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ABSTRACT

patients with these complex malignancies.

Hematologic malignancies, commonly referred to as liquid tumors, encompass a diverse group of cancers such as
leukemias, lymphomas, and myelomas. Defined by unique genetic, molecular, and clinical characteristics, these
diseases present significant challenges in diagnosis, treatment, and prognosis. Despite advances in therapeutic
strategies —including immunotherapy, targeted therapies, and Hematopoietic Stem Cell Transplantation (HSCT)—
patients with high-risk or relapsed disease often face poor outcomes. Notably, multiple myeloma (MM) remains an
incurable plasma cell malignancy despite recent innovations, underscoring the need for more effective and durable
treatment strategies. This article offers a comprehensive review of the classification, pathophysiology, and molecular
features of liquid tumors, with a particular focus on emerging therapeutic approaches and unmet clinical needs. By
addressing current challenges and future opportunities, this work seeks to contribute to the advancement of care for
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INTRODUCTION

The first hematologic malignancy was described by Thomas
Hodgkin in 1832. The disease was called "Hodgkin's disease"
until it was officially renamed "Hodgkin lymphoma" in the late
20th century. The published descriptions of other hematologic
malignancies, such as leukemia and MM, soon followed.
Hematologic malignancies have distinct genetic and epigenetic
signatures and are traditionally categorised by site according
to whether cancer is first detected in the blood (leukemias),
lymph nodes (lymphomas - Hodgkin and non-Hodgkin) or bone
marrow (myelomas) [1]. Despite its relatively lower frequency,
tumor protein 53 (TP53) alterations (including TP53 mutations
or 17p deletions] are closely linked with complex karyotype,
poor prognosis, and chemotherapeutic response in hematologic
malignancies [2]. Somatic TP53 alterations have been reported
in acute lymphoblastic leukemia (ALL) (16%) [3], acute myeloid
leukemia (AML) (12%) [4,5], chronic lymphocytic leukemia
(CLL) (7%) [6,7,8], and myelodysplastic syndromes (MDS)
(6%) [9,10,11]. As a matter of fact, the tumor suppressor gene
TP53 is the most frequently mutated gene in human cancers,
with mutations occurring in more than 50% of human primary

tumors [12,13]. Interestingly, the frequency of TP53 mutations
is even higher in tumors that relapse after therapy. Notably,
the p53 protein (commonly referred to as the “guardian of
the genome”), made by the TP53 gene, normally prevents the
propagation of genetically defective cells by supervising the
repair of damaged DNA. Consequently, defective p53 renders
cells relatively resistant to chemo- and radiotherapies and
promotes a “mutator phenotype” prone to rapid accumulation
of additional mutations [14]. Moreover, patients with germline
TP53 mutations [the underlying cause of Li-Fraumeni and Li-
Fraumeni-like syndromes] have a twenty-five-fold greater risk
of early-onset cancers (e.g., leukemia, sarcomas, breast cancer,
and brain tumors) [15]. The mainstay treatment for high-risk or
relapsed/refractory (R/R) hematologic malignancies (including
leukemias) has historically revolved around allogeneicHSCT
(allo-HSCT). Despite increasing survival rates, allo-HSCT is
associated with long-term morbidity and mortality, mainly due
to chronic graftversus-host disease (cGvHD) which remains a
very challenging and serious complication of allo-HSCT. In this
context, cGvHD is stigmatised by futile treatment options lying
between the harmful corticosteroids as the standard firstline
treatment and elusive second-line therapies [16]. In addition,
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given the poor prognosis of patients who relapse after allo-
HSCT, targeted immunotherapies have emerged as a promising
therapeutic option in hematologic oncology [17].

Leukemias

Leukemia is a blood cancer caused by the rapid production of
abnormal white blood cells and is the most common cancer in
children and adolescents. Despite advances made in therapeutic
strategies, allo-HSCT remains a standard-of-care across various
leukemia subtypes for curative intent [18]. Leukemia classification
is based on the type of blood cell affected (includes both
lymphoblastic and myeloid leukemias) and the rate of leukemia
progression [includes an acute or chronic forms]. Acute leukemias
represent a clonal expansion and arrest at a specific stage of
myeloid or lymphoid hematopoiesis [19]. Acute leukemias are
characterized by greater than 20% blast cells in the bone marrow
(BM) or peripheral blood (PB) leading to a more rapid onset of
symptoms. Nevertheless, the 20% blast cutoffs were eliminated
for most AML types with ‘defining genetic abnormalities’ (DGAs)
(see below) [20,21,22]. Although allo-HSCT is an important
therapeutic modality for acute leukemia, its outcomes remain
unsatisfactory [23]. In contrast, chronic leukemia has less than
20% blasts with a relatively chronic onset of symptoms [24]. Unlike
acute leukemias, blast cells in chronic leukemias are more mature
and can carry out some of their normal functions [25]. Principally,
leukemia is subdivided into four major subtypes: ALL, CLL,
AML, and chronic myeloid leukemia (CML) [26]. However, this
classification is an over-simplification. In the WHO classification,
precursor B- and T-lymphoblastic neoplasms overlap with their
corresponding lymphoma i.e., B-cell lymphoblastic leukemia/
lymphoma (B-ALL/B-LBL) and Tlymphoblastic leukemia/
lymphoma (T-ALL/T-LBL) respectively [27]. It is important to
note that mature B-ALL has been eliminated from the 2008 WHO
classification of B-ALL as it is inseparable from Burkitt lymphoma
(mature B-ALL is treated as stage IV Burkitt lymphoma) [28]. In
addition, CML is classified as a myeloproliferative neoplasm
(MPN). Importantly, CML is not to be confused with chronic
myelomonocytic leukemia (CMML). CMML is a hybrid or mixed
myelodysplastic/myeloproliferative neoplasm characterized by a
large heterogeneity of clinical features but allo-HSCT remains the
only potentially curative option. However, the inherent toxicity
of this procedure makes the decision to proceed to allo-HSCT
challenging, particularly because patients with CMML are mostly
older and comorbid [29].

Acute lymphoblastic leukemia (ALL)

ALL is still an important cause of morbidity and mortality in
children and adults [30]. Accounting for 25% of all childhood
cancers, ALL is the most common malignant neoplastic disease
in children. Eighty-five percent of the cases of childhood ALL
are of the B-lineage (B-ALL) [31]. Despite cure rates exceeding
90% in children with B-ALL, outcomes of older adolescents and
young adults with ALL still lag behind those of their younger
counterparts despite pediatric-inspired chemotherapy regimens
[32];andyet, childhood R/R ALL is associated with poor outcomes.
Altogether, ALL still represents the leading causes of cancer-
related death, underscoring a critical unmet need for effective
new therapies [33]. Rearrangements of the human Histone-lysine
N-methyltransferase 2A (KMTZ2A) or myeloid/lymphoid/mixed
lineage leukemia genes (MLL), detected in approximately 5% of
childhood ALL, are most frequent in infants (<12 months of age)
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and are associated with poor outcome [34,35]. Approximately
70% of infants with B-ALL have a KMTZ2A rearrangement
(KMT2A-R), and their outcome is particularly unfavorable
compared to infant ALL without KMT2A rearrangements (often
referred to as KMT2A germline/KMT2A-G) [36]. In this context,
infant ALL constitutes another rare ALL subtype for which
innovative therapies are urgently needed, since their unfavorable
outcome remains essentially unchanged over the past several
decades [37]. Strikingly, even though noninfants with KMT2A-R
ALL have a superior outcome to infants, their outcomes remain
clearly inferior to those of childhood ALL and even allo-HSCT
has failed to improve their outcome [38]. Moreover, there is an
unmet need for developing immunotherapies for the large cohort
of patients who are deemed unfit for postremission intensive
chemotherapy or HSCT in first remission because of toxicity
to previous chemotherapy or significant co-morbidities [39]. In
a similar vein, the poor outcome associated with philadelphia
chromosome (Ph)like ALL (characterized by a gene expression
profile similar to that of Ph* ALL, but lacks the canonical BCR-
ABL1 fusion) which has been improved significantly by the
early addition of imatinib or related tyrosine kinase inhibitors
(TKIs) to intensive chemotherapy regimens with or without
HSCT in first complete remission (CR1) provided a compelling
rationale to harness targeted therapies or precision medicine
approaches for ALL [40]. Nevertheless, most molecularly
targeted approaches have thus far failed to improve long-term
outcomes in relapsed ALL [41]. Remarkably, the emergence of
immunotherapies has transformed therapy for relapsed ALL. As
CD19 is expressed by essentially all B-cell malignancies at clinical
presentation, the prototype Bispecific T-cell engager (BiTE)
therapy (Blinatumomab) and chimeric antigen receptor (CAR)-T
cell therapy (Tisagenlecleucel) respectively, were granted approval
by the United States Food and Drug Administration (FDA or
US FDA) as CD19-targeting B-cell malignancies. Nevertheless,
relapses with loss or reduction in CD19 surface expression
were increasingly recognized as a cause of treatment failure
[42,43,44]. In the case with blinatumomab, the high initial
overall response rate is frequently accompanied by subsequent
relapse or refractoriness to treatment [45]. Relapses with loss
or reduction in CD19 surface expression are being increasingly
recognized as a cause of treatment failure of blinatumomab.
Mechanistically, reduction in response may be due to low CD19
antigen expression or antigen loss from alternative splicing, non-
functional membrane chaperone proteins, transformation to
myeloid lineages, or CD19 mutations. It is the author’s experience
that a 21-months old child had developed blinatumomab-induced
lineage switch of B-ALL with t (4:11) (q21; q23) KMT2A/AFF1
into an aggressive AML. Intriguingly, similar mechanisms of
resistance also develop in response to CD19-targeted CAR Tecell
therapies. In addition, the increased expression level of PD-L1
in blinatumomab-resistant patients is another explanation for
tumor escape [46]. Remarkably, blinatumomab does not obviate
the need for intrathecal therapy due to the lack of sufficient
evidence to suggest that it crosses the blood-brain barrier (BBB)
[47]. In this vein, despite that cranial irradiation was omitted
from treatment protocols for children with newly diagnosed
ALL, intrathecal therapy alone was strongly associated with
cognitive impairment [48]. Despite that T-LBL represents the
second most frequent subtype of Non-Hodgkin lymphoma (NHL) in
children and adolescents [49], T-LBL and T-ALL have historically
been considered a spectrum of the same disease. Owing to the
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great overlap in their morphological, clinical, and immune-
phenotypic features [50,51], it is often debated whether T-LBL
and T-ALL are different entities or represent manifestations
of the same disease [52]. It is worth noting that T-ALL/T-LBL
accounts for approximately 15% of pediatric and 25% of adult
ALL [53]. While risk stratification is well-developed for patients
with B-ALL, it remains challenging for those with T-ALL [54].
In addition, immunotherapeutic approaches for T-ALL has
lagged significantly behind B-ALL [55]. Indeed, the search and
identification of selective targets for T-ALL blasts not expressed by
normal T-cells remains the main challenge [56]. Not surprisingly,
outcomes for T-ALL are still lagging behind those for B-ALL by
5-10% in most studies [57]. In particular, relapsed T-ALL and
T-LBL portend a poor prognosis [58]. Given the poor salvage rates
of <25% and <15%, respectively, early intensification of therapy
to improve outcomes is essential [59,60,61]. Intriguingly, recent
evidence demonstrating differential responses to chemotherapy
raise the possibility that T-LBL and T-ALL are distinct clinical
and biologic entities [62].

Acute myeloid leukemia (AML)

AML is the most common acute leukemia in adults. AML is not just
one disease, but rather a heterogeneous group of disorders caused
by chromosomal translocations and rearrangements resulting in
the uncontrolled proliferation of myeloid blast cells (myeloblasts)
in the BM and impaired production of normal thrombocytes,
erythrocytes, and leukocytes [63,64]. Strikingly, AML is an
aggressive hematologic malignancy that has been suffering from
stagnant survival curves for decades. More than 90% of patients
with newly diagnosed AML fall into an intermediate or poor risk
category per the European Leukemia Network (ELN) criteria, and
in this patient population, allo-HSCT in CR1 serve as the only
chance for cure [65,66]. According to 5" edition of the World
Health Organization (WHOQO) Classification of Haematolymphoid
(WHO-HEM5, also called WHO 2022), AML
entities are now grouped into AML defined by differentiation
[previously known as as AML-NOS] and AML with DGAs
including PML::RARA, RUNXI::RUNXITI, CBFB:MYHII,
RBM15:MRTFA and DEK::NUP214; rearrangements involving
KMT2A, MECOM (EVI1) and NUP98; and NPM1 mutation.
However, the biggest difference is the removal of the blast cutoff
for all genetically defined AML cases except AML with BCR::ABL1
fusion, AML with CEBPA mutation and myelodysplasia-related
AML (AML-MR). Notably, the presence of AML-DGA excludes
a diagnosis of MDS, particularly in cases having >2% and >5%
blasts in PB and BM respectively [67]. In addition, the remaining
AML categories retain the 20% blast cutoff, discriminating it
from MDS [68]. However, in parallel to the WHO-HEMS5, an
alternative International Consensus Classification (ICC) has
been proposed. In contrast to the WHO-HEMS5, ICC sets the
blast cutoff for AML-DGA to 10%, assigning cases with 10-19%
blasts without DGA to a new category MDS/AML (several key
differences between WHO-HEMS5 and ICC were highlighted by
S. Huber et a.) [69]. In contrast to the WHO system (established
in 2008), the French-American-British (FAB) classification
(established in 1976) does not take into account chromosomal

Tumours

and molecular features but assigns AML into eight subtypes
[MO-M7] based on the type of cells from which the leukemia
developed and the maturity of cells [Table-1]. Basically, subtypes
MO through M5 all start in immature forms of white blood cells
called myeloblasts. M6 AML starts in very immature forms of
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red blood cells, while M7 AML starts in immature forms of cells
that make platelets [megakaryocytes] [70]. Despite that acute
promyelocytic leukemia (APL or APML; AML-M3) is the most
curable subtype of AML [71], it is considered a medical emergency
with a very high pre-treatment mortality [72]. Approximately
10% of patients with AML-M3 still experience disease relapse
following frontline therapy [73]. The poor prognosis of AML
is usually secondary to high-risk genetic features or due to
antecedent hematologic disorders e.g., myelodysplastic syndrome
(MDS). More than one-third of newly diagnosed children and
adolescents with AML continue to relapse and experience
suboptimal long-term outcomes [74]. On the other hand, AML
is the most common acute leukemia affecting the elderly, with
the average age of diagnosis being 70 years old [75], where it
poses a great therapeutic challenge to the clinical hematologist
[76]. The 5-year survival rate for adult patients with AML is at
approximately 40% according to the WHO [77]. The nucleoside
analogue cytarabine (Ara-C) combined with an anthracycline
such as daunorubicin continues to be the backbone of therapy
for AML. However, chemoresistance remains the main cause
of poor longterm survival associated with high relapse rate in
AML [78]. The occurrence of AML relapse is attributed to the
persistence and clonal evolution of leukemic stem cells (LSCs)
that hijack stem cell programs (such as selfrenewal capacity)
to fuel leukemogenesis and progression [79,80]. Further, LSCs
show different degrees of inherent treatment resistance and
may acquire secondary resistance during treatment through
genetic and non-genetic mechanisms [81]. On the other hand,
despite that HSCT is an established curative treatment option
for patients with AML, transplant recipients were at substantially
higher risk of developing severe/life-threatening conditions and
premature death [82]. The most frequent genetic alteration
in AML is mutation of the FMS-like tyrosine kinase 3 [FLT3]
gene wich encodes the FLT3 receptor [CD135], emerging as a
prognostic factor, a new marker for measurable residual disease
[MRD], and a potential novel therapeutic target in AML [83,84].
By the way, FLT3 is a type III receptor tyrosine kinase that
contributes to normal HSC survival. There are two major types
of FLT3 mutations: internal tandem duplication mutations in
the juxtamembrane domain (FLT3-ITD) and point mutations or
deletion in the tyrosine kinase domain (FLT3-TKD). FLT3-ITD is
an independent poor prognostic factor that is strongly associated
with high WBC and an increased blast percentage at diagnosis
and frequently found in cytogenetically normal AML [85]. FLT3-
ITD in the juxtamembrane region is thought to destroy the self-
suppressing conformation of FLT3 receptor, thereby activating
downstream pathways continuously, including MAPK/ERK,
STAT5 and PI3K [86]. FLT3-ITD is found in approximately
25% of adult patients but in more than 30% of patients over 55
years of age [87,88]. In contrast, FLT3-ITD occur in 10%-15%
of pediatric de novo AML patients [89,90], and those with high
FLT3-ITD AR [> 0.4] have inferior outcomes with survival of
approximately 50%-65% with HSCT [91]. The ELN introduced
the allelic ratio [AR] of FLT3-ITD for risk stratification. Several
groups demonstrated that high FLT3-ITD AR (>0.5) (FLT3-
ITD"¢) is associated with a poor prognosis but not the low
FLT3-ITD AR [<0.5] (FLT3-ITD"") [92]. Remarkably, the natural
history of FLT3-mutated AML changed after the approval of the
FLT3 inhibitors midostaurin for frontline therapy and gilteritinib
for R/R patients [93]. Because FLT3 inhibitor-based therapy
has improved survival [94], the new ELN classification (2022)
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categorized AMLs with FLT3-ITD in the intermediate-risk group,
irrespective of the allelic ratio or concurrent presence of NPM1
mutation [95]. The reclassification of FLT3-ITD mutational status
into the intermediate- risk group was one of most important
changes provided by the ELN 2022 risk classification [96]. On
the other hand, the clinical impact of FLT3-TKD, found in
about 7% of patients at diagnosis, on the long-term outcome is
controversial but in general is not considered a poor prognostic
factor. Consequently, neither do the National Comprehensive
Cancer Network (NCCN) or ELN consider the presence of FLT3-
TKD mutations as a recommendation for allo-HSCT [97,98].
Nonetheless, the treatment of patients with FLT3-mutated
AML remains challenging despite the approval of several FLT3
inhibitors over the last few years [99]. In this vein, Tarlock et al.,
recently demonstrated that FLT3 inhibition is not an effective
target for therapeutic intervention in ITDP*/NUP98::NSD1
AML in a large cohort of patients with FLT3-ITD (included
3033 pediatric and young adult patients, aged 1 month-29 years);
highlighting that further efforts to study the early intervention
of novel and targeted therapies are urgently needed for those
patients [100]. This supports recent studies indicating that FLT3-
ITD cooccurring with WT1, UBTF, or NUP98-NSD1 is associated
with significantly inferior prognosis [101,102,103,104,105].

Table 1: The French-American-British (FAB) AML classification sys-

tem!

FAB subtype Name
MO Undifferentiated acute myeloblastic leukemia
M1 Acute myeloblastic leuk'emia with minimal
maturation
M2 Acute myeloblastic leukemia with maturation
M3 Acute promyelocytic leukemia (APL)
M4 Acute myelomonocytic leukemia
M4 eos Acute myelomonocytic leukemia with eosinophilia
M5 Acute monocytic leukemia
M6 Acute erythroid leukemia
M7 Acute megakaryoblastic leukemia

Note: 'Society AC. Acute Myeloid Leukemia (AML) Subtypes and
Prognostic Factors 2018 [Available from: https://www.cancer.
org/cancer/acute-myeloid-leukemia/detection-diagnosis-staging/
howclassified.html.

Myelodysplastic syndromes (MDS)

Myelodysplastic syndromes (MDS) are a heterogeneous clonal
disease of myeloid neoplasms characterized by inefective
hematopoiesis, variable degree of cytopenias, and an increased
risk of progression to AML. The threshold for defining dysplasia
is recommended as 10% for all lineages; for megakaryocytes,
micromegakaryocytes are the most specific indicator of MDS,
and a higher threshold of dysplasia may be warranted when
other types of dysmegakaryopoiesis are included [106,107]. MDS
entities are separated into two major groups: MDS with defining
genetic abnormalities and MDS defined morphologically. MDS
with defining genetic abnormalities includes the following
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entities: MDS with biallelic TP53 inactivation, MDS with low
blasts and SF3B1 mutation (MDS-SF3B1) and MDS with low
blasts and del(5q). MDS defined morphologically includes
MDS with low blasts, hypoplastic MDS, MDS with increased
blasts-1, MDS with increased blasts-2 and MDS with fibrosis.
Although the 20% blast cutoffs were eliminated for most AML
types with DGAs, this 20% blast cutoff was retained to delineate
MDS from AML in order to avoid overtreatment of patients.
In this context, the family of MDS with increased blasts (IBs)
includes disease with <20% blasts [108]. Despite the approval
of five MDS-specific therapies in the USA since 2004 and the
increasing use of allooHSCT, the prognosis remains dismal for
most patients with higher-risk MDS (HR-MDS) [109]. Mutations
in TP53, RUNX1, ASXLI, Janus kinase 2 [JAK2], and RAS
pathway genes are associated with significantly shorter overall
survival (OS) or relapse-free survival (RFS) after allo-HSCT, with
TP53 mutations being particularly adverse [110,111,112]. One
potential mechanism underlying the poor prognosis associated
with TP53 mutations is the induction of an immunosuppressive
microenvironment that permits immune evasion of tumor
cells [113,114,115]). Supporting this hypothesis, AM Zeidan, JP
Bewersdorf et al., recently found both a higher T-cell population
and upregulation of inhibitory immune checkpoint proteins such
as PD-L1 compared to TP53 wild-type in BM from TP53-mutated
AML/HR-MDS. Moreover, RNA sequencing analyses revealed
higher expression of the myeloid immune checkpoint gene
LILRB3 in TP53-mutant samples suggesting a novel therapeutic
target [116]. The DNA methyltransferase inhibitors azacitidine
and decitabine, also known as hypomethylating agents (HMAs),
have become standard-of-care for patients with HR-MDS [117].
Both HMAs are administered parenterally (requiring daily visits
to a treatment centre for 5 consecutive days or 7 consecutive days
of every 28-day treatment cycle) which represent a substantial
burden for the older adult population with this disease (median
age of 73 years at diagnosis) as well as is associated with so-
called time toxicity [118]. Nonetheless, only half of the HR-
MDS patients treated with HMAs achieves objective responses,
and most responders (only 10-20% of patients) eventually lose
response within 1-2 years [119,120,121,122,123]. Unfortunately,
there are no standard-of-care therapeutic options for patients after
HMA failure [124]. Up to the present, the prognosis of patients
with HMA failure remains bleak [125]. Moreover, outcomes
with allo-HSCT in the context of TP53-mutated MDS/AML are
quite poor [126]. Consequently, the most appropriate treatment
recommendation for TP53-mutated MDS/AML is enrollment in
a clinical trial [127].

Pediatric MDS

Childhood MDS (cMDS, defined as <18 years of age) is biologically
distinct from adult MDS [128]; for example, MDS with del(5q)
and MDS with mutated SF3B1 virtually never occur in children.
Therefore, ‘pediatric-type’ MDS classification criteria often do not
fit into ‘adult-type’ MDS classification criteria [129]. cMDS can
either be primary (“de novo”) or secondary, with secondary MDS
being associated with antecedent or predisposing conditions
such as certain genetic mutations, inherited bone marrow failure
syndromes (IBMFSs), prior chemotherapy/radiation therapy
[therapy-related MDS], or acquired severe aplastic anemia (SAA).
Notably, MDS in children often occur in the context of IBMFs
and germ line syndromes [e,g., mutations in GATA2, ETV6,
SRP72, and SAMD9/SAMD9-L] [130,131,132]. Notably, germline
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mutations in certain genes may confer substantially increased
risk of MDS with an onset after age 18, such as ATG2B/GSKIP,
TET?2 [133,134,135], and DDX41. Importantly, cMDS is divided
into two main categories: (1) refractory cytopenia of childhood
(RCC)/MDS with low blasts for cases with <2% PB and <5% BM
blasts and (2) MDS-excess blasts/MDS-increased blasts for cases
with 2% PB or 5% BM blasts. While the 5th edition of the WHO
replaces RCC with “childhood MDS with low blasts” (cMDS-
LB), the ICC retained the terminology of RCC for cases meeting
defined morphologic criteria including <2% blasts in the PB
and <5% blasts in the BM. WHO classifies pediatric MDS with
5% blasts in the BM and/or 2% blasts in the PB as “childhood
MDS with increased blasts (¢(MDS-IB)”, while the ICC classifies
pediatric MDS with PB blasts between 2% and 19% and/or BM
blasts between 5% and 19% as MDS with excess blasts (MDS-
EB) [136]. Strikingly, RCC is the most common subtype of MDS
in children [137]. In this context, RCC must be distinguished
from SAA and IBMFs as clinical and histopathologic distinction
between them is of crucial therapeutic value [138,139]. Notably,
cMDS has a different biological signature. Monosomy 7 and
del[7q] are the most common cytogenetic abnormalities in
pediatric MDS. In contrast to adult MDS cases, the mutational
landscape of cMDS often contains somatic RAS pathway or
SETBP1, ASXLI, and/or RUNXI mutations (the frequently
mutated genes in adult MDSs including TET2, DNMT3A, and
TP53 and the spliceosome complex are not involved in disease
pathogenesis in ctMDS) [140,141,142]. The treatment strategies
for cMDS are context-dependent i.e., depends on the diagnosis
(with or without excess blasts), clinical scenario, and cytogenetics.
There are three main treatment strategies for cMDS: watch-
and-wait, immunosuppressive therapy (IST), and HSCT [143].
Generally speaking, patients with lowerrisk disease may be
managed conservatively while patients with higherrisk disease
(particularly with excess blasts, therapy-related MDS, or complex
karyotype) are optimally managed by allo-HSCT [144].

Myeloid leukemia associated with Down syndrome

Constitutional trisomy 21 (T21), which results in the development
of Down syndrome (DS), is a state of aneuploidy associated with
high incidence of childhood AML. Myeloid leukemia associated
with DS (ML-DS) phenotypically reflects acute megakaryoblastic
leukemia (M7 AML) observed in patients without DS. However,
ML-DS has distinct clinical and biological features reflecting a
model of step-wise leukemogenesis with perturbed hematopoiesis
already presenting in utero [145]. ML-DS is preceded by a a pre-
leukemic state called transient abnormal myelopoiesis (TAM).
While TAM s triggered by truncating mutations in GATA1
generating a short GATA1 isoform (GATA1s), ML-DS emerges
due to secondary mutations in hematopoietic clones bearing
GATA1s [146]. Notably, MDS almost always precedes AML
in patients with DS [147,148]. It is well recognized that many
children with ML-DS present with a low blast count and a more
myelodysplastic picture. While in many cases progression from
MDS to AML is slow, all cases with MDS will eventually progress
to fullblown AML. Therefore, it is recommended to commence
treatment of MDS even with low blast counts. Unsurprisingly,
ML-DS encompasses both MDS and AML occurring in DS under
the WHO classification [149,150] Despite the highly favorable
prognosis in children with primary ML-DS, outcomes for patients
with R/R ML-DS remain dismal, with no standardized treatment
recommendation available [151]. Intriguingly, recent evidence
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highlights fenretinide as a novel GATA I-targeting agent in M6
and M7 AML cells, capable of overcoming chemoresistance,
synergizing with current standard-of-care therapies, and
outperforming them as a single agent [152]. Building on this,
I believe fenretinide could be employed in the context of ML-
DS in a twofold manner: first, as a prophylactic treatment for
TL-DS by inducing GATAI loss, thereby eliminating the future
risk of progression to ML-DS; and second, as a therapeutic agent
for established ML-DS, either alone or in combination with less
toxic chemotherapy regimens.

Chronic Myeloid Leukemia (CML)

CML is one of myeloproliferative neoplasms (MPN). CML is
defined by the BCR::ABLI fusion resulting from t(9;22)(q34;q11).
The natural history of untreated CML before the introduction
of targeted TKIs was biphasic or triphasic: an initial indolent
chronic phase (CML-CP) followed by a blast crisis (CML-BC),
with or without an intervening accelerated phase (CML-AD).
CML treatment improved significantly following development
of ABL TKIs, such as imatinib, dasatinib, nilotinib, bosutinib,
and ponatinib. The incidence of progression to advanced phase
disease has decreased, and the 10-year OS rate for CML is 80-
90% [153]. However, development of drug resistance to TKlIs
due to BCR-ABL point mutations, such as the E255K, Y253F/H
[Ploop], H396R (activation loop) or the T3151 (gatekeeper),
poses a major challenge in the clinical treatment of CML [154].
In particular, the "gatekeeper" mutation T3151 confers resistance
against all approved TKIs, with the only exception of ponatinib,
a third-generation multi-target kinase inhibitor [155]. Despite
that ponatinib exhibits good therapeutic activity against the
T3151 mutation, its clinical utility is somewhat limited due to its
cardiovascular toxicity [156]. Consequently, it is vital to develop
new therapeutic strategies that are effective against TKI-resistant

CML cells.
Adult T-cell leukemia/lymphoma (ATLL)

ATLL is a mature T-cell neoplasm most often composed of highly
pleomorphic lymphoid cells. The disease is caused by the human
lymphotropic virus type 1 (HTLV-1) [157,158]. In 2018 alone,
HTLV-1 caused about 3600 cases of ATLL [157]. Most ATLL
patients present with widespread lymph node involvement as
well as involvement of PB. ATLL is endemic in several regions
of the World, in particular south-western Japan, the Caribbean
basin, and parts of central Africa. ATLL is an aggressive
malignancy associated with poor prognosis because of intrinsic
chemoresistance and severe immunosuppression [160]. The
treatment of ATLL is usually dependent on the ATLL subtype.
Patients with aggressive forms [acute and lymphoma] have a very
poor prognosis [161,162,163,164]. Patients with indolent ATLL
[chronic or smoldering subtypes] have a better prognosis, but
long-term survival is poor when these patients are managed with
a watchful-waiting policy or with chemotherapy [165].

Multiple myeloma (MM)

Plasma cell neoplasms including multiple myeloma (MM) and
lymphoid leukemias are considered B-cell lymphoid malignancies
in the WHO classification system [166]. MM is an incurable B-cell
malignancy characterized by monoclonal proliferation of plasma
cells within the BM. These malignant plasma cells produce and
secrete a characteristic monoclonal immunoglobulin [M-protein]
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[167]. This M-protein is crucial for diagnosis and monitoring the
disease status [168]. MM accounts for 1.8% of new cancer cases
annually and about 10% of hematological malignancies [169].
Patients with MM usually suffer from hypercalcemia, renal damage,
anemia, bone lesions and immunodeficiency [170]. In particular,
bone disease is the main cause of MM morbidity. Intriguingly,
MM exists on a continuous disease spectrum [171,172]. Almost all
patients with MM begin with an asymptomatic pre-malignant stage
termed monoclonal gammopathy of undetermined significance
(MGUS) [173], progressing to an intermediate asymptomatic but
more advanced pre-malignant stage referred to as smoldering
multiple myeloma [SMM] which can be recognized clinically [174],
and lastly to MM. Strikingly, genetic abnormalities, epigenetic
alterations, and microenvironmental factors co-operate in the
development of symptomatic MM [175]. Although MM is still
considered a single disease, it is increasingly recognized as a
collection of several different plasma cell malignancies [176,177],
characterized by marked cytogenetic, molecular, and proliferative
heterogeneity. This heterogeneity is manifested clinically by
varying degrees of disease aggressiveness [178,179]. In this vein,
the presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, del
1p, or p53 mutation is considered high-risk MM. Presence of any
two high risk factors is considered double-hit myeloma; three or
more high risk factors is triple-hit myeloma [180].

Despite advances in treatment strategies, ranging from
conventional chemotherapy with alkylating agents and HSCT, to
the use of antiangiogenetic or proteasome inhibiting drugs, MM
is still an incurable disease [181], where almost all patients with
MM eventually relapse or become refractory to treatment at some
point in their lives [182,183]. As resistance to chemotherapy is
one of the main challenges in MM management [184], targeting
tumor antigens with immunotherapy is rapidly emerging as a
promising avenue for treatment of MM [185]. Nevertheless,
around 40% of newly diagnosed MM patients treated with
immunotherapy regimens containing daratumumab, a CD38-
targeted monoclonal antibody (mAb), progress prematurely
[186]. In this line, the majority of patients treated with either
daratumumab or isatuximab (both are mAbs that target CD38)
will ultimately progress while on treatment or relapse after
therapy. Strikingly, patients progressing after CD38 mAb-based
therapies are also frequently resistant to other commonly used
anti-myeloma agents such as lenalidomide and bortezomib [187].
In a similar vein, despite that the B-cell maturation antigen
(BCMA) is preferentially expressed on mature B-cells [188], while
>70% of patients with R/R MM initially responded to anti-BCMA
CAR T-cell therapy, clinical relapse and disease progression occur
in most cases [189]. Intriguingly, Ledergor et al., introduced the
importance of cell states in vivo as possible predictors of outcome
after CAR T-cell therapy. By using single-cell transcriptomics to
study changes in immune cells in patients with MM receiving
anti-BCMA CAR T-cells, they found that patients with shortlived
responses had increased frequencies of exhausted cytotoxic CD4*
CAR Tecells, whereas those with durable responses possessed
a significantly higher proportion of CD8" T-effector memory
cells. In addition, the relevant exhaustion coexpressed markers
are TIM-3 and TIGIT, rather than other canonical markers of
exhaustion such as PD-1 or CTLA-4, which might inform future
combination therapeutic approaches [190,191]. Furthermore,
severe (grade > 3) and persistent (40% at day +90) cytopenia
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(particularly thrombocytopenia)- leading to severe (50%) bacterial
(68%) infections occurring within 30 days (moderate viral
infections were more prevalent later)- remains a challenge after
anti-BCMA CAR Tecell therapy [192]. Not surprisingly, most
physicians believed that post CAR T-cell prolonged cytopenia
could be a potential barrier to the nextline relapse therapy,
especially that nearly half of patients were offered a stem cell
boost [191]. Strikingly, MM with extramedullary disease (EMD),
defined as paraskeletal or organ involvement with high mortality
and an average OS time of 36 months [194,195,196], is a well-
established marker of inferior prognosis in MM, even in the
era of novel therapies [197,198]. Based on current knowledge,
extramedullary spread of MM may occur either at diagnosis (7%-
18%), during the course of the disease (6%), or at relapse (up to
20%) [199,200]. Recently, Gagelmann et al., showed that patients
with organ involvement have significantly worse progression-free
survival [PFS] despite posttransplant maintenance, while patients
with paraskeletal involvement appeared to be associated with
similar outcomes in comparison with patients without EMD
[201]. In a similar vein, the presence of EMD is an independent
risk factor for inferior PFS despite CAR T-cell therapy. Among
351 patients with R/R MM from 11 US academic centers, who
had EMD prior to Idecabtagene vicleucel (Ide-cel) infusion, have
demonstrated significantly inferior Day 90 objective response

rates (ORR) (202,203].

HODGKIN LYMPHOMA AND NON-HODGKIN
LYMPHOMA

Hodgkin lymphoma (HL)

HL accounts for approximately 10% of lymphoma cases. It is
developed in the lymphatic system and occurs mostly sporadically.
It can also be associated with the Epstein-Barr virus (EBV) or
HIV/AIDS and originates from the lymph node [204]. Hodgkin/
Reed-Sternberg (HRS) cells are the hallmark cells of HL [205].
HL is divided into two distinct categories that demonstrate
different pathologic and clinical features: classical Hodgkin
lymphoma (cHL) and nodular lymphocyte-predominant Hodgkin
lymphoma (NLP-HL). cHL accounts for approximately 95 percent
of HL and is further subdivided into four subgroups: nodular
sclerosis (NSHL), lymphocyte-rich (LRHL), mixed cellularity
(MCHL), and lymphocyte-depleted (LDHL) [206]. cHL is
characterized by the recurrent genetic rearrangement 9p24.1 that
shares the locus of PD-L1, PD-L2, and JAK2, leading to enhanced
PD-L1/PD-L2 upregulation of HRS cells, which constitutes a
mechanism to escape the immune-mediated anti-tumor response.
Although PD-1/PD-L1 axis blockade has demonstrated efficacy
in the treatment of R/R HL, many patients develop primary or
secondary resistance to these agents, attributed, at least in part, to
the expression of other immune checkpoints on HRS cells or in
the tumor microenvironment (TME) such as LAG-3/CD223 and
TIM-3. NSHL is the most frequently diagnosed subtype of HL
and tends to occur in young adults, usually under age 50 years.
Anterior mediastinal involvement is extremely common (90% of
the cases) in NSHL, with subsequent involvement of cervical and
supraclavicular lymph nodes, upper abdominal lymph nodes, and
spleen [207]. Histologically, NSCHL is characterized by collagen
bands that surround at least one nodule, and by HRS cells with
lacunar-type morphology.
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Non-Hodgkin lymphoma (NHL)

NHL includes all lymphomas except for Hodgkin lymphomas,
which comprises more than 50 different neoplasms that arise
from immature or mature B-cells, T-cells, or natural killer
(NK) cells [effector lymphocytes of the innate immune system]
[208]. The relative frequencies of various subtypes of NHL
vary significantly in different geographic regions of the World,
and environmental and lifestyle factors, as well as host genetic
makeup, appear to contribute to the development of NHL [209].
NHL is generally divided into 2 main types, based on whether
it starts in B lymphocytes (B-NHL) or T lymphocytes (T-NHL).
NHLs are also classified by whether it is aggressive (fast-growing)
or indolent (slow-growing). There are huge differences between
the fastgrowing aggressive lymphomas (aNHLs; about 60%
of all NHL cases) and the slow-growing indolent lymphomas.
While DLBCL is the most common aggressive form of B-NHL,
FL, and CLL are slow-growing lymphomas [210]. Notably, apart
from cHL and primary mediastinal B-cell lymphoma (PMBL)
[211], combination therapies with PD-1/PD-L1 blockade have
not resulted in obvious clinical responses in patients with other
lymphomas [212]. Strikingly, PD-L1 has been reported expressed
by tumor cells and PD-1 by tumor-associated T cells in DLBCL
[213,214]. A multicenter cohort study of 288 DLBCL patients
shows that high level of soluble PD-L1 (sPD-L1) in peripheral
blood at the time of diagnosis is significantly associated with
poorer OS for patients diagnosed with aggressive DLBCL,
particularly for those treated with standard R-CHOP (rituximab,
cyclophosphamide, doxorubicin, vincristine, and prednisolone)

[215].
Burkitt lymphoma (BL)

BL is an aggressive mature B-cell lymphoma derived from germinal
center (GC) or post GC B-cells. BL is characterized by a very high
proliferation rate and believed to be the fastest growing human
tumor [216]. With a Ki67 (a cellular marker for proliferation)
expression of nearly 100%, the clinical course of BL usually is
highly aggressive requiring prompt institution of therapy [217].
In contrast to Blymphomas with predominant lymph node
involvement, BL most commonly involves extranodal sites such
as the jaw, bones, gastrointestinal tract, gonads, or breasts. There
are three clinical variants of BL: endemic [African-derived],
sporadic [nonendemic], and human immunodeficiency virus
(HIV-associated BL. BLs occurring in each of these settings are
histologically identical but differ in some clinical, genotypic,
and virologic characteristics. Endemic BL is a pediatric cancer
accounting for 30-50% of all childhood cancers in regions where
malarial transmission is year-round [218,219,220,221]. Essentially
all endemic BLs are latently infected with EBV, which is also
present in about 25% of HIV-associated tumors and 15% to
20% of sporadic cases. However, how EBV contributes to the
BL lymphomagenesis is still to be defined [222]. All forms of
BL are highly associated with translocations of the MYC gene
(a potent oncogene located at chromosome locus 8q24.21) that
lead to increased MYC protein levels. The translocation partner
for MYC is usually the IgH locus (t (8;14)) but may also be the Ig
K (t(2;8)) or A (t(8;22)) light chain loci. Rearrangement of MYC
with immunoglobulin genes is a hallmark of Burkitt lymphoma
[223]. In addition to BL, dysregulation of MYC has been shown
to be an independent negative prognostic factor in other aNHLs

(224,225,226].
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Diffuse large B cell lymphoma (DLBCL)

DLBCL is the most common hematologic malignancy as well as
the most common form of B-NHLs comprising 30-40% of cases,
with slight over-representation of the male gender [227,228,229].
DLBCL belongs to the family of large B-cell lymphomas (LBCL),
a heterogeneous class of tumors characterized by large lymphoid
cells of the B-cell lineage that by definition form sheets or clusters.
“Large cell” cytology is usually defined as a lymphoid cell with a
nucleus that is larger than that of a macrophage or twice the size
of a normal lymphocyte [230]. Notwithstanding the significantly
improved outcomes of R/R LBCL induced by the autologous
CD19-directed CAR T-cell therapy compared to standard-of-
care salvage chemoimmunotherapy [231], most patients do not
have durable benefit and post-CAR T-cell relapses are difficult to
salvage [232].

DLBCL is characterized by a striking degree of genetic and
clinical heterogeneity [233,234,235,236,237]. Based on gene
expression profiling, three major molecular subtypes have been
identified: GC B-cell-like [GCB-DLBCL], Activated-B-cell-like
(ABC-DLBCL) and PMBL [238]. However, around 10%-15%
of cases are categorized as unclassifiable. The ABC-DLBCL
and GCB-DLBCL subtypes show differences in chromosomal
alterations, signaling pathway activation, and clinical outcome.
The ABC-DLBCL has demonstrated inferior clinical outcome
compared with the GCB-DLBCL. Although R-CHOP therapy
remains the mainstay of treatment for DLBCL, this fails to
achieve remission in about 40% of patients. In addition, despite
the recent advances in management of DLBCL, outcomes for
high-risk patients continue to remain suboptimal [239]. Hence,
research is needed to discover novel therapeutic strategies [240].
Mechanistically, B-cell antigen receptor (BCR) signaling that
activates downstream oncogenic pathways such as the nuclear
factor kappadight-chain-enhancer of activated B cell (NF-xB)
or phosphatidylinositol 3-kinase (PI3K) plays a critical role in
pathogenesis of B cell malignancies, including DLBCL and CLL
(241,242,243,244,245].

There are two fundamentally distinct mechanisms of BCR
pathway activation in B cell lymphomas: antigen-dependent and
antigen-independent BCR signaling [246,247]. The hallmark of
ABC-DLBCLs is chronic active antigen-dependent BCR signaling
resulting in constitutive NF-kB activity which blocks apoptosis
[248]. In fact, ABC-DLBCL cells are highly dependent on NF-
kB for their viability [249,250]. Although chronic active BCR
signaling in ABC DLBCL shares characteristics with antigen-
dependent BCR signaling in normal B cells, intact BCR signal
transduction pathway is tightly regulated and self-limited by the
availability of antigen and other negative controls [251].

On the other hand, genomic data have shown that GCB-DLBCL
lines exclusively use an antigen-independent signal, termed ‘tonic
BCR signaling’ [252]. Unlike chronic active BCR signaling, tonic
BCR signaling is mediated by PI3Ka and PI3K6/AKT/mTOR
(but not the NF-xB pathway) to promote the proliferation and
survival of malignant B cells [253]. In contrast to BL where MYC
rearrangements are present in almost all of the cases, alterations
in MYC have been detected in approximately 5% to 15% of
DLBCL cases. However, MYC overexpression is one of the key
prognostic and predictive biomarkers for survival in DLBCL, and
some authors even showed that MYC overexpression is associated

with the worst survival rates [254,255,256,257,258].
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Follicular lymphoma (FL)

FL is a CD5 and CDI10" indolent lymphoma representing
approximately 40% of all NHLs. The genetic hallmark of FL is
the t(14;18) translocation resulting in B cell lymphoma-2 (Bcl-2)
oncoprotein overexpression [found in up to ~85% of patients]
[259]. Bcl-2 is a prototypic anti-apoptotic protein (promotes tumor
cell survival) and its overexpression in FL is the classic example of
its anti-apopototic mechanism (prevents programmed cell death
by limiting the exit of cytochrome ¢ from mitochondria). The
pathobiology of FL is complex and involves alterations within
the FL microenvironment in addition to the cell-intrinsic genetic
changes, frequently including (in addition to the hallmark
t(14;18) translocation) mutations in histone-encoding genes (in
~40% of cases), the SWI/SNF complex or the interconnected
BCR and CXCR4 chemokine receptor signaling pathways [260].

Chronic lymphocytic leukemia (CLL)

CLL is a disease of the elderly population. Although it is the most
common adult leukemia in western countries, it is less common
in Asia and relatively rare in Japan and Korea, even among
Japanese people who immigrate to western counties [261]. CLL
is a malignancy of mature, antigen-experienced B lymphocytes
that is characterized by the accumulation of mature circulating
[gM¥ CD5* B cells [262]. In simple words, CLL is a cancer
of CD19" B cells that co-express the T cell marker CD5. CLL
cells proliferate in distinct microanatomical tissue sites called
“proliferation centers” or “pseudofollicles”, a hallmark finding
in CLL histopathology [263]. Despite a common CD5'CD19*
phenotype, CLL is marked by a heterogeneous clinical course
ranging from a benign disease to one that can be fatal within
a few years of diagnosis [264]. As a disorder of B-lymphocytes,
CLL is intrinsically characterized by adaptive immune response
dysfunction, but alterations of multiple elements and effectors
of the innate immune response are also found in CLL patients
[265]. Interestingly, CLL and small lymphocytic lymphoma
(SLL) are morphologically, phenotypically, and genotypically
indistinguishable, differing only in the degree of peripheral
lymphocytosis [266]. Despite being a slow-proliferating disease
and the great progress recently achieved in the management of
CLL, the disease remains potentially incurable [267]. Prognostic
biomarkers and risk scoring systems play important roles in
guiding CLL treatment decisions [268]. In this context, several
genetic aberrations with prognostic value and impact on treatment
decisions in CLL have been described. These include deletions
of the chromosomal regions 17p13 (containing the TP53 tumor
suppressor gene), 11g23 (containing DNA damage checkpoint
protein ATM), or 1314 (miR-15a, miR-16-1), and trisomy
of chromosome 12 [269,270]. Patients with TP53 alterations
including TP53 mutations or 17p deletions are classified as
‘high-risk’ and usually associated with an unfavorable prognosis
and poor response to chemotherapy and immunotherapy
[271,272]. On the basis of somatic hypermutation status of the
immunoglobulin heavy-chain variable region gene (IGHV), CLL
can be grouped into mutated CLL (M-CLL) and unmutated CLL
(UM-CLL). M-CLL (derived from post-GC B cells) has a more
favourable prognosis than those with UM-CLL [derived from
CD5" mature B cells] [273]. Numerous genes like ZAP-70 (zeta-
associated protein 70), CD38 and LPL (lipoprotein 73 lipase),
whose expression was associated with an unmutated status of
IGHV genes and poor outcome, were proposed as surrogate
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markers [274,275,276,277,278]. Although the expression of these
markers was found to correlate with the expression of unmutated
IGHYV genes, this correlation is not absolute [279].

Strikingly, novel immunotherapies showed disappointing results
in CLL, in contrast to several B-cell ymphomas where responses
were impressive. Mechanistically, the strong immunomodulatory
effect of CLL causes low response rates to immunotherapy
strategies[280]. Forinstance, CLL cells have the ability to transform
the effector functions of the bystander T cells in the TME, thus
rendering them a source of trophic signals for the survival and
proliferation of the malignant clone. Indeed, substantial evidence
implicates T cells present in the TME in the natural history of the
CLL as well as in the establishment of certain CLL hallmarks such
as tumor evasion and immune suppression. Although CLL cells
are able to manipulate T-cell functionality, T cell abnormalities in
CLL appear to be reversible, which is why therapies targeting the
T cell compartment, including CART cells, immune checkpoint
blockade and immunomodulation, represent a reasonable
therapeutic option in CLL [281]. Nevertheless, novel targeted
therapies demonstrated improved PFS and OS that were superior
to chemoimmunotherapy. Nowadays, Bruton’s tyrosine kinase
[BTK] inhibitors, Bcl-2 inhibitors, and CD20 mAbs are established
treatments for CLL, both in frontline and R/R settings [282]. In
this context, substantial evidence has established the central role
of chronic BCR-mediated signaling in CLL pathogenesis [283]. It
is worth noting that BTK a signal transduction pathway located
downstream to the BCR, is essential for constitutively active
pathways implicated in CLL cell survival [284,285,286,287].
On the other hand, metabolic reprogramming is a hallmark
of CLL and underlies disease progression and relapse but the
exploitation of metabolic dependencies in clinical settings is still
minimal [288]. Notably, Richter transformation (RT, also known
as Richter’s syndrome), the progression of CLL into an aggressive
lymphoproliferative disorder, primarily DLBCL-although HL,
plasmablastic lymphoma, or other rare lymphomas have been also
reported [289]) occurs in approximately 2-10% of patients with
CLL [290]. Intriguingly, RT is associated with poor response to
chemotherapy and short survival [291], e.g., the overall response
rates for patients treated with chemoimmunotherapy such as
R-CHOP are <40% with a median OS of 6-8 months [292]. Since
RT remains a therapeutic challenge, innovative management of
this grave complication is warranted [293]. Interestingly, MYC
aberrations were found in most RT cases [294]. The association
of MYC translocation with an unfavorable prognosis of CLL/ RT
patients was confirmed in several studies [295,296,297].

Mantle cell lymphoma (MCL)

MCL results from malignant transformation of B lymphocytes in
the mantle zones surrounding GCs [298]. MCL is a very rare form
of aggressive B-NHL with a dismal prognosis. Similar to CLL and
ABC-DLBCL, MCL also show activation of the BCR pathway
and constitutive NF-kB signaling [299,300]. On the other hand,
primary resistance curbed the initial effectiveness of several
inhibitors targeting BCR-associated kinases (BTK, spleen tyrosine
kinase (SYK), or PI3K, in DLBCL and MCL, especially in the
case of first generation BTK inhibitors (e.g, ibrutinib) [301]. The
pathognomic feature of MCL is the chromosomal translocation
t (11;14) (q13; 32 (IGH/CCND1), which is observed in >95%
of cases, resulting in the constitutive overexpression of G1l-phase
cell cycle protein cyclin D1 (CCNDI1) [302,303]. MCL usually

overexpress [gM as compared to normal B cells, which likely
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contribute to the pathogenesis of this lymphoma type [304].
TP53 mutations have been associated with an inferior prognosis
in MCL and patients usually have a poor response to standard
chemotherapy [305]. Therefore, patients with TP53 mutations
should be considered for alternative frontline treatment [306].

Myeloproliferative Neoplasms (MPNs)

MPNs are clonal hematopoietic stem cell disorders with
overproduction of mature myeloid blood cells. MPNs include
CML, polycythemia vera (PV), essential thrombocythemia

(ET), (PMF),
leukemia (CNL), chronic eosinophilic leukemia (CEL), juvenile

primary myelofibrosis chronic neutrophilic
myelomonocytic leukemia (JMML) and MPN, not otherwise
specified (MPN-NOS). The WHO classifies CML, PV, ET, and
PMF as classical MPNs. The classical MPNs represent clonal
myeloid disorders whose pathogenesis is driven by well-defined
molecular abnormalities [307]. In this context, CML is the only
MPN driven by a reciprocal translocation between chromosomes
9 and 22 creating the Philadelphia chromosome (Ph) and
specifically the fusion gene BCR-ABLI. Consequently, classical
MPNs are further classified as Ph-positive CML and Ph-negative
MPNs including PV, ET, and PMF [308]. Whereas ET and PV
are characterized by platelet and erythrocyte overproduction,
respectively, PMF is marked by aberrant proliferation of cells of
the megakaryocytic lineage and progressive BM fibrosis [309].
However, PMF, ET and PV share common MPN-initiating somatic
mutations in the genes that encode for JAK2, thrombopoietin
receptor [TPO-R, also known as myeloproliferative leukemia
protein or MPL], and calreticulin (CALR) leading to the activation
of the MPL and downstream signaling pathways (MPL-JAK-STAT
signalling) in MPN stem cells [310]. Of these, the JAK2 V617F
mutation was the first identified, and, is present in 95% of PV,
and about 55% and 60% of ET and PMF patients, respectively.
CALR and MPL mutations are almost always associated with an
ET or MF phenotype, but not a PV phenotype. MPL mutations are
present in about 3% ET patients and about 7% of PMF patients
[311]. CALR is mutated in the majority of JAK2Z/MPL mutation-
negative patients, which corresponds to about a quarter of all
ET and PMF patients [312,313,314]. ET has the most favorable
prognosis among MPNs but a minority of patients who develop
progression to MF or AML, referred to as blast-phase (BP) MPN,
have a much poorer outcome [315]. In a large cohort of patients
with ET (1000 patients), major thromboses at the time of diagnosis
were documented in 19%, with a predominance of arterial (13%)
versus venous (6%) events [316]. On the other hand, PMF is
the most aggressive subtype among classical BCR-ABLI negative
MPNs. Approximately 1 of 3 responds to currently approved
JAK inhibitor treatment; however, hematotoxicity (especially in
patients with cytopenic MF) results in treatment discontinuation
for many patients. PMF results when cytokines produced by
the MPN clone stimulate bone marrow stromal cells (BMSCs)
to deposit an excess of collagens and other extracellular matrix
(ECM) proteins, consequently destroying the hematopoietic
[317,318,319]. PMF is
characterized by abnormal megakaryocyte proliferation that is
often accompanied by reticulin fibrosis [320]. The fibrotic BM
remodeling and pronounced systemic inflammation cause BM

microenvironment morphologically

failure, extramedullary hematopoiesis, splenomegaly, profound
constitutional symptoms and a median survival of around 5 years
[321]. However, the mechanisms by which the hematopoietic
tissue in the BM is replaced by a fibrotic scar tissue are not yet fully
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understood [322]. Common fatal complications of PMF include
transformation to acute leukemia, thrombohemorrhagic events,
organ failure, and infections [323]. Patients who develop acute
leukemia (typically involves the myeloid lineages (secondary AML
(SAML)) but, rarely, lymphoid transformation (secondary ALL)
may also occur) have a median survival time of less than 3 months
[324]. Approximately 90% of patients harbor a mutation affecting
JAK2, MPL, or CALR. As mutations in these genes all converge
on JAK/STAT signaling, the JAK1/2 inhibitor ruxolitinib is
currently frontline therapy for MF [325]. In contrast, PMF that
lacks these canonical alterations, termed triple-negative PMF (TN-
PMF), is associated with poor prognosis [326,327]. In addition to
PMF, PV and ET can also progress to postPV (PPV) MF and
post-ET (PET) MF, also known as secondary myelofibrosis (SMF)
[328]. Despite approval of JAK inhibitors and novel agents, allo-
HSCT remains the only potentially curative treatment for for both
PMF and SMF [329]. Nonetheless, HSCT is limited by its highly
concerning risks of TRM and therapy-related complications
[330]. Increased risk of post-transplantation relapse was observed
for accelerated phase MF (compared with chronic phase MF)
and patients with splenomegaly prior to transplantation [331].
Recently, Gagelmann et al., identified a novel very high-risk
group in patients with MF undergoing HSCT [332]. Compared
to patients with monoallelic TP53 mutated (TP53mut) MF,
patients with TP53 multi-hit (TP53M") MF following HSCT had
an increased relapse risk. In a similar vein, this study has also
shown that AML transformation was a more frequent relapse
presentation in patients with TP53M" compared with patients
with monoallelic TP53mut/TP53WT which highlights a need
for an alternative approach to allooHSCT in this subgroup
[333]. In this regard, clonal evolution to secondary (SAML) is
one of the most feared complications of MPN. A significant
proportion of patients with MPN (10%-20%) transform to
devastating and rapidly fatal SAML, characterized by cytopenias,
increased myeloid blasts, acquisition of aberrant LSC properties
by hematopoietic stem/progenitor cells (HSPCs) and median
survival of less than one year [334,335]. Notably, the risk of AML
transformation was highest for patients with MF (occurring in
up to 20% of patients) [336]. Collectively, TP53 mutations are
detected in approximately 20-35% of postMPN sAML (known
as TP53-sAML) [337,338,339]. Recently, RodriguezMeira et al.,
has disentangled the mechanistic basis for this phenomenon by
implicating inflammation in TP53-driven clonal evolution [340].

CONCLUSION

Hematologic malignancies, encompassing leukemias, lymphomas,
and myelomas, represent a diverse and complex group of cancers
that continue to challenge modern oncology. Since the first
documented case of Hodgkin lymphoma in 1832, advances in
understanding their genetic and molecular underpinnings have
paved the way for targeted therapies and innovative treatment
strategies. However, high rates of relapse, resistance to therapy,
and significant treatmentrelated complications underscore
the need for further advancements. This article delves into the
classification, pathophysiology, and clinical features of liquid
tumors, highlighting current therapeutic approaches and
emerging frontiers in treatment. By addressing these challenges,
it aims to equip researchers and clinicians with the knowledge
needed to improve outcomes for patients with these devastating
diseases.
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