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Núcleo “Rafael Rangel”. Universidad de los Andes

Trujillo – Venezuela
edgarr@ula.ve

Abstract

In this article we introduce the concepts of approximate Jensen m-

convexity and approximate Wright m-convexity for real valued func-

tions defined on the set of nonnegative real numbers. We prove some

Bernstein-Doetsch type results for real valued sub-homogeneous func-

tions defined on the set of all positive real numbers.
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1 Introduction

We start by recalling a couple of definitions: ε-m-convex and sub-homogeneous
real valued functions defined on [0,+∞). Additionally, we introduce in the
approximate fashion two new definitions for real valued functions, on the one
hand, the ε-Jensen m-convex function, and on the other hand, the ε-Wright
m-convex function assuming that all the functions considered are defined on
[0,+∞). As it is customary, m ∈ [0, 1] and sometimes, either m = 0 or m = 1
will be discarded.

Definition 1.1 ([4]) Let ε > 0 and m ∈ [0, 1]. A function f : [0,+∞) → R

is called ε-m-convex if for any x, y ∈ [0,+∞) and t ∈ [0, 1]

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y) + ε.

Definition 1.2 ([1]) A function f : [0,+∞) → R is called sub-homogeneous
(or quasi-homogeneous [3]) if f(λx) ≤ λf(x) for all λ ≥ 1 and x ∈ [0,+∞).

By following ideas from [6], we introduce the concept of an approximately
Jensen m-convex function.

Definition 1.3 Let ε > 0 and m ∈ (0, 1]. A function f : [0,+∞) → R is
called ε-Jensen m-convex if for any x, y ∈ [0,+∞)

f

(

x+ y

cm

)

≤ f(x) + f(y)

cm
+ ε, (1)

where cm = 1 +
1

m
.

The class of all ε-Jensen m-convex functions on [0,+∞) will be denoted as
Jε,m[+∞). In the same fashion, Jε,m(+∞) will denote the class of all ε-Jensen
m-convex functions on (0,+∞).

Definition 1.4 Let ε > 0 and m ∈ [0, 1]. A function f : [0,+∞) → R is
called ε-Wright m-convex if for any x, y ∈ [0,+∞) and t ∈ [0, 1]

f(tx+m(1− t)y) + f(m(1− t)x+ ty) ≤ [t+m(1− t)][f(x) + f(y)] + 2ε. (2)

We denote the class of all ε-Wrightm-convex functions on [0,+∞) asWε,m[+∞)
and the class of all ε-Wright m-convex functions on (0,+∞) as Wε,m(+∞).

If we take ε = 0 in Definition 1.1, we obtain the usual notion ofm-convexity
([4]); and if (1) and (2) hold with ε = 0, then f is called Jensen m-convex
function ([5]) (denoted by Jm instead of Jε,m) and Wright m-convex function
(denoted by Wm instead of Wε,m), respectively.
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2 Examples and Counterexamples

In order to justify the definitions of the types of functions recently introduced,
we present some results through which is possible to generate examples and
counterexamples of them.

Example 2.1 A bunch of examples (counterexamples) of sub-homogeneous
(non sub-homogeneous) functions, respectively, can be constructed as follows.
First of all, it is straightforward to prove the next proposition:

Let f : (0,+∞) → R be any real function. The following statements are
equivalent:

1. f is sub-homogeneous on (0,+∞).

2. f(x)/x is decreasing on (0,+∞).

If additionally, f is differentiable on (0,+∞), then we have the following equiv-
alence:

f is sub-homogeneous on (0,+∞) iff hf(x) = xf ′(x) − f(x) ≤ 0 for all
x ∈ (0,+∞).

Well, based on the last characterization we can prove the next result:

Proposition 2.2 The cubic real polynomial function f(x) = ax3 + bx2 +
cx + d is sub-homogeneous on (0,+∞) iff the coefficients of f satisfy any of
the following conditions:

1. a < 0, b ≤ 0, d ≥ 0.

2. a < 0, b > 0, d > 0, and hf (− b
3a
) ≤ 0.

For instance, the polynomial function −x3 + 1 is sub-homogeneous but −x3 +

3x2 +
1

2
is not.

Example 2.3 An example of an ε-Jensen m-convex function which is not
Jensen m-convex is the following:

Given ε > 0, set up m1 =

√
33− 1

16
≈ 0.296535 and g(m) =

8m(1 +m)

27(1 + 3m)2

for all m ∈ (0, m1]. It is not very difficult to verify the next statement:
If a > 0, b < 0, d < 0 and 0 < g(m)− a2b−3d ≤ −a2b−3(1 +m)(1−m)−1ε,

then the real polynomial function f(x) = ax3 + bx2 + cx + d ∈ Jε,m[+∞) −
Jm[+∞).

For instance, if 0 < ε <
1

53
, then f(x) = 2x3−2x2− g(mε) ∈ Jε,mε

[+∞)−
Jmε

[+∞), where

mε =
8− 159 ε− 8

√
1− 53 ε

16 + 477ε
∈ (0, 0.2) ⊂ (0, m1].
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Remark 2.4 Another way of producing an example of an ε-Jensen m-

convex function is by noting that if −∞ < a < b ≤ 2a

cm
+ ε, then any function

f : [0,+∞) → [a, b] is ε-Jensen m-convex.

Example 2.5 The function f : (0,+∞) → R given by f(x) = e−x is an
example of a function which is sub-homogeneous and ε-Jensen m-convex (and
ε-Wright m-convex) at the same time. In fact, because f(x)/x is decreasing
on (0,+∞), f is sub-homogeneous. Furthermore, by the convexity of f ([7]),
we have

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y) + (1− t)[f(my)−mf(y)].

Since f is positive and decreasing, we obtain

f(tx+m(1 − t)y) ≤ tf(x) +m(1− t)f(y) + f(my)−mf(y).

Moreover, 0 < f(x) < 1 for all x ∈ (0,+∞). Thus, f(my) −mf(y) < 1 and
hence

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y) + 1.

Therefore, f is 1-m-convex, which in turn implies that for m ∈ (0, 1] f ∈
J1,m(+∞) (as well f ∈ W1,m(+∞)).

3 Main Results

In this section, we present a list of results concerning to inequalities of Jensen
type in the discrete case and local boundless. Based on these findings some
other results of Bernstein-Doetsch type for sub-homogeneous functions are also
obtained.

Theorem 3.1 Let ε > 0 and m ∈ (0, 1). If f : (0,+∞) → R is in
Jε,m(+∞), then f satisfies the following inequality

f

(

1

cnm

2n
∑

i=1

xi

)

≤ 1

cnm

2n
∑

i=1

f(xi) +

n−1
∑

i=0

(

2

cm

)i

ε, (3)

for all n ∈ N and x1, . . . , x2n ∈ (0,+∞).

Proof. The proof is by induction on n. If n = 1, it is clear because f ∈
Jε,m(+∞). We assume now that the result is true for n. But,

f

(

1

cn+1
m

2n+1

∑

i=1

xi

)

= f

(

1

cn+1
m

2n
∑

i=1

[xi + x2n+i]

)

= f

(

1

cnm

2n
∑

i=1

xi + x2n+i

cm

)

.
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Therefore, by using the inductive hypothesis and since f ∈ Jε,m(+∞), we have

f

(

1

cn+1
m

2n+1

∑

i=1

xi

)

≤ 1

cnm

2n
∑

i=1

f

(

xi + x2n+i

cm

)

+

n−1
∑

i=0

(

2

cm

)i

ε

≤ 1

cnm

2n
∑

i=1

[

f(xi) + f(x2n+i)

cm
+ ε

]

+

n−1
∑

i=0

(

2

cm

)i

ε

=
1

cn+1
m

2n+1

∑

i=1

f(xi) +
n
∑

i=0

(

2

cm

)i

ε.

Corollary 3.2 On the same conditions of Theorem 3.1 the following in-
equality holds

f

(

k

2n
x+m

(

1− k

2n

)

y

)

≤ k

cnm
f
([cm

2

]n

x
)

+m

(

2n − k

cnm

)

f
([cm

2

]n

y
)

+
(m+ 2)cmε

cm − 2

for all x, y > 0, n ∈ N, and k ∈ {0, 1, . . . , 2n}.

Proof. It is not difficult to prove that if f ∈ Jε,m[+∞), then f(mx) ≤
mf(x) + (m + 1)ε. By using this fact, taking x1 = · · · = xk =

(cm
2

)n

x and

xk+1 = · · · = x2n = m
(cm
2

)n

y in (3), and taking into account that
2n − k

cnm
≤ 1,

the result is obtained.

Proposition 3.3 Let f : (0,+∞) → R be a sub-homogeneous function
in Jε,m(+∞), with m ∈ (0, 1). If f is locally bounded from above at a point
p ∈ (0,+∞), then f is locally bounded from above on (0,+∞).

Proof. Let U ⊂ (0,+∞) be an open set such that p ∈ U and f(u) ≤ M for
all u ∈ U, with M ∈ R+. Let q ∈ (0,+∞) be arbitrary. Since

lim
n→+∞

q − 2−np

m(1− 2−n)
=

q

m
∈ (0,+∞),

there exists n ∈ N such that

y0 :=
q − 2−np

m(1− 2−n)
∈ (0,+∞),

and we have q = 2−np + m(1 − 2−n)y0. Let V = W + m(1 − 2−n)y0, where
W = {2−nu : u ∈ U}. Then V is open and q ∈ V. Now, if v ∈ V, then
v = 2−nu0 +m(1− 2−n)y0 for some u0 ∈ U. Therefore, by Corollary 3.2,

f(v) ≤ c−n
m f

([cm
2

]n

u0

)

+m

(

2n − 1

cnm

)

f
([cm

2

]n

y0

)

+
(m+ 2)cmε

cm − 2
.
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By using now the sub-homogeneity of f, we have

f(v) ≤ 2−nM +m(1− 2−n)f(y0) +
(m+ 2)cmε

cm − 2
.

Thus f is locally bounded from above on (0,+∞).

Proposition 3.4 Let f : (0,+∞) → R be a sub-homogeneous function
in Jε,m(+∞), with m ∈ (0, 1). If f is locally bounded from below at a point
p ∈ (0,+∞), then f is locally bounded from below on (0,+∞).

Proof. Let U ⊂ (0,+∞) be an open set such that p ∈ U and f(u) ≥ M for
all u ∈ U, with M ∈ R. Let q ∈ (0,+∞) be arbitrary. Since

lim
n→+∞

p− 2−nq

m(1− 2−n)
=

p

m
∈ (0,+∞),

there exists n ∈ N such that

y0 :=
p− 2−nq

m(1− 2−n)
∈ (0,+∞),

and we have p = 2−nq + m(1 − 2−n)y0. Let V = W + m(1 − 2n)y0, where
W = {2nu : u ∈ U}. Then V is open and q ∈ V. Hence, if v ∈ V, then
v = 2nu0 +m(1− 2n)y0 for some u0 ∈ U, and thus u0 = 2−nv +m(1− 2−n)y0.
Therefore, again by Corollary 3.2,

f(u0) ≤ c−n
m f

([cm
2

]n

v
)

+m

(

2n − 1

cnm

)

f
([cm

2

]n

y0

)

+
(m+ 2)cmε

cm − 2
.

By using now the sub-homogeneity of f, we obtain

M ≤ f(u0) ≤ 2−nf(v) +m(1− 2−n)f(y0) +
(m+ 2)cmε

cm − 2
;

this is,

f(v) ≥ 2nM +m(1− 2n)f(y0)−
2n(m+ 2)cmε

cm − 2
.

Thus f is locally bounded from below on (0,+∞).

Proposition 3.5 Let f : (0,+∞) → R be a sub-homogeneous function
in Jε,m(+∞), with m ∈ (0, 1). If f is locally bounded from above at a point
p ∈ (0,+∞), then f is locally bounded from below at this point.
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Proof. Let U ⊂ (0,+∞) be an open set such that p ∈ U and f(u) ≤ M1 for
all u ∈ U, with M1 ∈ R+. By Proposition 3.3, f is also locally bounded from
above at the point (cm− 1)p ∈ (0,+∞). Let V ⊂ (0,+∞) be an open set such
that (cm − 1)p ∈ V and f(v) ≤ M2 for all v ∈ V, with M2 ∈ R+. We consider
W = U ∩ V ′, where V ′ = {cmp − v : v ∈ V }. Then W is an open set and
p ∈ W. Now, if w ∈ W, then w = cmp− v0 for some v0 ∈ V, and thus,

f(p) = f

(

v0 + w

cm

)

≤ f(v0) + f(w)

cm
+ ε.

Therefore, f(w) ≥ cmf(p) − f(v0) − cmε ≥ cmf(p) − M2 − cmε. Thus, f is
locally bounded from below at the point p.

From Propositions 3.3, 3.4 and 3.5, it follows immediately the next result.

Corollary 3.6 Let f : (0,+∞) → R be a sub-homogeneous function in
Jε,m(+∞), with m ∈ (0, 1). If f is locally bounded from above at a point p ∈
(0,+∞), then f is locally bounded on (0,+∞).

Theorem 3.7 Let f : (0,+∞) → R be a sub-homogeneous function in
Jε,m(+∞). If f is δ0-m-convex, then f is δn-m-convex for all n ≥ 1, where

δn =
δn−1

cm
+ ε.

Proof. The proof is by induction on n. For n = 1, let x, y > 0 be arbitrary.

Thus, if 0 ≤ t ≤ 1

cm
, then 0 ≤ cmt ≤ 1 and we have

f(tx+m(1− t)y) = f

(

tx+
(m+ 1)

cm
y −mty

)

= f

(

cmtx+m(1− cmt)y + y

cm

)

≤ f(cmtx+m(1− cmt)y) + f(y)

cm
+ ε

≤ cmtf(x) +m(1− cmt)f(y) + δ0 + f(y)

cm
+ ε

= tf(x) +m

(

1

cm
− t+

1

mcm

)

f(y) +
δ0
cm

+ ε

= tf(x) +m(1 − t)f(y) + δ1.
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If
1

cm
< t ≤ 1, then 0 ≤ cmm(1− t) < 1, and therefore,

f(tx+m(1 − t)y)

= f

(

cmm(1− t)y +m(1− cmm(1 − t))x−m(1− cmm(1− t))x+ cmtx

cm

)

= f

(

cmm(1− t)y +m(1− cmm(1 − t))x+ (cmt +m2 − cmm
2t)x

cm

)

≤ f(cmm(1 − t)y +m(1− cmm(1− t))x) + f((cmt+m2 − cmm
2t)x)

cm
+ ε.

But, by assumption, also it follows that cmt + m2 − cmm
2t ≥ 1. Hence, by

using the δ0-m convexity and sub-homogeneity of f, we have

f(tx+m(1− t)y)

≤ cmm(1− t)f(y) +m(1− cmm(1 − t))f(x) + δ0 + (cmt+m2 − cmm
2t)f(x)

cm
+ ε

= m(1− t)f(y) +m

(

1

cm
−m(1− t) +

t

m
+

m

cm
−mt

)

f(x) +
δ0
cm

+ ε

= tf(x) +m(1− t)f(y) + δ1.

Therefore, the result is true for n = 1.
We assume now that the result is true for n. The proof for n+ 1 is similar

to the proof for n = 1, with δn replaced by δ0.

Corollary 3.8 Let f : (0,+∞) → R be a sub-homogeneous function in
Jε,m(+∞). If f is δ-m-convex, then it is cmε-m-convex.

Proof. By Theorem 3.7, for all n ∈ N we have

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y) + δn.

By passing to the limit as n → ∞, and since δn → cmε

cm − 1
≤ cmε, the conclu-

sion follows.

Proposition 3.9 Let f : (0,+∞) → R be a sub-homogeneous function
in Jε,m(+∞), with m ∈ (0, 1). If f is locally bounded from above at a point
p ∈ (0,+∞), then f is cmε-m-convex.

Proof. By Corollary 3.6, f is locally bounded on (0,+∞). Let x, y ∈ (0,+∞)
be given. Without loss of generality we can assume that x ≤ my, and we
consider the interval [x,my]. Then there exist M ∈ R+ such that |f(z)| ≤ M
for all z ∈ [x,my]. From this fact follows the inequalities f(tx+m(1− t)y) ≤
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M, −tf(x) ≤ tM and −(1 − t)f(my) ≤ (1 − t)M for all t ∈ [0, 1], which in
turn implies

f(tx+m(1−t)y) ≤ tf(x)+(1−t)f(my)+2M ≤ tf(x)+m(1−t)f(y)+(m+1)ε+2M.

Therefore, f |[x,my] is ((m + 1)ε + 2M)-m-convex. Hence, by Corollary 3.8
(with δ = (m+1)ε+2M), f is cmε-m-convex. Because x, y are arbitrary, this
finishes the proof.

It is clear that if f : [0,+∞) → R is a function ε-m-convex, then f ∈
Wε,m[+∞). Moreover, the following result holds.

Proposition 3.10 Let f : (0,+∞) → R be a function given and m ∈ (0, 1].
If f ∈ Wε,m(+∞), then f ∈ Jε,m(+∞).

Proof. By taking t =
1

cm
=

m

m+ 1
in (2), we have for all x, y ∈ (0,+∞)

f

(

x

cm
+

y

cm

)

+ f

(

x

cm
+

y

cm

)

≤ 2

cm
[f(x) + f(y)] + 2ε.

Hence,

f

(

x+ y

cm

)

≤ f(x) + f(y)

cm
+ ε.

Theorem 3.11 Let f : (0,+∞) → R be a sub-homogeneous function in
Wε,m(+∞) and m ∈ (0, 1). If f is locally bounded from below at a point p ∈
(0,+∞), then for x, y > 0 fixed but arbitrary, the function g : [0, 1] → R,

defined by g(t) = f(tx+m(1− t)y), is bounded and
cmε

2
-midconvex.

Proof. Since f ∈ Wε,m(+∞), by Proposition 3.10, f ∈ Jε,m(+∞). This
fact and Proposition 3.4 in turn imply that f is locally bounded from be-
low on (0,+∞). Hence, f is bounded from below on the closed interval I =
[min{x,m2y},max{ x

m
, my}] (say by M ∈ R−). Moreover, g is locally bounded

from below on [0, 1]. Thus, also by the compactness of [0, 1], g is bounded from
below on [0, 1]. Well then, by the sub-homogeneity (note that m ≤ t+m(1 −
t) ≤ 1), the ε-Wright m-convexity of f, and the fact that

tx+m2(1− t)y

t +m(1− t)
∈ I
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for all t ∈ [0, 1], we have

g

(

m(1− t)

t+m(1− t)

)

= f

(

m(1− t)x+mty

t+m(1− t)

)

= f

(

m(1− t)x+ t(my)

t+m(1 − t)

)

+ f

(

tx+m(1− t)(my)

t +m(1− t)

)

− f

(

tx+m2(1− t)y

t +m(1− t)

)

≤ f(tx+m(1− t)(my)) + f(m(1− t)x+ t(my))

t+m(1− t)
−M

≤ f(x) + f(my) +
2ε

t+m(1− t)
−M

≤ f(x) + f(my) +
2ε

m
−M

Thus,

g

(

m(1− t)

t +m(1− t)

)

≤ g(1) + g(0) +
2ε

m
−M.

Since the function t 7→ m(1− t)

t+m(1 − t)
is a bijection of [0, 1] on itself, we obtain

that g is bounded from above on [0, 1].

Let us see now that g is
cmε

2
-midconvex. In fact, for all t1, t2 ∈ [0, 1], we

have

g

(

t1 + t2
2

)

= f

(

t1 + t2
2

x+m

(

1− t1 + t2
2

)

y

)

= f

(

cm
2

[

(t1 + t2)x+m(2− (t1 + t2))y

cm

])

≤ cm
2
f

(

t1x+m(1− t1)y + t2x+m(1− t2)y

cm

)

≤ cm
2

[

f(t1x+m(1− t1)y) + f(t2x+m(1− t2)y)

cm
+ ε

]

=
g(t1) + g(t2)

2
+

cmε

2
.

The following two results were proved by Ng and Nikodem in [6] (see also
[2]).

Theorem. Let X be a real vector space, and D an open and convex subset of
X. If f : D → R is β-midconvex and locally bounded from above at a point of
D, then f is 2β-convex.
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Lemma. Let I ⊂ R be an interval. If f : I → R is β-midconvex on I and
2β-convex in the interior of I, then f is 2β-convex on I.

From this couple of previous results, by taking D = (0, 1), I = [0, 1], β =
cmε

2
, and g instead of f, we have obtained an immediate corollary of Theorem

3.11.

Corollary 3.12 The function g given in the Theorem 3.11 is cmε-convex
on [0, 1].

From Theorem 3.11 and Corollary 3.12, we have the next result.

Proposition 3.13 Let f : (0,+∞) → R be a sub-homogeneous function
in Wε,m(+∞) and m ∈ (0, 1]. If f is locally bounded from below at a point
p ∈ (0,+∞), then f is cmε-m-convex.

Proof. Let x, y > 0 and we define as before the function g : [0, 1] → R given
by g(t) = f(tx + m(1 − t)y). By Corollary 3.12, g is cmε-convex on [0, 1].
Therefore,

f(tx+m(1− t)y) = g(t) = g(t · 1 + (1− t) · 0)
≤ tg(1) + (1− t)g(0) + cmε

= tf(x) + (1− t)f(my) + cmε

≤ tf(x) +m(1 − t)f(y) + (m+ 1)ε+ cmε

= tf(x) +m(1− t)f(y) + (m+ 1)cmε.

Hence, f is (m + 1)cmε-m-convex. Thus, by Corollary 3.8 (with δ = (m +
1)cmε), f is cmε-m-convex.
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