYK), or PI3K, in DLBCL and MCL, especially in the 
case of first generation BTK inhibitors (e.g, ibrutinib) [301]. The 
pathognomic feature of MCL is the chromosomal translocation 
t (11;14) (q13; q32 (IGH/CCND1), which is observed in >95% 
of cases, resulting in the constitutive overexpression of G1-phase 
cell cycle protein cyclin D1 (CCND1) [302,303]. MCL usually 
overexpress IgM as compared to normal B cells, which likely 

Follicular lymphoma (FL)

FL is a CD5- and CD10+ indolent lymphoma representing 
approximately 40% of all NHLs. The genetic hallmark of FL is 
the t(14;18) translocation resulting in B cell lymphoma-2 (Bcl-2) 
oncoprotein overexpression [found in up to ~ 85% of patients] 
[259]. Bcl-2 is a prototypic anti-apoptotic protein (promotes tumor 
cell survival) and its overexpression in FL is the classic example of 
its anti-apopototic mechanism (prevents programmed cell death 
by limiting the exit of cytochrome c from mitochondria). The 
pathobiology of FL is complex and involves alterations within 
the FL microenvironment in addition to the cell-intrinsic genetic 
changes, frequently including (in addition to the hallmark 
t(14;18) translocation) mutations in histone-encoding genes (in 
~ 40% of cases), the SWI/SNF complex or the interconnected 
BCR and CXCR4 chemokine receptor signaling pathways [260].

Chronic lymphocytic leukemia (CLL)

CLL is a disease of the elderly population. Although it is the most 
common adult leukemia in western countries, it is less common 
in Asia and relatively rare in Japan and Korea, even among 
Japanese people who immigrate to western counties [261]. CLL 
is a malignancy of mature, antigen-experienced B lymphocytes 
that is characterized by the accumulation of mature circulating 
IgMlow CD5+ B cells [262].  In simple words, CLL is a cancer 
of CD19+ B cells that co-express the T cell marker CD5. CLL 
cells proliferate in distinct microanatomical tissue sites called 
“proliferation centers” or “pseudofollicles”, a hallmark finding 
in CLL histopathology [263]. Despite a common CD5+CD19+ 
phenotype, CLL is marked by a heterogeneous clinical course 
ranging from a benign disease to one that can be fatal within 
a few years of diagnosis [264]. As a disorder of B-lymphocytes, 
CLL is intrinsically characterized by adaptive immune response 
dysfunction, but alterations of multiple elements and effectors 
of the innate immune response are also found in CLL patients 
[265]. Interestingly, CLL and small lymphocytic lymphoma 
(SLL) are morphologically, phenotypically, and genotypically 
indistinguishable, differing only in the degree of peripheral 
lymphocytosis [266]. Despite being a slow-proliferating disease 
and the great progress recently achieved in the management of 
CLL, the disease remains potentially incurable [267]. Prognostic 
biomarkers and risk scoring systems play important roles in 
guiding CLL treatment decisions [268]. In this context, several 
genetic aberrations with prognostic value and impact on treatment 
decisions in CLL have been described. These include deletions 
of the chromosomal regions 17p13 (containing the TP53 tumor 
suppressor gene), 11q23 (containing DNA damage checkpoint 
protein ATM), or 13q14 (miR-15a, miR-16-1), and trisomy 
of chromosome 12 [269,270]. Patients with TP53 alterations 
including TP53 mutations or 17p deletions are classified as 
‘high-risk’ and usually associated with an unfavorable prognosis 
and poor response to chemotherapy and immunotherapy 
[271,272]. On the basis of somatic hypermutation status of the 
immunoglobulin heavy-chain variable region gene (IGHV), CLL 
can be grouped into mutated CLL (M-CLL) and unmutated CLL 
(UM-CLL). M-CLL (derived from post-GC B cells) has a more 
favourable prognosis than those with UM-CLL [derived from 
CD5+ mature B cells] [273]. Numerous genes like ZAP-70 (zeta-
associated protein 70), CD38 and LPL (lipoprotein 73 lipase), 
whose expression was associated with an unmutated status of 
IGHV genes and poor outcome, were proposed as surrogate 
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understood [322]. Common fatal complications of PMF include 
transformation to acute leukemia, thrombohemorrhagic events, 
organ failure, and infections [323]. Patients who develop acute 
leukemia (typically involves the myeloid lineages (secondary AML 
(sAML)) but, rarely, lymphoid transformation (secondary ALL) 
may also occur) have a median survival time of less than 3 months 
[324]. Approximately 90% of patients harbor a mutation affecting 
JAK2, MPL, or CALR. As mutations in these genes all converge 
on JAK/STAT signaling, the JAK1/2 inhibitor ruxolitinib is 
currently front-line therapy for MF [325]. In contrast, PMF that 
lacks these canonical alterations, termed triple-negative PMF (TN-
PMF), is associated with poor prognosis [326,327]. In addition to 
PMF, PV and ET can also progress to post-PV (PPV) MF and 
post-ET (PET) MF, also known as secondary myelofibrosis (SMF) 
[328]. Despite approval of JAK inhibitors and novel agents, allo-
HSCT remains the only potentially curative treatment for for both 
PMF and SMF [329]. Nonetheless, HSCT is limited by its highly 
concerning risks of TRM and therapy-related complications 
[330]. Increased risk of post-transplantation relapse was observed 
for accelerated phase MF (compared with chronic phase MF) 
and patients with splenomegaly prior to transplantation [331]. 
Recently, Gagelmann et al., identified a novel very high-risk 
group in patients with MF undergoing HSCT [332]. Compared 
to patients with monoallelic TP53 mutated (TP53mut) MF, 
patients with TP53 multi-hit (TP53MH) MF following HSCT had 
an increased relapse risk. In a similar vein, this study has also 
shown that AML transformation was a more frequent relapse 
presentation in patients with TP53MH, compared with patients 
with monoallelic TP53mut/TP53WT which highlights a need 
for an alternative approach to allo-HSCT in this subgroup 
[333]. In this regard, clonal evolution to secondary (sAML) is 
one of the most feared complications of MPN. A significant 
proportion of patients with MPN (10%–20%) transform to 
devastating and rapidly fatal sAML, characterized by cytopenias, 
increased myeloid blasts, acquisition of aberrant LSC properties 
by hematopoietic stem/progenitor cells (HSPCs) and median 
survival of less than one year [334,335]. Notably, the risk of AML 
transformation was highest for patients with MF (occurring in 
up to 20% of patients) [336]. Collectively, TP53 mutations are 
detected in approximately 20–35% of post-MPN sAML (known 
as TP53-sAML) [337,338,339]. Recently, Rodriguez-Meira et al., 
has disentangled the mechanistic basis for this phenomenon by 
implicating inflammation in TP53-driven clonal evolution [340].

CONCLUSION

Hematologic malignancies, encompassing leukemias, lymphomas, 
and myelomas, represent a diverse and complex group of cancers 
that continue to challenge modern oncology. Since the first 
documented case of Hodgkin lymphoma in 1832, advances in 
understanding their genetic and molecular underpinnings have 
paved the way for targeted therapies and innovative treatment 
strategies. However, high rates of relapse, resistance to therapy, 
and significant treatment-related complications underscore 
the need for further advancements. This article delves into the 
classification, pathophysiology, and clinical features of liquid 
tumors, highlighting current therapeutic approaches and 
emerging frontiers in treatment. By addressing these challenges, 
it aims to equip researchers and clinicians with the knowledge 
needed to improve outcomes for patients with these devastating 
diseases.

contribute to the pathogenesis of this lymphoma type [304]. 
TP53 mutations have been associated with an inferior prognosis 
in MCL and patients usually have a poor response to standard 
chemotherapy [305]. Therefore, patients with TP53 mutations 
should be considered for alternative frontline treatment [306].

Myeloproliferative Neoplasms (MPNs)

MPNs are clonal hematopoietic stem cell disorders with 
overproduction of mature myeloid blood cells. MPNs include 
CML, polycythemia vera (PV), essential thrombocythemia 
(ET), primary myelofibrosis (PMF), chronic neutrophilic 
leukemia (CNL), chronic eosinophilic leukemia (CEL), juvenile 
myelomonocytic leukemia (JMML) and MPN, not otherwise 
specified (MPN-NOS). The WHO classifies CML, PV, ET, and 
PMF as classical MPNs. The classical MPNs represent clonal 
myeloid disorders whose pathogenesis is driven by well-defined 
molecular abnormalities [307]. In this context, CML is the only 
MPN driven by a reciprocal translocation between chromosomes 
9 and 22 creating the Philadelphia chromosome (Ph) and 
specifically the fusion gene BCR-ABL1. Consequently, classical 
MPNs are further classified as Ph-positive CML and Ph-negative 
MPNs including PV, ET, and PMF [308]. Whereas ET and PV 
are characterized by platelet and erythrocyte overproduction, 
respectively, PMF is marked by aberrant proliferation of cells of 
the megakaryocytic lineage and progressive BM fibrosis [309]. 
However, PMF, ET and PV share common MPN-initiating somatic 
mutations in the genes that encode for JAK2, thrombopoietin 
receptor [TPO-R, also known as myeloproliferative leukemia 
protein or MPL], and calreticulin (CALR) leading to the activation 
of the MPL and downstream signaling pathways (MPL-JAK-STAT 
signalling) in MPN stem cells [310]. Of these, the JAK2 V617F 
mutation was the first identified, and, is present in 95% of PV, 
and about 55% and 60% of ET and PMF patients, respectively. 
CALR and MPL mutations are almost always associated with an 
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present in about 3% ET patients and about 7% of PMF patients 
[311]. CALR is mutated in the majority of JAK2/MPL mutation-
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ET and PMF patients [312,313,314]. ET has the most favorable 
prognosis among MPNs but a minority of patients who develop 
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have a much poorer outcome [315]. In a large cohort of patients 
with ET (1000 patients), major thromboses at the time of diagnosis 
were documented in 19%, with a predominance of arterial (13%) 
versus venous (6%) events [316]. On the other hand, PMF is 
the most aggressive subtype among classical BCR-ABL1 negative 
MPNs. Approximately 1 of 3 responds to currently approved 
JAK inhibitor treatment; however, hematotoxicity (especially in 
patients with cytopenic MF) results in treatment discontinuation 
for many patients. PMF results when cytokines produced by 
the MPN clone stimulate bone marrow stromal cells (BMSCs) 
to deposit an excess of collagens and other extracellular matrix 
(ECM) proteins, consequently destroying the hematopoietic 
microenvironment [317,318,319]. PMF is morphologically 
characterized by abnormal megakaryocyte proliferation that is 
often accompanied by reticulin fibrosis [320]. The fibrotic BM 
remodeling and pronounced systemic inflammation cause BM 
failure, extramedullary hematopoiesis, splenomegaly, profound 
constitutional symptoms and a median survival of around 5 years 
[321]. However, the mechanisms by which the hematopoietic 
tissue in the BM is replaced by a fibrotic scar tissue are not yet fully 
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