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Abstract

This paper deals with ICff ie)—obstacle problems of the system of N
partial differential equations

n

ZDi(af‘(w,Du(x))) = ZDiﬂo‘(x), a=1,---N.
i=1 i=1

We show that, for any fixed g € {1,---, N}, higher integrability of the
datum 67 = max{¢?®, 05} forces the component u® of solutions u to
have higher integrability as well, provided we assume suitable ellipticity
and growth conditions on af'.
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1 Introduction and Statement of Result

In a recent paper [1], Leonetti and Petricca considered the system of N partial
differential equations

Xn:Di(af‘(:)s,Du(x))) =0,2€Q, a=1,2,---,N. (1.1)

i=1
Under the boundary condition

u(z) = u.(z), = €99, (1.2)
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the authors showed that higher integrability of the boundary datum w, forces
solutions u to have higher integrability as well, provided a{ satisfy suitable
ellipticity and growth conditions. Among all the results, they obtained a the-
orem as follows, see [1, Theorem 1.3].

Theorem 1.1 Let u € u, + Wy (2 RY) verify

/ Z Z (z, Du(x))Dip®(x)dz = 0, Ve € W) (Q: RN) (1.3)

i=1 a=1

under growth condition
lag (2, 2)] < (14 [z}, Vae{l,---,N} (1.4)

and monotonicity condition

I;Z Zza SZ (3;’2))(22‘?‘—5;1)’ VOKE{L"',N}. (15)
i=1 i=1
Then
U € Uy + Lweak(Q; RN)’
where .
PP
t=—,
p—"bp

with . B

0 <b< min %~ b and b<£.

i=Lon g p*

In this paper, we consider a more general problem. We refer the reader
to [1] for the notations and symbols used in this paper. Let us consider the
following system of NV partial differential equations

> Dy(af(z, Du(x ZDF“ a=1,---,N, (1.6)
1=1

and suppose that the Carathéodory functions aff(z,z) : @ x R" — R sat-
isfy the growth condition (1.4) and the monotonicity condition (1.5). Let

= (@', -+, ¢¥"N) be any vector in ©Q with values in (R U {£oo})" and
6 € WL RY) such that

0% = max{y®, 0°} € 6° + Wo'(Q), Va e {l,---,N}, ¢ >pi.  (L7)

We introduce

IC (QRN) {ver(’”(QRN) v* > ae,a=1,--- N, andvE@—l—W(]l’(pi)(Q;RN)}.

The main theorem of this paper is the following theorem.
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Theorem 1.2 Let ¢; € (p;, +00), i =1,2,---,n, b is any number verifying

0<b< min L—P (1.8)

i=1,-n q;

the vectors W and 0 satisfy (1.7), F* € L%(Q), t=1,---,n,a=1,---,N,
andp <n. Letu € IC,%)(Q; R™) such that

/Q i > af(z, Du(x))(Dw®(x) — Diu®(x))dx

=1 a;l (19)

For any p € {1,---, N}, we have

(i) b< ﬁ% =uf el + L, (), wheret = %;

if (5)* < 1£nir<1 {1 — %}’ then
(11) b= ﬁﬂ* = =0 ¢ LY(Q) for somen > 1;
(i) & < b < :nlunn% = uf € 07 + L>(Q).

Note that for the special case when F*(z) =0,i=1,---,n,a=1,--- N
and Y*(z) = —oo, « = 1,---, N, the conditions in Theorem 1.2 are the same
as the ones in Theorem 1.1. In this time, the result (i) of Theorem 1.2 is the
same as Theorem 1.1. Thus Theorem 1.2 can be regarded as a generalization
of Theorem 1.1. For some other results related to anisotropic elliptic equations
and systems, we refer the reader to [2-7].

In the proof of Theorem 1.2 we will used the following lemma, see |7,
Proposition 2.2].

Lemma 1.1 Let v € W()l’(pi)(Q), and let M > 0,v > 0, and kg > 0. Let for
every k > ko,

Pidg < M‘{M > k}‘vﬁ/ﬁ*.

/{ i | D;v

lv|>k} i=1
Then the following assertions hold:
(i) if v < 1, then v € L2/1=7(Q);

weak

(ii) if v = 1, then there exists n > 0 such that e € L1(Q);
(111) if v > 1, then v € L™®(Q).

2 Proof of Theorem 1.1

Let us fix 8 € {1,---,N} and we take v = (u',---, v~ 1 0% WPl ... ul),
where, for L > 0, we have defined

o8 = 08 4 Ty (u — 07).
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Now v € IC(pl (Q RN). Indeed, we need only to show that v® > ¢# and
v e 08+ e Wy (pi) (). For the case u” — 0% < —L, we have Ty (u” — %) =
—L, then v# = 0% — L > v# > 4P for the case v’ — 07 > —L, we have
v? = 08 + min{k, v’ — 07} > min{0? v’} > ¢P. Since v’ = 07 = 6° on 9,
then v® = 62 = 0% on 9.

It is easy to see that

VP — P = (Qf —uf —Tp(0%) — uﬁ) . 1{|uﬁ_95‘2L} (2.1)

and
D” — D = (D6 = Div”) - 1o o151y, (2.2)
where 1, 5 gs.o ;4 1s the characteristic function for the set {|u®?—6°| > L}. By

inserting the test function v into (1.9) and noticing (2.1) and (2.2), we derive

Z/Iu‘* - Z (z, Du)(D;#° — D;u”)dx
> Z/

The coercivity condition (1.5) allows us to write

(2.3)
5(D;0° — DuP)d.

{luf—6%|>L} Ei

3 D’ — D;0%|Pid
V;/{uﬁ—efbm‘ ! [
< p —d? (DB — D.O°
< /{ \uﬁ—efgL};(al (z, Du) — d®(x, D8,)) - (D’ — D,6%)dx,

which together with (2.3) implies

A% D’ — D,6°
VZ; /{uﬁ—efu} |Diu *
— - B(r. DO - (D’ — D:6%)d

Z~/{|u/3 0%1>1} @i (@, Db.) - (Diu 0. )de (2.4)

Z / W’ — D,6%)d
{Jub— 66\>L}

= Il —I—IQ

pidx

IN

We now use anisotropic growth (1.4) and Young inequality obtaining
L < / (14 |Di6.])" " D — D;6%|d
o< ey sy (11D 1Dt~ D2l
< O / (1+ |D6,P)d .
<o z oy (1 1D (25)

| D’ — D;6°

Pidg,
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and

L] < / F||Dii® — D,6°|d
| 2 CZ ‘5 0’8|>L} || u *| x

< cC(e /
<c ; "

ooy

\Dju® — D;6PPida.

(2.6)
Combining (2.4)-(2.6) and taking e small enough such that 2ce < ¥ we arrive

1 {luB—0l|>1}

at
Z / D — Df?|Pide
{juf—0%|>L} (2.7)
< c / 1+ Db + |21
< CY [ o (1 DO 4 F P
where C' is a constant depends only on ¢, 7, py,---,p, and n. Let t; be such
that
pi <t < g
We use the Holder inequality as follows
14 |D;0,|)Pidx
/{Iuﬁ—ef|>L}( | ) (2.8)

1-Pi
< 1+ |D;b.|)"d —0%)>L} "
< ([ 0120 ) o — 07 = L

We would like that the exponent b =1- ﬂ does not depend on i. To this aim,
we need only to choose t; = {4, ,n. Since we need p; < t; < ¢;, we
require that b satisfies (1.8). Thus (2.8) becomes

— 07 >

L) dx)
Similarly,

/ _ti t_l
[ R < (/ ) \Fiﬁ|pi1dx>
{‘uﬁ_e*‘ZL} {\u5—9*|2L}

/{|uﬁ—e‘*|>L}(1 D6 < A (2.9)

where

]

=%
{ju” =0 > L} ™

(2.10)
where

]

pi—1 dx)

B, = ( / T
{luf—67|>L}
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Substituting (2.9) and (2.10) into (2.8) we arrive at

{1 02> 13- (2.10)

n uP = D.espi . ' '
;/{|uﬁ—95>L} |Dzu Dze* dx < C;(Az + Bz)

Theorem 1.2 follows from Lemma 1.1.
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