
Mathematica Eterna

1Mathe Eter, Vol.14 Iss.3 No:1000226

OPEN ACCESS Freely available online

Review Article

Correspondence to: Jan Brosius, Department of Theoretical Chemistry, University of Valencia, Valencia, Spain, E-mail: brosius.jan@gmail.com

Received: 11-Jun-2024, Manuscript No. ME-24-31944; Editor assigned: 14-Jun-2024, Pre QC No. ME-24-31944 (PQ); Reviewed: 01-Jul-2024, QC No. 
ME-24-31944; Revised: 08-Jul-2024, Manuscript No. ME-24-31944 (R); Published: 15-Jul-2024, DOI: 10.35248/1314-3344.24.14.226

Citation: Brosius J, Brosius W (2024) Probability Distributions of Phases I. Math Eter. 14:226.

Copyright: © 2024 Brosius J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Probability Distributions of Phases I
Jan Brosius*, Walter Brosius

Department of Theoretical Chemistry, University of Valencia, Valencia, Spain

ABSTRACT
This article presents the mathematical foundation for calculating PD's (Probability Distributions) for some set of 
phases { }hϕ  needed for the structure determination of a crystal. We can obtain PD's of the phases that can contain N 
or without N. A former paper could only obtain PD's of the phases containing N. Here we have the two possibilities.
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INTRODUCTION

In a short review was given of the old probabilistic DM (Direct 
Methods) way for calculating phase distributions [1].

There were two mathematical approaches see (A) and (B) below

(A): The basic R.V.’s (Random Variables) are the set of the
( )1iX i N≤ ≥ that are distributed independently and uniformly 

over the asymmetric unit (we consider in this paper only P1) and 

one studies the normalized structure factors ( ) 2 .X1,..., 2

1
ih jh N iej

i

E X X f
f

π= ∑
∑

And one calculates the probabilities of the phases { }( )ih X hϕ

(B): The basic R.V.’s are the reciprocal vectors h that are distributed 
uniformly and independently over reciprocal space and one keeps 
the iΧ constant. This method can give algebraic equations as follows: 
One can study the structure factors hE , h kE + and we consider only 
h as the basic reciprocal vector and one keeps k fixed. The B

3
,0 

formula is an equation obtained this way. Although this equation 
gives the value of ( )h k h kcos ϕ ϕ ϕ ++ −  in theory, in practice this 
equation is wrong for high N, which is due to accidental overlap 
of the xi which invalidates the calculation of the joint probabilities 
of hE and h kE + . Even when one calculates the joint probabilities

,( ),h k h kP E E E +  where h and k are the basic R.V.’s one must assume 
no accidental overlap of the xi (which becomes a problem for high 
N.). The calculation of joint probabilities gives then the same 
results as in (A) above.

(C): Using method (A) one can derive the probability of the cosine 
invariant , h k h kcosϕ ϕ ϕ ϕ ϕ +≡ + − :

( ) ( )2 , , cos / 1/( )h k h kProb xp R R R N Ne Oϕ ϕ+∝ +

It follows that this formula 

Loses predictive power for high N. 

Cannot predict negative cosines.

The probabilities of quartets, quintets, etc. are even worse since 
they are of order of 1/N (for quartets), of order 1/ N N  (for 
quintets), etc. (Although one can get a quartet formula that 
theoretically predicts negative cosines for the quartet (but again 
with too low predictive power)). At the end of the twentieth 
century nobody was busy anymore with calculating prob-abilistic 
phase distributions using one of the methods (A) or (B). For the 
calculations of structures with high N (N being here the number of 
independent non-H atoms in the asymmetric unit), one began to 
devise methods in direct space to solve crystal structures. One uses 
an automatic cyclical process: (a): Phase refinement (for instance 
with the use of the (modified) tangent formula) in reciprocal 
space and; (b): With the imposition in real space of physically 
meaningful constraints through an atomic interpretation of the 
electron density, with minimization of a well-chosen FOM (Figure 
Of Merit) of the phases. One of these methods in DM is known as 
the SnB (Shake and Bake) algorithm with N 1200 [2,3]; Another is 
the twin variables approach with 1100N ≈ ; Sir2000 the successor 
of SIR97 and SIR99 although different from SnB: (e.g. triplet 
invariants via the P10 formula with 2000N ≈ . Another interesting 
result is the solution of a crystal when a substructure is known 
where N may become higher [4-9]. For an overview of DM before 
the year 2000 we refer to Giacovazzo [10].

(D): In order to circumvent these problems one approach might 
be to consider R.V.’s ( )ix that are no longer independent neither 
uniformly distributed, say a dependence through a positive 
distribution ( )1,...., Nρ Χ Χ .

One can give such distributions by using the functions ( )1,...,h NR X X . 
But then one encounters insurmountable mathematical difficulties. 
The solution is to not consider the iΧ  as R.V.’s anymore but to 
replace ( )1,...., Nρ Χ Χ by a field ( )xρ and to sample the field over the 
allowable function space. What we shall discuss here is a novel way 
for doing DM (Direct Methods). 
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(E): Differences with our approach 

•	 We shall be able to solve any structure (any N) ab initio. 

•	 Much lower CPU time. 

•	 Let ( )1 1,0,0e = , ( )2 0,1,0e = , ( )2 0,0,1,e = and ( )1 2 3, ,h h h h= , then 
with our approach we can easily calculate the probability 
distribution of 

1 2 31 2 3e e eh h h hϕ ϕ ϕϕ − − − for any h. No need to 
compute all possible triplets. 

•	 Easy to incorporate any given substructure. 

•	 Easy to calculate the PD’s (Probability Distributions) of phases: 
One only needs to take derivatives. 

In this paper we shall give the mathematical basis that is necessary 
for this completely new DM approach. This approach is not 
mathematically as simple as in (A) and (B) but it is perfectly doable. 
It consists in using the atomic distribution function (x) as the basic 
random variable. The method will also be based on a functional 
integration over the random variable and using a nonstandard 
fuzzy approach wherein Dirac delta functions (among which a 
novel delta function representation for angle variables) are replaced 
by nonstandard fuzzy delta functions. To show the strength of the 
method, a simple formula was given in Brosius for the distribution 
of the triplet phase formula of the form ( ) cosPr Ae ϕϕ ∝ .

Where A is a function depending (not on N!) on the structure 
factors of the first neighborhood of the triplet [1].

In this paper a more profound mathematical foundation of our 
DM approach is given and this will be a major improvement 
compared to Brosius [1]. Recall that the sampling is done over 
positive functions [ ]3: X 0,1 Rρ +∈ →  (in the space group P1) and that 
the R.V.’s that we study are the phases [ ]hϕ ρ which are defined by 
the relation

[ ]( ) ( ) 2 .1exp
| |

ih X

h

i h p dXp X e
F

πϕ ≡ ∫ ….. (1)

Where is a R.V. defined by 

2 .ih XpXeh X
F π≡ ∫

2 .

1
ih Xk

N

ke
k

Fh f π

=

= ∑
and from now on we shall use the notations 

( )
( )

2 2

2 2

| |

| |

| |

h h

h h

h h h

F F

F h F h

A F k F k

κ

≡

≡ 〈 〉 = 〈 〉

≡ − = −
One then needs to define a probability density [ ]Pr ρ on the sample 
space ρ ’s. We build up [ ]Pr ρ by fuzzy Dirac delta functions in 4 
steps  

Through constraints of the form [ ]F Fρ =  by using fuzzy Dirac 
delta’s [ ]( )F Fεδ ρ −  (ε a positive infinitesimal).  

Next through maximization: Adding obvious terms to [ ]S ρ where 
[ ]S ρ ≡ ln [ ]Pr ρ , that cannot be added by using a constraint, like 

e.g. the term.

( ) ( ) ( ) ( ) ( ) ( ), , ,  x D x y y D y z z D z x dxdydzρ ρ ρ∫
Eventually we add fermionic terms to [ ]S ρ , like e.g. 

( ) ( ) ( ) ( ) ( )* ,  ,x x D x y y y dxdydzψψ ρ ρ∫
By imposing the mathematical requirement on the basic R.V. ρ  

that the different atoms in the unit cell of the crystal repel each 
other. 

The idea is that if one would consider a function ( )1,..., Nx xρ  for 

which it is known that { }( ) 0iXρ = whenever ix equals some jx , 
this can be done by requiring that ( )1,..., Nx xρ is antisymmetric 

in the ix , that is 

(..., ,..., ,...) (..., ,..., ,...)i j j iX X X Xρ ρ= −

Inspired by modern QFT (Quantum Field Theory) we replace 
( )1,..., Nx xρ by an antisymmetric (fermionic) field ( )Xψ with the 

property

( ) ( ) ( ) ( )yX Xyψ ψ ψ ψ= −

giving thus 

( )2 0Xψ =

The added benefit is then that the different ix  will repel each other. 
Now one has two basic R.V.’s: ρ and ψ and we must integrate over 
ρ and ψ .

One can also sample over the set of Gaussian (normal) distributions 
by using the substitution 

( ) ( ) ( ) ( ) 2
2

1 1   || ||
22

exp η ρ
σ

ρ ρ
σ π

 Χ Χ = − ∆ Χ −∆ Χ
→ 

.... (2)

where ( )ρ Χ represents the true electronic distribution and ( )f∆ Χ is 
the laplacian of f at the point x. 

As in QFT, D (x, y) is called the propagator from the point y to x. 
Using constraints we shall see that the first candidate for D (x,y) is 
( )Q x y− where Q is the origin-removed Patterson function defined 

here by 

( ) ( ) ( ) ( )2 2| | iQ F e Pπκ κδ− Ρ⋅Χ
Ρ

Ρ

Χ ≡ − ≡ Χ − Χ∑ …. (3)

This propagator depends on N since ( ) ( )2 2
0| |F Nκ− = Ο .

LITERATURE REVIEW

Notations and formulas 

 ( )f fΧ = Χ

( )ff dΧ Χ = Χ Χ∫ ∫ and ( ), ,... , ,... ... , ,...y yf dxdy f x yΧ Χ =∫ ∫
 D dρ ρΧ Χ= Π∫ ∫
The error function ( ) 2

0

2 
x tf x e dt

π
−= ∫ [11,12]. We have then 

( ) ( )
( ) ( )

2
2 1 2 1

0 0

12 2 2
! 2 1 2 1 !!

n n n n
z

n n

z zerf z e
n n nπ π

+ +∞ ∞
−

= =

−
= =

+ +∑ ∑

2 2 2 /a

0

1 0
2

bxax b bdxe e erf for a
a a
π−

∞
−   = − ℜ >  

  
∫

( ) ( )erf z erf z− = −

( )2 2| |A F Fκ κΡ Ρ Ρ= − = −

,h k h k h kF F F F +≡

A without subscript stands for some infinite positive number.

( ) 2 2 iF eP x π− Ρ⋅Χ
Ρ Ρ= Σ

( ) ( ) ( ) ( )2 2 iQ F e px πκ κδ− Ρ⋅Χ
Ρ Ρ= Σ − = Χ − Χ
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; Where 0, ,a z a z a> ℜ ≥ − ≠ −
Some vector calculus: (f, g: vector valued functions, h a scalar 
function)

( ) ( ) ( ) ( ) ( )f g f g g f f g g f∇ ⋅ = ⋅∇ + ⋅∇ + × ∇× + × ∇×

( ) ( )hf h f f h∇ = ∇⋅ + ⋅∇

( ) ( ) ( ) ( ) ( )f g f g g f g f f g∇× × = ∇⋅ − ∇ ⋅ + ⋅∇ − ⋅∇

∆ = ∇⋅∇

( ) ( )
0

2 2h h h h h h
=

 
∇ ∇ ⋅∇ = ∇ ⋅∇ ∇ + ∇ × ∇×∇ 

 


( )2 h h= ∇ ⋅∇ ∇

Recall that in three dimensions 1 2 3  , , )(x x x x=

1 2 3

2 2 2

2 2 2
1 2 3

, ,

, ,

x

x

x x x

x x x

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

∂ ∂ ∂
∆ =

∂ ∂ ∂

Preliminary knowledge

For an introduction on nonstandard theory we refer to Diener et 
al. and for a more advanced text see Nelson [13,14]. 

Nonstandard theory: Standard numbers are the known numbers: 

2, 1, 2, , ,π− ⋅⋅⋅ the other numbers are the nonstandard real 
numbers which make up the field R. It is important to observe 
that there are an infinity of infinite numbers in R that are greater 
than any standard real number. Also there are an infinity of 
infinitesimals ε in R for which the absolute value | |ε  is less than 
any positive standard number in R. From the axioms it follows that 

for every positive infinitesimal 
1,ε
ε  is a positive infinite number 

and vice versa. Note that an infinite number is different from !∞
. In this paper we use A to denote an infinite positive number 
and ε  will always denote (unless explicitly noted otherwise) a 
positive infinitesimal. xε  or ( )xε will denote a function that associates 
a positive infinitesimal with every position x in the unit cell [ ]30,1  
( )1inρ . We will use this function in our fuzzy Dirac delta. (.)

xεδ  We 
shall use the notation ( )Aδ ⋅ instead of ( )1

A

⋅ when we deal with angle 
variables. 

Anticommuting variables: In a detailed exposition of 
anticommuting numbers is given [1]. In this subsection we shall 
only expose the bare minimum needed to read this paper. For more 
information, we refer to Weinberg, Siegel, Kuzenko et al. and for a 
more mathematical treatment to Bruhat et al. and deWitt [15-19]. 

One starts with a set of anticommuting numbers λθ :
2 0λ µ µ λ λθ θ θ θ θ= − → =  

From this follows that every even product of such anticommuting 
numbers is commuting ( )λ µ α β α β λ µθ θ θ θ θ θ θ θ= . Also one adds the 
axiom: , zz z Cλ µθ θ= ∀ ∈ . Then the algebra ∧ is defined as the set of 
all finite sums of products.

( )1 2 , 0,M iz z C M all differentθ θ θ θ⋅⋅⋅ ∈ ≥

When M is even, this is a commuting number (also called even) 
and when it is odd it is an anticommuting number (also called 
odd). Sums of such products with even M do commute and are 

( ) ( ) ( )1 21 12  i x y NQ ex y F πκ Ρ⋅ +−
Ρ Ρ

− −−
− = Σ − , where ( )1Q x y− − is the inverse of the 

kernel operator ( )Q x y− . 

The phase random variable [ ]ϕ ρΡ is defined by [ ] ( ) 2i iF e d eϕ ρ πρΡ Ρ⋅Χ
Ρ = Χ Χ∫

where ( )xρ denotes the atomic distribution and the function ρ is 
our basic R.V.

f gtf g Χ Χ
Χ= ∫ and ( ) ( ),

t
x y x yQ x Q yρ ρ ρ ρ−= ∫ . 

The functional integral 

( )2
0 exp 2 x xD a b Jρ ρ ρ ρΧ Χ≥∫ − ∫ +

( )2

0

exp 2 x xd a b Jρ ρ ρ
∞

Χ ΧΧ
= Π − +∫

( ) ( )2 21 exp
2 x

berf J J where
a a
π γ γ γΧΧ

 Π + =      

( )( )221x Xexp In erf JJγ γ Χ∞ ∫ + +   …. (4)

 The nb  constants. We define the constants 
nb  by the series 

( )
1

1
1

nn

n

bIn erf x x
n

∞

=

+ =   =∑

The bn;m constants, defined by 

( )
2 1

,
0 0

2
2 1 !!

nn n
n m

n m
n m

z b z
n

+∞ ∞
+

= =

 
=  + 

∑ ∑
Our representation of ( )δ ϕ for an angle ϕ is 

( ) ( )
cos

0

1lim
2

A

A
e

I A
ϕδ ϕ

π→∞
=

We then define the fuzzy nonstandard Aδ  function by 

( ) ( )
cos

0

1
2

A
A e

I A
ϕδ ϕ

π
=

For real x (not an angle) we define the nonstandard fuzzy ( )xεδ by 

( )
21 exp

22
xxεδ επε

 
= − 

 
for positive infinitesimal ε ,

and for complex  z x iy= +

( )
21 | |

2 2
zz expε ε

δ
πε

 
= − 

 
For some set H of reciprocal vectors we define 

( ) ( )cos 2h
H h h h

h H h

uL x F h x
F

υ ϕ π
∈

 
= ∑ + − ⋅ 

 

and sometimes we simply write ( )x HL L x= . 

We use the explicit definition of the functional derivative by 

[ ]
( )

[ ] [ ]
0

lim xF F F
x ε

δ ρ ρ εδ ρ
δρ ε→

+ −
=

,

Where

( ) ( )x y x yδ δ= −

3 51 1 1 1 1 2 ...
1 3 1 5 1

z z zln z
z z z

 − − −     = + + +       + + +       ,

where 0, 0z zℜ ≥ ≠

( )
3 51 1  2 ...

3 5
z z zln z a ln a

z a z a z a
      + = + + + +       + + +      
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called even, and with odd M these sums are anticommuting 
and are called odd. Every z C∈ is also even. It follows that 
every α ∈∧  is a sum α β γ= + with β even and γ odd. 
An involution *α α→  is defined such that, *

λ λθ θ=  and 
( ) ( )* * *, * * *z Z Zαβ β α α α α= = = for z C∈  and ( )* * *α βα β = ++  

*α  is odd when α  is odd and even when otherwise. One calls ψ

or xψ
an odd function of x if xψ

 is odd for every x. It then follows 

that 
*ψ ψΧ Χ  (or *ψ ψ  ) is even. Then the derivative 

θ
∂
∂

 with 

respect to the anticommuting variable θ is defined by

' ' , . .i e
θ θ θ θ θ
∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂  is odd.

1θ
θ
∂

=
∂

( ) ( )( ) ( ) ( )f g f gθ θ θ θ
θ θ θ
∂ ∂ ∂

+ = +
∂ ∂ ∂

( )a a aθ θ θ
θ θ θ
∂ ∂ ∂ = − = ∂ ∂ ∂ 

When a is odd, (when a is even)

( ) ( ) ( )1 f ffg f g gε

θ θ θ
∂ ∂ ∂ = + ∂ ∂ ∂ 

− , where ( ) 0fε =  for f even (=1 for f odd)

A function ( )f θ of an odd variableθ  has the simple form 
( )f a bθ θ= + (Taylor expansion), (here a is odd when f  is odd, 

and even otherwise, but b  has the opposite statistics of f ). This 
can be generalized for a function ( )1,..., Nf θ θ of N anti-commuting 
variables: The coefficients of even products in the expansion of 

the iθ have the same statistics as f , whereas the coefficients of 
uneven products have the opposite statistics. Next one defines the 
integration dθ∫ as 

( ) ( ) ,d f fθ θ θ
θ
∂

=
∂∫

and the multiple integration 

1 2 1 2... ... ,n nd d d d d dθ θ θ θ θ θ=∫ ∫ ∫ ∫
It is also convenient to define θ  as an odd element: 

.i j j id d d dθ θ θ θ= −  

Also the following formulas are important 

( ) ( )zf d z f dθ θ θ θ=∫ ∫  for constant z;

( ) ( )d f d fθ θ γ θ θ+ =∫ ∫  for an odd constant γ  

 Note that the set of all odd numbers has vanishing volume 

0dθ ≡∫  and

1d dθ θθ= − = −∫ ∫
DISCUSSION

Determinants

The four determinants are listed below. The following Theoremes 
are:

Theorem 1: Let M  be an n n matrix× − . Then 

* *

,
exp detn n

i ij j
i j

d d M Mθ θ θ θ
 

= 
 
∑∫

where by definition * *
1

n n n
i i id d d dθ θ θ θ=≡ ∏ ∫∫

Proof develop ( )*
,exp i j i ij jMθ θ∑  in sums of products of *

i iθ θ  

* * * *
1 1

,

exp 1 ... ...
n

i ij j i ij j n n
iji j

M M DetMθ θ θ θ θ θ θ θ
 

= + + + 
 

∑∑

Since,

( )* * *

1

... 1
n

i i i i n n
i

d dθ θ θ θ θ θ
=

=∏∫ the theorem follows. 

The continuous version is as follows. Let ( )Xψ  be an anticommuting 
variable for every X  in the unit cell. Then,

( ) ( ) ( ) ( ) ( )( )* *exp ,D X D X dxdy x M x y y Det Mψ ψ ψ ψ =∫ ∫
where one has defined ( ) ( ) ( ) ( )* *

XD X D X d X d Xψ ψ ψ ψ≡ ∏

Theorem 2: Suppose now that the inverse 1M −  exists and let ( )Xη  
be an anticommuting variable for every X . Then 

( ) ( ) ( ) ( ) * 1* * * *exp det
tt t t MD X D X M M e η ηψ ψ ψ ψ ψ η η ψ

−−+ + =∫  

Where
* *

, ,
t

x y X X y yM M dxdyψ ψ ψ ψ= ∫

* *t
x X X Xdψ η ψ η= ∫

Proof let  

( ) ( ) ( )* * * * *
0 , exp t t tZ D X D X Mη η ψ ψ ψ ψ ψ η η ψ  ≡ + +  ∫  

Then transform
1

* * * 1

M
M

ψ ψ η

ψ ψ η

−

−

→ −

→ −

and substitute this in *
0 ,Z η η   .Then using the relation 

( ) ( )d f d fθ θ γ θ θ+ =∫ ∫
( ) ( ) ( ) ( ) * 1* * * *exp

tt t t MD X D X M DetM e η ηψ ψ ψ ψ ψ η η ψ
−−+ + =∫ …. (5)

Thus

( ) * 1*
0 ,

t MZ DetM e η ηη η
−−  =  …. (6)

Also

( ) ( ) ( )* * * * *, exp t tD X D X f M tψ ψ ψ ψ ψ ψ ψ η η ψ  + + ∫
*

*, ,f Zoδ δ η η
δη δη

   = −    
…. (7)

 The minus sign arises from the observation that * *ψ η ηψ= −  in 

( )* * *exp t t tMψ ψ ψ η η ψ+ +  

( ),x yD Q x y= −

Indeed, note that 

( ) ( )

( )

( )

** * * *

* * * *

* * * *

*

exp

exp

exp

,

t t t

t t t

X

t t t

X

o
X

D D X M

D D M

D D M

Z

ψ ψ ψ ψ ψ ψ η η ψ

δψ ψ ψ ψ ψ η η ψ
δη

δ ψ ψ ψ ψ ψ η η ψ
δη

δ η η
δη

+ +

 
= − + + 

 
 

= − + + 
 
 

 = −   
 

∫

∫

∫

 The probability functional [ ]r ρΡ
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it in the above exponent. Next change 
1Aρ η−= and choose 

p
Fw A− −∈= . Since [ ] [ ]1 pF F A A Fρ η η− − = =  , one 

obtains

[ ] [ ] [ ] [ ] { }( )( )
[ ] [ ] { }( )( )

[ ] { }( )( ){ }

2 2
*2

*2

*

1exp | | 2
2

1 1exp | | 2
2

exp

p p
p

F F Fp p

p
F F Fp

p
F F

A Ar r w A w F w F F h h
A A

w A w F w F F h h
A

w A w F F h h

ρ η η η ϕ

η η ϕ

η ϕ

− −

− −

−

   Ρ → Ρ ∝ − − ℜ  
   

  ∝ − − ℜ    

∝ ℜ

since [ ] 21 | | 0p F
A

η− ≈  (infinitesimal). Also under the change 

Aρ η ρ→ =  the integral volume 0 Dρ ρ≥∫ ∝  0 Dρ η≥∫ . So 

finally (after replacingη by ρ )

[ ] [ ]
0 0

SD r D e ρ
ρ ρρ ρ ρ≥ ≥∫ Ρ ∝ ∫

[ ] [ ] { }( )( ) ( )*
F FS w F F h h In wρ ρ ϕ= ℜ +

[ ] { }( )( )*
Fw F F h hρ ϕ= ℜ  (if we drop the constant In ( )Fw )

Theorem 4: One can write 

[ ] 2
,

1S ...
4

t t
H x y x x y y

x y

c L Qρ ρ ρ ρ µ ρ ρ
γ − −= − + + +∫ …. (12)

Where   
2t
x dxρ ρ ρ≡ ∫ …. (13)

( )t
H x HL L x dxρ ρ≡ ∫ …. (14)

( ) ( )IF cos 2
IF

h
H h h h

h H h

uL x h xυ ϕ π
∈

 
= + − ⋅ 

 
∑ …. (15)

( )2 2IF ip u
u p

p
Q k e π− ⋅≡ −∑ …. (16)

where from now on 
t

HLρ is included ( )!  in [ ]S ρ for 
convenience, with parameters

0,  ,    0 with 0.h h uu υ µ µ≥ =

( ),x yD Q x y= −

Proof. 

•	 Define [ ] tF ρ ρ ρ= and 
2F FΡ Ρ= ∑ and use the Dirac 

[ ]( )F Fδ ρ − . Then 

[ ] [ ]( )F Fρ ρ δ ρ∝ −

[ ]( )Fe F Fα δ ρ−∝ −

[ ] [ ]( )Fe F Fα ρ δ ρ−= −

[ ] [ ]( )exp FaF w F Fρ ρ≈ − +

2

1exp
4

tρ ρ
γ

 
= − 

 

where we defined Fw  such that 2

1 0
4 Fa w F
γ

= − > . 

•	 The R.V. [ ]hϕ ρ was defined by 
[ ] ( ) 2 x1i h ih

h

e X e dx
F

ϕ ρ πρ ⋅≡ ∫

Then the probability distribution of [ ]hϕ ρ is generated by the 
expression

We shall show that we can obtain the following probability function 
{ }( )P h h Hϕ ∈  ( H  is some set of reciprocal vectors) given by 

{ }( ) [ ]
0

P h h H D r
ρ

ϕ ρ ρ
≥

∈ = ∫ Ρ  …. (8)

where [ ]r ρΡ  is given, up to a phase unimportant constant, by

[ ] [ ]expr Sρ ρ Ρ ∝  

[ ] ( ) ( ) ,
t t

X X x yS a b D y c Lξρ ρ ξ ρ ξ ρ ρ ρ= − − − + + +∫
( )2 2 2

0

i X i X
X Xxe xe Fπ πα ρ ρΡ⋅ − Ρ⋅

Ρ Ρ
Ρ≠

∫ ∫ − +∑

[ ]( )( ) 3
2

0

1cos 1
4

t Oβ ϕ ρ ϕ ρ ρ ρ
γΡ Ρ Ρ

Ρ≠

 − − + − +  ∑

( ) , ...X H z X z zL cL X f D ξ= + ∫ +

( ) ( )1 cos 2H h h
h H h

L X F h X
F

ϕ π
∈

 
= + − ⋅ 

 
∑

, , , ,x y x y z x z y z zD D D Dξ ξ= ∫ …. (9)

where zz ξ→  denotes chemical information or an intermediate 
iteration of  ρ . 

( )Dx, y = Q x - y

( )Q x y−  will be the basic operator for all our ,Dx y . First we need 
the following theorem: 

Theorem 3: Let [ ]F ρ  be a functional of ρ , such that [ ] [ ]pF A A Fρ ρ=

where A is a positive infinite number and p an integer 1≥ . If we 
impose the constraint

[ ] { }( )F F h hρ ϕ≡

where F has the property that 

{ }( )| F |h h aϕ = constant (i.e. not depending on the phases hϕ ). 

Then if we define the action functional [ ]S ρ by [ ] [ ]sr e ρρΡ ≡  
(where c>0 is a constant) 

Then

[ ] [ ] { }( )( ) ( )*
F FS w F F h h In wρ ρ ϕ= ℜ +

( )0 .Fwhere w > …. (10)

For a sequence of such [ ]kF ρ , [ ]S ρ will become (if we drop the 

constant  ( )FIn w ).

[ ] [ ] { }( )( )*

kF k
k

S w Fk F h hρ ρ ϕ= ℜ∑
…. (11)

Proof we impose this constraint by

[ ] [ ] { }( )( )
[ ] { }( )

[ ] [ ] { }( )( ) { }( )

2

*2 2

1 1exp | |
2

1 1exp | | 2 | |
2

r F

F F h h

F

F F F h h F

h

h

h

h

ρ αδ ρ

α ρ ϕ

α ρ ρ ϕ ϕ

ϕ∈Ρ −

 − − ∈ ∈ 
  − − ℜ +   ∈ ∈ 

Since { }( )| |F h hϕ is independent of the hϕ  one can drop 
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( ) [ ] [ ]( )hr D r h hϕ ρ ρ δ ϕ ρ ϕΡ ≡ Ρ −∫ .

But, (when A is infinite and positive)

[ ]( ) ( ) [ ]( )( )

( ) [ ]( )( )

( ) ( )

0

0

0

1 exp cos
2

1 exp cos

1 exp cos 2

A h h h h
h

h
h

h
x h

h hX

Au h
I u A

Au h h
I u A

uA p h X
I u A F

δ ϕ ρ ϕ ϕ ρ ϕ
π

ϕ ρ ϕ

ϕ π

− ≈ −

∝ −

  
∝ − ⋅     

∫
After the transformation Aρ η ρ→ = we obtain the result 

[ ]( ) ( ) ( )
0

1 exp 't
A h h

h

L
I u A

δ ϕ ρ ϕ ρ− ∝

where ( )' cos 2h

h

uL h h x
F

ϕ π= − ⋅ . For convenience, from now on, we 

shall include  't Lρ in [ ]S ρ .

•	 Next use [ ] 2 ih x
X

X

F e πρ ρ ⋅= ∫ and i h
hF F e ϕ= . Then 

[ ] [ ]( )*
2

1 '
4

t t
hS F F Lρ ρ ρ υ ρ ρ

γ
= − + ℜ +

2
2

1 '
4

t ih X i h t
h X h

X

e F e Lπ ϕρ ρ υ ρ ρ
γ

⋅ − 
= − + ℜ + 

 
∫

( )2

1 cos 2
4

t h
X h h h

hX

u F h X
F

ρ ρ ρ υ ϕ π
γ

 
= − + + − ⋅ 

 
∫

2

1
4

t t
HLρ ρ ρ

γ
= − +

where ( ) ( )cos 2h
H h h

h

uL X F h h x
F

υ ϕ π
 

= + − ⋅ 
 

.

•	 For every [ ]30,1X ∈  we impose the constraint 

[ ]xF Fxρ =

where

[ ]x x u u
u

F ρ ρ ρ≡ +∫
and  

( )xF P x≡
Then, according to theorem 1 above, one has 

y

P(x) ƒ[ ] ...

... (x ) ...( 0).

[ ] ...

_
u

x

x x u u

x y u

S x

dx dy P y

dρ µ ρ µ

µ ρ µ

+ + +

=

+

−

=

+ + ≥

∫ ∫

∫
Next note that there is a phase unimportant peak (x)δ   at x = 0, 
and define Q by 

x
2 2

Q P(x) (x)
(F ) ip x

p
p

k
k e π

δ
− ⋅

= −

= −∑
Then if one chooses the positive function

[ ] [ [ [ ]3
0: 0,1 0, 0,Sto satisfyµ µ ρ→ ∞ =  reads 

,

2

0

,

(x y) ...

... (x y) (x y) ...

... (x y) ...

... (x y) ...

1 ...

[ ] ...

_

4

x y x y

x x y x y x x y

x y x y x x

x y x y

t t
H x y x x yx

y y

yy

P

dx dy Q

dx dy Q

dx d

S

y

dx dy

d

L

x

Q

Q

ρ ρ ρ ρ

ρ ρ

ρ ρ

ρ µ ρ ρ

µ µ δ

µ µ ρ ρ

µ

ρ ρ ρ µ ρ ρ
γ

−

−

−

−

−

−

− +

= + − + − +

= + − + +

= + − +

= +

+

+ +

=

−

∫

∫

∫
∫

∫
∫

∫

One can also add other terms to [ ]S ρ . For example consider the 
triplet expression

[ ] ( ) ( )( )
, ,

exp 2x y zx y z
F i h x z k y zρ ρ ρ ρ π= ⋅ − + ⋅ −  ∫

( )exph k h kF F F F iϕ+= where h k h kϕ ϕ ϕ ϕ += + −

Impose now the constraint [ ]F Fρ = . Since [ ] [ ]3F A A Fρ ρ=
and | |F  is constant in the phases we can write according to the 
basic theorem

[ ] ( ) ( )( ), , , ,
... cos 2 ...h k h k x y zx y z

S u F h x z k y zρ ρ ρ ρ π ϕ= + ⋅ − + ⋅ − − +  ∫
where , 0h ku ≥ and h,kF h k h kF F F +≡ k. One can also do the same 
for quartets, quintets and so on. Next impose for the triplet, the 
constraint. 

[ ]( ) ( ) [ ]3
3

, ,3
0 ,

1 exp h k h kA
h k

A G f
I A

δ ϕ ρ ϕ υ ρ
υ

 − =  

where 

[ ]
, , x y zx y z

G ρ ρ ρ ρ= ∫
( ) ( ),

1 cos 2h k
h k h k

f h x z k y z
F F F

π ϕ
+

 = ⋅ − + ⋅ − −   

[ ] [ ] [ ] [ ]h k h kϕ ρ ϕ ρ ϕ ρ ϕ ρ+= + −

, 0h kυ ≥

Then [ ]S can finally be written (after Aρ ρ→ )

[ ] ,
, ,, ,

,

... h k
x y z h k h kx y z

h k

S u R
R
υ

ρ ρ ρ ρ
 

= + + ×  
 

∫

( ) ( )( )cos 2 ...h x z k y zπ ϕ⋅ − + ⋅ − − +  

Note that Important, , |z x y x yx y z zD Q Q= − −= −∆ ≡ −∆  from 

now on we shall treat all weights h hu cυ= = the same: We 

shall not distinguish between the different measurements | |hF . 

The same will be true for ,x b xµ = ∀ . The same is true for the

. , ,:h k h k h ku u wυ= = . But we shall not consider triplet terms of 

order 3O ρ   in this paper. So now we have arrived at

[ ] 2

1
4

t t
x x y y H

x

S b Q cp Lρ ρ ρ ρ ρ
γ −= − + +∫ …. (17)

2
x, y x - y 0D = Q - (F - k)

This propagator Dx,y does not depend anymore on 

( )( )2 2
0 , )F k O N i fi f− = ∀ = . In the sequel we shall simply say: 

“does not depend anymore on N”. It is better than x yQ − . Indeed to 
see this we can write [ ]P ρ ] as 

[ ] ,0 ,
exp x x y yx y

P D b D
ρ

ρ ρ ρ ρ +⋅⋅⋅≥
 ∝   ∫ ∫

( ),expx x x x y yo
d bp Dρ ρ

∞
∝∏ + ⋅⋅⋅∫ …. (18)

This last expression becomes very low whenever x-y is not an 
interatomic vector since then 0x yQ − = and thus 

( )2
,y 0xD F k= − − and thus 

( ) ( )2 2exp x yP f Nρ ρ ρ∝ −

0≈
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can consider an (improved) term , , , ,x y x x y y y z z z xD D Dρ ρ ρ∫
and replace , ,x y x x y yDρ ρ∫ with the latter term. For instance if 

( )x yD Q X Y− = − we see that , , ,, ,
0x x y y y z z z xx y z

D D Dρ ρ ρ >∫
when and x y− and y z− and z x− are interatomic vectors; 
This is a stronger restriction on than merely the condition 

,,
0x x y yx y

Dρ ρ >∫ . Now if ξ is a submodel of ρ  then we can 

also replace zρ by zξ and obtain again a term of order 2ρ Ο  
by replacing , ,x y x x y yDρ ρ∫ by the stronger condition (on ρ

) , , , , ,x y z x x y y x z y z zD D Dρ ρ ξ∫  in [ ]S ρ . But now also xL  

changes to , ,x H x z x z zL cL b D ξ= + ∫ . Indeed, in , ,x y x x y yb Dρ ρ∫

we can replace yρ by yξ . Then 
t

Hcp L becomes 
tp L

where now ,(x)x H z x z zL cL b D ξ= + ∫  in [ ]S ρ , (Remark that 

 is symmetric whenever x,yD  is), and we 
replace b by another parameter f . Hence for a given submodel ξ
we can now write a better [ ]S ρ :

[ ] ,2

1
4

t t
x x y yS b D Lξρ ρ ρ ρ ρ ρ

γ
= − + +∫  …… (22)

with

,(x) ( 0)x H x z z
z

L cL f D fξ= + >∫  …… (23)

Example: We can always place the origin of the asymmetric unit 
wherever we want, i.e. we can always suppose that one atomic 
vector, say a, is given. This means that at least we can always use the 
chemical information.

( ) x f x aξ δ= − …….. (24)

Then we get

( )   ,x H z
L cL x f Dx a= + ∫

, , , ,x y x y x a a yD D D Dξ = …… (25)

Now we can show that with this we can directly calculate the density 
of the phase invariant.

2h h aϕ π− ⋅
instead of simply hϕ . Indeed consider the functional (where we 
write aD Dξ≡ )

[ ] ,2

1
4

t a t
x x y yS b D Lρ ρρ ρ ρ

γ
ρ = − + +∫

Next we do the functional change of variables: ρ η→  , 

where (x )x aη ρ= + . Then the Jacobian is the inverse of the 

determinant of the matrix ( )x

y

x y aδη
ρ
∂

= − +
∂  which is not dependent 

on the hϕ  so D Dρα η . Then [ ]S ρ  changes to [ ]S η

[ ] 2 ,4
1 t a

x x a y a y x xx
b D LS aη η η η η η

γ + += − + + +∫ ∫

, , , ,x y x y x z y z zz
D D D Dξ ξ= ∫  with , ,

Lx H x zz x z
cL f D ξ= + ∫

and

( 2 2 )
, ,

1L (x a) ( ) i h h a h x
x a H x a a h x a ah H

h

cL fD F e fD
F

ϕ π π− ⋅ − ⋅
+ + +∈
= + + = + +∑ . Defining the phase 

invariant

2h h h aϕ ϕ π≡ − ⋅

That is [ ] 0P ρ ≈ demoting such a ρ . We recall that we have also

[ ] ,2 ,

1
4

t t
x x y y Hx y

S b D c Lρ ρ ρ ρ ρ ρ
γ

= − + +∫ …. (19)

Recall that 
2 2 2

2 2 2
1 2 3

x x x x
∂ ∂ ∂

∆ = + +
∂ ∂ ∂ for ( )1 2 3, ,x x x x= . In order 

to see what this new propagator can offer let us look at xQ . 

xQ  is an N-sum of gaussian functions. Let us consider one of 

them, say
2

2

1 1exp || ||
22

fx x r
σσ π

 = − − 
  . For sake of convenience 

we take now 0r = and we consider the one dimensional case 

X x= . Then 
2

2

X

X

d
d

−∆ = − . And
2

2 2

3 2

1 1X x x
X

d xh f f
d σ σ

 
≡ − ∝ − 

 
. Thus at x=0 

we see that xh is 2

1
σ

 times larger than xf  since 
2

1/x xh f
σ

=

which is very large since σ  is very small. The function xh  then 
drops very fast to zero at x σ= after which it remains negative, 
attains a negative minimum and then goes fast to 0 for x →∞ . 
Also there is exactly one large negative minimum in the range 

[ ]x σ−∞ < < − and one in the range[ ]xσ < < ∞ . Exactly 

as discussed in
2

, 0(F k)x y x yD Q −= − − , [ ] 0P ρ ≈ for a ρ for 

which 0Xρ ≠ at one of these minima. For

( )
0

exp 2XQ A i XπΡ
Ρ≠

= − Ρ ⋅∑ …. (20)

we get

( )2 2

0
4 || || exp 2X XQ A i Xπ πΡ

Ρ≠

−∆ = Ρ − Ρ ⋅∑
Because of the differentiation X∆  this ,x yD  does not depend on 
N

Note, ( ), max ,0x y x yD Q−= −∆ . This .x yD  can also be 
used; Then there are no negative minima, but in order to make 
it N independent, one has to follow the procedure used in 

2
, 0(F k)x y x yD Q −= − − . That is we must subtract the term ^

0D
in the Fourier expansion of ,x yD  to get a new propagator that is 
N-independent: 

( ) ( )2
, 0 , 0

0

ˆ ˆ ˆ,i x y
x y new x yD D D e D x y D Dπ− Ρ⋅ −

Ρ
Ρ≠

= + → ≡ −∑ …. (21)

Improvements ( )x, y dD S x - y

Let d be the maximum distance of all || ||i jr r−  where 

jr  is the nearest neighbour of ir . Then we can obviously 

replace the ,x yD  by ( ),x y dD S x y−  where ( )dS u  is the 

characteristic function of the sphere { }|| ||u u d≤  in the 

asymmetric unit of the crystal. Thus ,, x x y yx y
Dρ ρ∫  becomes 

( ), ,, || ||x x y y d x x y yx y x y d
D S x y Dρ ρ ρ ρ

− ≤
− =∫ ∫ . If we know d 

we can then improve the phase densi- ties

 with 

Whenξ is a given chemical information (be it a submodel or 
an intermediate state of ρ during iteration) then we can derive 
a new propagator, with notation 

,x yDξ , from 
,x yD . Indeed if 

we look at the term , ,x y x x y yb Dρ ρ∫  in [ ]S ρ it is clear that we 
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other. This can be treated by considering ρ  as an antisymmetric 
(fermionic) field written now as ψ . Then, following the treatment 
of QFT (Quantum Field Theory) [15], we replace.

*
, ,x x y y x x y yD Dρ ρ ψ ψ→  

* ( )x x x x yL L x yρ ψ δ ψ→ − ……. (33)

Remark that [ ]S ρ will be replaced by 
*,S ψ ψ   which must be 

even and hermitian. So 

[ ] * *t *t, (L )t tS D L S Dρ ρ ρ ρ ψ ψ ψ ψ ψ ψ = + → = + 

[ ] * ,* SSD e D D e ψ ψρρ ψ ψ
 
 →∫ ∫ ……. (34)

Next
* * t * t,* * (L )S DD D e D D eψ ψ ψ ψ ψ ψψ ψ ψ ψ

  +  =∫ ∫
det(D LI)= +

x,yI (x y)δ≡ − …… (35)

where I is the identity operator and we now replace ,x yD by 
,x yDξ . 

We then get (where 
1

Dξ −
is the inverse of the operator Dξ

1

det( LI) det det(I )D D D Lξ ξ ξ −

+ = +
1

det(I )D L
−

∝ +
1

exp( ln( ))Tr I D Lξ −

= + …….. (36)

since det Dξ  does not depend on the hϕ and since lndet Tr XX e=
for a matrix X (Tr X is the trace of X, , )x x xTrX X≡ ∫ . 

We can write

1 1 1 1 12 3 41 1 1ln(I D ) D ( ) (D ) (D ) ...
2 3 4

L L D L L Lξ ξ ξ ξ ξ− − − − −

+ = − + −

1 1

,D x y yy
L x D Lξ ξ− −

≡ → ∫
1 1

,x( ) x xx
Tr D L D Lξ ξ− −

= ∫
1 1 12

, ,,
( ) x y y y x xx y

Tr D L D L D Lξ ξ ξ− − −

= ∫
1 1 1 13

, , ,, ,
( ) x y y y z z z x xx y z

Tr D L D L D L D Lξ ξ ξ ξ− − − −

= ∫
Then using ,x x y x y yL cL f D ξ= + ∫

1 1 1

,x ,x ,( ) x x x x z zx x Z
Tr D L c D L f D Dξ ξ ξ ξ

− − −

= +∫ ∫ ∫ ….. (37)
1 1 12

,y , y,x x,,
( ) ( ) ( )x y y z z x z zx y z z

Tr D L D cL f D D cL f Dξ ξ ξξ ξ
− − −

= + +∫ ∫ ∫
1 1 12

,y y,x ,y ,,
2x y x x y y z zx y z

c D L D L fcD L D Cξ ξ ξ ξ
− − −

= + +∫ ∫ ….. (38)

A fermionic action functional and a new ,x yD

Since 
1 12

, ,y , y,x x,x y x z y z z z z zC f D D D Dξ ξξ ξ
− −

≡ ∫ ∫ ∫  does not 

depend on the { }h h Hϕ ∈ we can dismiss it in equation 

(38). Next continue with the case x,y x“ ”yD D −≡  and 

,y x x xx y z z z zD D D Dξ ξ− − −≡ ∫ , and we define

and considering the case that interests us most 

x,y xD D y−≡ ……. (26)

we can write now

2 ,

1S[ ]= L
4

t
x x y x y y x xx y x

b D D Dη η η η η η
γ − ′− + +∫ ∫

Where now

{ } ( 2 )1L ( ) L ( ) i h h x
x x a h x

h H h

h h c F e fD
F

ϕ πϕ − ⋅
+

∈

′ ≡ = + +∑  …… (27)

Remark: h h h aϕ ϕ π≡ − ⋅  is indeed a phase invariant because 
under a translation of the origin x x b→ + , also ( , ) ( , )x a x b a b→ + +  
and thus h hϕ ϕ→  under this translation which shows that hϕ  is 
indeed a phase invariant. For the reciprocal vectors 1 (1,0,0)e = , 

2 (0,1,0)e = , 3 (0,0,1)e =  and 1 2 3h (h ,h ,h )=  we can write

1 2 31 2 32 e e eh a h h h hπ φ ϕ ϕ ϕ⋅ = ⋅ ≡ + + …… (28)

where 1 2 3( , , )a a a a=  and 2
ie iaϕ π=  and 

1 3
( ,..., )e eφ ϕ ϕ= . So we can 

write the phase invariant h h hϕ ϕ φ= − ⋅  ……. (29)

The case for general ξ : Let 2( ) ip x
p x e πξ ξ

∧
⋅≡ ∫  and arg( )ψ ξ

∧

≡  then 

( 2 )( ) pi p x
p

p
x e ψ πξ ξ

∧
− ⋅= ∑ …… (30)

and consider 

[ ] ,2

1
4

t t
x x y yS p b D Lξρ ρ ρ ρ ρ

γ
= − + +∫

with x x z x z zL cL f D ξ−= + ∫ . Then we apply the same functional 

change ( )x x aη ρ= +  and we then get for [ ]S η

[ ] ,2

1
4

t
x x y y x xx

S b D Lξη η η η η η
γ

′ ′= − + +∫ ∫ ….. (31)

where 

,x y x y x a z y a z zz
D D D Dξ ξ′

− + − + −= ∫
x a z y a z z x z Y Z z az z

D D D Dξ ξ+ − + − − − +=∫ ∫
(( 2 ) 2 )pi p a p x

x z y z pz
p

D D e ψ π πξ
∧

− ⋅ − ⋅
− −= ∑∫

x x x a z zL cL f D ξ+ −′ ′= + ∫
x x z zz

cL f D ξ−′ ′= + ∫
{ } { }( ) ( )x xL h L hϕ ϕ′ ≡

  ( 2 )h h h aϕ ϕ π≡ − ⋅

{ } { }( ) ( )pz p zξ ψ ξ ψ′ ≡
 ( 2 )p p p aψ ψ π≡ − ⋅

2 h a hπ φ⋅ ≡ ⋅  …… (32)

Note: From now on we shall always write 2h h h aϕ ϕ π≡ − ⋅  

instead of hϕ  and 2p p p aψ ψ π≡ − ⋅ instead of hϕ , resp. 

pψ  in HL , resp. ξ . 

A fermionic action functional and a new x,yD

One knows that the different atoms in the unit cell repel each other. 
So, our random variable ρ should be chosen in such a way that the 

different peaks of ( )xρ spread over the unit cell and repel each 
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(remember h h hϕ ϕ φ≡ − ⋅ and p p pψ ψ φ≡ − ⋅ , and thus

h h h hϕ ψ ϕ ψ− = − )

{ }( ) ( ) ( ) ( )2cos cos cos 2| h h k h k h h hk
A B k C

h p p
Pr e ϕ ψ ϕ ψ ψ ϕ ψϕ ψ − + + − + + −∑∝

….. (42)

Equation (41) shows that for this model it is advantageous to 
choose f=c and then to use c for convergence considerations. For 

example, Equation (42) is then valid up to ( )4O c .

We can extend the above model and study instead the model with 
action.

( ) ( ) ( ) ( ) *t '
,, ,

t t t
x yS D L D Dξρ ψ ψ ρψ ρψ ρψ ψ ψ ψ ρ ρ∗ ∗ ∗  = + + + 

 ….. (43)

To calculate then the functional integral , ,SD D D e ρ ψ ψρ ψ ψ
∗ ∗  ∫we use the following trick.

, ,, ,
t t tS JZ J D D D e ρ ψ ψ ρ ψ η η ψη η ρ ψ ψ

∗ ∗ ∗ + + +∗ ∗    ≡  ∫ ……. (44)

If we then define

0 ,J, , , ,
0 , , SZ J D D D e ρ ψ ψ η ηη η ρ ψ ψ

∗ ∗ ∗ ∗    ≡  ∫
0 , , , , 't t tt tS D D Jρ ψ ψ η η ψ ψ ρ ρ ρ ψ η η ψ∗ ∗ ∗ ∗  ≡ + + + +  



( ) ( ) ( ) ( )1 , J, , , ,
t t

S D Lξρ ψ ψ η η ρψ ρψ ρψ ψ∗∗ ∗ ∗  ≡ +  

Then

, ,
0 0

exp , , , , |S

J
D D D e Z J

J d
ρ ψ ψ

η η

δ δ δρ ψ ψ η η
δ δη η

∗

∗

 ∗ ∗ 
∗ = = =

   = −    
∫
where the choice Dξ is clear and where we choose 

,x yD and 
,'x yD

to be of the form x yD − and invertible to make calculations easier 
e.g. 

.'x y x y x yD D Q− − −= = Let us define

, , ln , ,W J Z Jη η η η∗ ∗   ≡   
..… (45)

The it can be shown that , ,W J η η∗   contains exactly all the 
connected diagrams of , ,Z J η η∗   [1,15,16]. It is beyond the scope 
of this article to talk more about diagrams, but we shall discuss it 
together with the solution in a future paper.	

Averaging over gaussian distributions ρ

So far we have been averaging over all positive ρ in [ ]
0

SD e ρ
ρ ρ≥∫ . 

But what if we want to average only over gaussian ρ functions? The 
solution is the functional change of variables ( )ρ ρ δ η ρ→ = −
where ρ is the true atomic distribution; This substitution is 
good if we don’t care about N-dependence, if we don’t want 
N-dependence we should instead consider ( )ρ δ η ρ= ∆ −∆ . 
That is ( )x x xρ δ η ρ= ∆ −∆ …… (46)

where η is a positive function, our new random variable.

Since ρ and thus also xρ∆ is about the true density they are 
completely determined by the phases { }p p

ϕ . In this way we will get 

a probability distribution of all pϕ . Then the “volume” element 

Dρ is replaced by det x

y

D δρη
δη
 

×   
 

, that is

0
det x

y

D D
η

δρρ η
δη≥

 
→   

 
∫ ∫ …… (47)

2 (x )
x,y

ip y
p yx

D D e π
∧

⋅ −
−≡ ∫

2 ( )
, ,y,y

i p x q y
p q xx

B D eξ ξ π ⋅ + ⋅≡ ∫
1

, ( , )p qB inverseof the matrix B at p qξ ξ−

≡

Then for ( 2 )pi p z
z pp

e ψ πξ ξ
∧ − ⋅= ∑ with p( 2 )p pp p aψ ψ φ ψ π≡ − ⋅ ≡ − ⋅ : 

h ki
hh k p h p h k p k

p
B D D D e ψξ ξ

∧

+
∧

+− + −=∑
1 1 2 ( )

, ,
,

i p x q y
x y p q

p q
D B eξ ξ π− − ⋅ + ⋅= ∑ …… (39)

To get some idea let’s consider the simpler case x y x yD Qξ
− −= but 

still Lx x z x z zcL f D ξ−= + ∫ .

 Then the inverse of Q, i.e. Q-1reads

1 1 2 ( )ip x y
x y P

p
Q A e π− − ⋅ −

− = ∑
Then

( ) ( ) ( ) ( )2 3 41 1 1 1 11 1 1ln ...
2 3 4

I Q L Q L Q L Q L Q L− − − − −+ = − + − +

( ) 11
xx x x

Tr Q L Q L
−−

−
= ∫

1
0 0xx

Q L−= =∫

( ) ( ) ( )121 1

x,y y y z z y x y x z zz zx y
Tr Q L Q cL f D Q cL f Dξ ξ

−− −
− − −

−
= + +∫ ∫ ∫

( ) 1 1
h

12 | | cosh h h h p h p
ph

cf F A A A
F

ξ ϕ ψ − −
−

 
= = − 

 
∑



….. (40)

Where we omitted a term in equation (40) that does not depend on 

hϕ . In equation (40) we have used the identities

( ) ( )22
0

ip x z
x z x y p

p
D Q F k A e π− ⋅ −

− −= − − ≡∑


( )( )00 , 0p pA A p A= ≠ =
 

( )2| | pi p z
pz

p
e ψ πξ ξ

∧ − ⋅= ∑

( )1 cos 2x h h
h

L F h x
F

ϕ π
 

= + − ⋅ 
 

Finally, for ( )31Tr Q L−
we get (omitting the terms that don’t 

depend on hϕ )

( ) ( )31 2 1 1 1
2 2 2 2

13 | | cos 2p p h p h h h h h h
p h

Tr Q L fc A A A A F
F

ξ ϕ ψ− − − −
− −

 
= + − + 

 
∑

 

( )2

,

13 cos | |h k kh h k h k k h k
k ph

f c F A A
F

ϕ ψ ψ ξ ξ
∧ ∧

++ +

 
+ + − × 

 
∑

 

1 1 1
p p h p h kA A A− − −

− + + …… (41)

The terms ( )1 k
Tr Q L− ( )4k ≥ are of higher order in f and 

c. So we see that we obtain in this way a probability of the form 
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[ , , ] (cos( [ ] ) 1) 0p p
p

S ρ α β ϕ ρ ϕ
β
∂

= − − =
∂


…… (54)

Next observe that

1 1cos( [ ] ) cos(2 )
x

t
p p x p p

p p

p x
F F

ϕ ρ ϕ ρ π ϕ ρ η
 

− = ⋅ − ≡  
 

∫

1cos( [ ] ) cos(2 )p p p
x p

p x
F

δ ϕ ρ ϕ π ϕ
δρ

− = ⋅ −

,yx y
y

D Dξ ξρ ρΧ ≡ ∫ …… (55)

Since HL  in HL L fDξ≡ +  has now become redundant, we 

replace cL  by fDξ  in equation (51). We can also add inequality 
constraints for ρ  

0t Dρ ξ ≥

0f ≥ ….. (56)

and

0t Dξρ ρ ≥

0b ≥ ….. (57)

In this case the multipliers pα , pβ , f , b  are called KKT-
multipliers (KKT stands for Karush- Kuhn-Tucker). And we have a 
dependence [ ], , , , bS fρ α β≡  now on , , , ,f bρ α β

( ) [ ]2 ( ) 2

,
( ) ( ) b (cos( ) 1)t t t ip x y t

p x y P h h hx y
p h

S a D f D e F f Dξ πρ ξ ρ ξ ρ ρ ρ ξ α ρ ρ β ϕ ρ ϕ ρ ξ⋅ −≡ − − − + + − − − − − +∑ ∑∫  
..…. (58)

It follows from the above equation that we can impose (we suppose 

in this paper that friedel’s law is valid, that is h hF F− =  and 

h hϕ ϕ− = − ):

p pα α− =

h hβ β− =
We use the notation tA  to denote the transpose of A , and then 

Ct
p pC−= . We have to solve

0S
ρ

δ
δ

=

S
ρα

∂
=

∂

0S
ρβ

∂
=

∂

0S
f
∂

=
∂

0S
b
∂

=
∂ …… (59)

We find 

* *
*

12 2 2 2 0p p h h
p h h

S a a bD fD C
F

ξδ ρ ξ ρ ξ α ρ β η
δρ

= − + + + − − =∑ ∑

This gives (using *ρ  instead of ρ )

This can be calculated but we can avoid this added complexity if we 
remark that we could have started from the very beginning by using 
instead of ρ  the more complex form ( )δ η ρ∆ −∆ that is we replace 

Lρ by ( )Lδ η ρ∆ −∆ and so on. Replacing next the symbol η

by ρ , we then get

( )tt L Lρ δ ρ ρ→ ∆ −∆

( ) ( ) ,tt D Dξ ξρ ρ δ ρ ρ δ ρ ρ→ ∆ −∆ ∆ −∆ …… (48)

etc. In this way the former is now describing “point” particles. 
However, the whole use of functional integrals in QFT is to 
describe interactions among point particles. So we do not know 
if it is worth doing averages over those Gaussian “point” particles. 

We close this remark by giving two representations of the δ  

function. One is to represent ( )x xδ η ρ∆ −∆ by a gaussian with 
infinitesimal variance. The other very interesting representation is 

( ) ( ) [ ]0 0 0
2a b xJ ax J bx dxδ
π

∞− = ∫ . In our case it reads

( ) ( ) ( )0 00

2
x x x xkJ k J k dkδ ρ ρ ρ ρ

π
∞

∆ −∆ = ∆ ∆∫ ..… (49)

We can then first integrate over ρ and after that perform the 
integration over k, which is much easier.

Maximality with constraints

We saw in the foregoing sections that we had to maximize
t t[ ] b D c LS ξρ ρ ρ ρ= + . Let us analyze this further. We shall 

now start with 

t t[ ] ( ) ( ) b D c LtS a ξρ ρ ξ ρ ξ ρ ρ ρ= − − − + + ……. (50)

We will maximize this with the constraints 
22 2ip x

x Pe Fπρ ⋅ =∫
for all 0Ρ ≠ and [ ] ( 0)pϕ ρ ϕΡ Ρ= ∀ ≠ . Next observe that

[ ] COS( [ ] ) 1p p p pϕ ρ ϕ ϕ ρ ϕ= ↔ − = . We then use the 
method of Langrangian multipliers. Put now

2
2 2[ , , ] [ ] (cos( [ ] ) 1) |ip x

p p p p p
p p

S S e Fπρ α β ρ α ρ β ϕ ρ ϕ⋅
Χ

 ≡ − − − − − 
 ∑ ∑∫

…… (51)

The minus signs in equation (51) have been chosen so as to use later 
on the more general “KKT- multipliers”) and find the solutions 

* * *, ,ρ α βΡ Ρ for which [ , , ]S ρ α β is maximal (critical), that is 
solve the equations

[ , , ] 0Sδ ρ α β
δρ

=

[ , , ] 0
p

S
a

ρ α β∂
≡

∂


[ , , ] 0
p

S
b

ρ α β∂
≡

∂


……. (52)

Next

2 ( )[ , , ] 2 ( ) 2 2 cos( [ ] ) 0ip x y
x x x p y p p py

p p x

S a bD cL eξ πδ δρ α β ρ ξ ρ α ρ β ϕ ρ ϕ
δρ δρ

⋅ −

Χ

= − − + + + + − =∑ ∑∫

…… (53)

,

2 ( ) 2[ , , ] 0
x y

ip x y
x y p

p

S e Fπρ α β ρ ρ
α

⋅ −∂
= − =

∂ ∫
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the value of f as a function b. We now see that , ,p p fα β are of 

order ( )O a . If we would derive the value for b with the condition 

0S
b
∂

=
∂

then we will also see that b is of order ( )O a which 

gives a problem since we started with the assumption ( )a b>> . 

For this reason, we shall not impose the condition 0t Dξρ ρ ≥ . 
The bare minimum is the calculation of all the Lagrange multipliers 

pα  and one or more Lagrange multipliers hβ . All the multipliers 

depend strongly on the phase invariants ( )p pn ϕ ψ− ( )1,2n =
The situation becomes even more interesting if one now calculates  

, , ,S fρ α β∗ ∗ ∗ ∗   and this is good news. We think that this 
last model is very exciting (perhaps it can even be used to construct 
the exact ρ  from any given ξ ). We will study all this in a separate 

paper. Now , , ,S fρ α β∗ ∗ ∗   can be written in a short way as  

( ) [ ]( )'', , , , , ,
t

S f S f Sρ α β ρ α β ρ ρ ρ ρ ρ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗   = + − −   
…… (70)

Since ' , , , 0S fρ α β∗ ∗ ∗  ≡  and moreover one can verify easily that 

[ ] ( )2''
,

2 ip x y
x y

S be πρ ⋅ −= is a constant in ρ .

CONCLUSION

To calculate a probability distribution prob ( )hϕ for some phase hϕ  
one chooses one of the models discussed in this paper and also some 
set H h∋ of reciprocal vectors containing h. Then one calculates 

{ }( )Pr p p H
ϕ

∈
according to the chosen model. After that one calculates 

the marginal distribution ( ) { }( )Prh p h p p p
prob dϕ ϕ ϕ≠= ∏∫ . Always 

choose structural information ξ  e.g. the fixing of the origin

( )x x aξ δ∝ − . All models should lead to the solution of the 
phase problem.

In a future paper (II) we shall study in detail all different models 
but especially the fermionic model and the one of maximality with 
constraints. Especially we shall discuss the most general fermionic 
model , ,S ρ ψ ψ∗   and we shall talk about the technique of the 

diagrams to calculate , , ln , ,W J Z Jη η η η∗ ∗   =    .

For the very interesting model of maximality with constraints 
we shall also add the KKT condition ρ ξ≥ with some KKT 
multiplier 0γ ≥ . Finally, in a last paper (III or IV) we shall test the 
theory on simulated crystal structures. 

We shall also discuss which strategy to use in case of available 
space group information. Our paper treated only the space P1 
(satisfying Friedel’s law). Our use of functional integration and 
calculus is much more powerful than the other methods of phase 
determination, be it probabilistic or direct space methods and 
is valid for any number N of atoms. We shall also try to discuss 
models for which the formulas will depend N.
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12 & 2 2 2h p p
h Ph

D a fD D aI bD C
F
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and thus

1 1
h h
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 
∑
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1 1 1 1 1 1 1 ...B B B
A B A A A A A A

= − + −
+ ….. (62)

2 2A aI bDξ= −

2 p p
p

B Cα=∑ ….. (63)

Then,

1 1 1 1 1 1 1 ...D B B B
A A A A A A

− = − + +
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( ) 1
1

11 12 aA b D D I
b

ξξ −
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 
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2

21 3 412 ba I D D O a O a
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1111 2 aA bD D I

b
ξξ

−
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 

1 1 1
2
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b b
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ξ
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D

ξ −
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for a b>> we find

( ) ( )1 1 212 2 h h p p
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F

ξρ ξ ξ ξ β η α ξ−∗ − −  
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h

S
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h
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ρ η =

( ) ( ) ( )12 2 2
t t t t

p p h h h h h h
p h

C a F b D f D
F

ξα ξ η β ξ η η ξ η ξ+ = − + −∑ ….. (67)

Next 0
p

S
α
∂

=
∂

will give (note { },A B AB BA≡ + )

( ) { } { }2

2 2 2

,,11 cosˆ2 ˆ ˆ ˆ4 2 2

tt
ppp

p p p p
p pp p p

b D Cf D CFa
F

ξξ ξξ ξ
α β ϕ ψ

ξξ ξ ξ

 
 = − − − + +  
 

….. (68)

From 0S
f
∂

=
∂
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( ) ( )
( )

1 2 2 2
tt t

h h p ph p
h

t

f D C D a D b D D
F

D D

ξξβ η ξ α ξ ξ ξ ξ ξ ξ

ξ ξ

= + − −∑ ∑
…… (69)
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