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ABSTRACT

Convex analysis

In this paper we present some Hermite-Hadamard and Fejér types inequalities as counterpart of the developed for
functions. We generalize results given for $m$-convex functions in Bracamontes, Giménez, Merentes, & Vivas,
2016, Dragomir & Toader, Some inequalities for m-convex functions, 1993 and Ozdemir, Avci, & Set, 2010 among
them, right-hand side of Hermite-Hadamard type and Fejér type inequalities.
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Introduction

Many inequalities have been established for convex functions and
one of most famous is the Hermite-Hadamard inequality, due to
the rich geometrical significance and applications see Fejér (1906),
Niculescu & Persson (2006).

In 1980, K. Nikodem Nikodem, stated the line of investigation
on stochastic convexity and later, several types of stochastic
process have been studied based in the classical convex notions
for functions, Barriez, Gonzalez, Merentes, & Moros, (2015)
Hudzik & Maligranda, (1994) Kotrys, Remarks on strongly convex
stochastic processes, (2012) Kotrys, (2012), Kotrys, (2014), Kotrys,
(2015), Maksa & Palés, (2011), Matkowski & Swiatkowski, (1993).

Gh. Toader in (Toader, 1984), introduced the concept of m-convex
functions as the solutions of the functional inequality:

f(tx+m(1—t)y)Stf(x)+m(1—t)f(y)
Where £:[0,1] =R and m€[0,1] is given.

In 1993, S. S. Dragomir and Gh. Toader Dragomir & Toader,
Some inequalities for m-convex functions, 1993 demonstrated
inequalities of Jensen type and the Hermite-Hadamard type for
these functions.

Some interesting and important inequalities for m-convex
functions were developed by M.K. Bakula et al. Bakula, Pecarié, &
Ribi¢ié, (2006). Also, in 2010 M. E. Ozdemir et al. Ozdemir, Avci,
& Set, 2010 gave some estimates to the righthand of Hermite-
Hadamard inequality for functions whose absolute values of
second derivatives raised to positive real power are m-convex.

On the order hand, in the same year, Bo-Yan Xi et al. introduce
concepts of the m-convex and (@,m)-geometrically convex and
establish some inequalities of Hermite-Hadamard type for these
classes of functions. Xi, Bai & Qi, 2012.

In Venezuela, some researchers have developed numerous works on
this topic. Bracamontes, Giménez, Merentes, & Vivas, 2016, Lara,
Rosales, & Sanchez, New properties of m-convex functions, 2015,
Lara, Merentes, Quintero, & Rosales, On approximate m-convexity
of sub-homogeneous functions, 2016, Lara, Merentes, Quintero,
& Rosales, Properties of Jensen m-convex functions, 2016, Lara,
Merentes, Quintero, & Rosales, 2017, Lara, Quintero, & Rosales,
2017, Lara, Matkowski, Merentes, Quintero, & Wrébel, 2017,
Lara, Rosales, & Sanchez, 2018, Lara, Merentes, Pales, Quintero,
& Rosales, 2018, Lara, Merentes, Quintero, & Rosales, 2019.

Recently, S. Ozcan in Ozcan, 2019 introduced the concepts of
m-convex and (&, m)-convex stochastic process, as well as some
Hermite-Hadamard type inequalities for the first derivative were

established.

In this paper, some Hermite-Hadamard and Féjer type inequalities
of m-convex functions for m-convex presented in Dragomir, 2002,
Lara, Rosales, & Sanchez, 2015 and Ozdemir, Avci, & Set, 2010

are develop.
PRELIMINARIES

Let (2,.4,P) be a probability space. A function X:Q—>R is a random
variable if it is A -measurable. A function X:IxQ—R, where ICR is
an interval, is a stochastic process if for every t€l the function X(t) is
a random variable.
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Definition 2.1. A stochastic process X:[xQ—R is:

1) Jensen-convex if, for every a,b e the following inequality
is satisfied:

x(a;bjﬁ D0 () m

2) conwex if, for every a,b€l, t€(0,1), the following inequality
is tales place:

x(ta+(1—t)b)StX(a)+(1—t)X(b),(a.e.) (2)

Also, we say that a stochastic process X:I*Q—R is:

1) continuous in probability in the interval I, if for all t €I we
have

lim_, E[X(1)]-X(4) =0,

Where p_lim denotes the limit in probability.

2) Mean-square continuous in the interval I, if for all t,El
lim,.,, E[ X ()]-X (,)" =0,

Whre E [X(t)]denotes the expectation value of the random variable
X(t)

3) mean-square differentiable at a point t €l if there is a random
variable X' (t):[xQ—R:
X(t)-X(t
xW=p_ lim, , M
v -,

Note that mean-square continuity implies continuity in probability,
but the converse is not true.

Fixed X:IxQQ—R a stochastic process with E [X(t)? ] < o for all
t€l, [a,b]€I, a=t_0<t_1<::-t_n=b a partition of [a,b] and ®@_ke&[t_
(k-1),t_k]forallk=1,--,n, a random variable Y:QQ—R is called mean-
square integral of the process X on [a,b], if for a normal sequence of
partitions of the interval [a,b] and for all ®_ke[t_(k-1),t_k ] for all

k=1,-+-,n, we have:

hmE{ZX

n—o =

t, tk_l)—Y(.)z} =0.
In such case, we write
b
¥()=[X(S)ds,(a.0)

For the existence of the mean-square integral is enough to assume
the mean-square continuity of the stochastic process x. Basic
properties of the mean-square integral can be read in (Sobczyk,

1991).

Now, in (Ozcan, 2019) was introduced the definition of m-convex
stochastic process.

Definition 2.2. The mean-square stc chastic process X: [xQ—R is
said to be m-convex, where m € [0,1] and 1=[0,c], if for every a, bEI
and t€[0,1], we have:

X(ta+m(1-1)b)<tX (a)+m(1-1) X(b),(a.e) 3)

Denote by S_m (c) the class of the m-convex stochastic process on

[xQ for which X (0,-)<0.

Remark 2.3. From the Definition 2.2. We have the following
immediate results:

i. If a, b=0 then X(0,-)<0
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ii. For m=1, we recapture the concept of convex stochastic
process (Nikodem, 1980) defined on IxQ and for m=0, we get the
concept of starshape stochastic process on IxQ. We recall that
X:IxQ—R is starsharped if

X(ta)StX(a),(a.e) 4
for all t€[0, 1]y a€L.
Due to the Remark 2.3. you have the following lemma:
Lemma 2.4. If X is in the class S_m (c), them it is starshaped.
Proof. For any a€ I. and te[0,1], we have:

X(ta)=X(ta+m(1-1)0)<tX (a)+m(1-1) X (0)<iX (a) (5)
Almost everywhere.

Lemma 2.5. If X is a m-convex stochastic process and 0<n<m<I,
then X is n- convex.

Proof. If a,b€l and t€[0,1], then:

X(tafn(lft)b):X(taer(lft)%bjStX(a)+m(17t)X(%bj
:tx(a)+m(1_t)(£]x(b)

m
= tX(a)+m(1-t)X(b) Almost everywhere and the lemma are proved.
MAIN RESULT

In order to prove the Hermite-Hadamard inequality for m-convex
stochastic processes we establish the following results.

Theorem 3.1. Let X: IxQ—R be a stochastic process non negative,
m-convex mean-square integrable stochastic process, with me[0,1]
. For every aq.bel, a<b the following inequality is satisfied almost
everywhere:

X(a+2mbjsmbl_a”j-bX(S)dSSX(a)+2mX(b)’ ©

Proof. Let us calculate the righthand side of (6). Since X is a

m-convex stochastic process, we have:
1 1 1
[ X (ta+m(1—t)b)t < [1X (a)dt+ [m(1-t) X (b)at
0 0 0

X(a)+mX(b)
2

Making a change of variables= ta+tm(1-t)b, in the integral:

j X(s

mb

1
[X(ta+m(1-t)b)dt =
0 a—mb

1 mb
—— ;!.X(s)ds,(a.e)

The right-hand side of inequality (6) is obtained.

On the other hand, to demostrate the left side of the inequality (6),
the following transformation is performed:

1 mb 1 (mb-+a)
-[X(S)dszmba{ j X (s))ds, + J. X(s,)ds, |,(a.e)

mb—a a (mb+a)/2

mb + a mb — a

and

Making the change of variable ¢ y

1 2 2
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mb + a mb — a
s = i , we have:
1 2 5
1 ™ 1 (mb+a)/2 b
X ds = X d. X d. J(a.
mb—a -!: (s)ds mb—a .I (s,)ds, +(mbl[a)/2 (5,)ds, |.(a.e)

:1D[X(mb+a_tmb—a]+X(mb+a_Hmb—ajjdt}
203 2 2 2 2
1
S_[X(mb+ajdt=X[mb+aj,
0 2 2

Almost everywhere. Then,

1 1

X(ﬁ = ]gﬁ —[x(se(oe)

We will now point out some new results of the Hermite-Hadamard

type inequalities for m-convex stochastic process. The purpose of
this section is establish some new inequalities like those given in
(Alomari, Darus, & Dragomir, 2009) and (Dragomir, 2002), but

now for m-convex stochastic process.

Theorem 3.2. Let X: [xQ2—R be a mean-square stochastic process on 1,
a,bel with a<b and I=[0,%0). If X is m-convex stochastic process me(0,1]
then one has the inequality:

X(a>+X(%> X®)+X(%)

ij(t)dtSmin > , . 7

1
b—a

Almost everywhere.

Proof. Since X is a m-convex stochastic process:
X(ta+m(l—t)b) <tX(a)+m(1-t) X (b),(ae)
For all, e I, which gives

X(ta+(l—t)a)StX(b)+m(1—t)X(%j,(a.e)

For all 7 €[0,1]. Integrating on [0,1] we obtain:
b
| X (b)+m(1-t)X|—
[X(ta+(1-1)b)dt < : (’”)
tX(b)+m(1—z)X(%j

2

.(a.e)

JLX(tb+(1—t)a)dtS ,(a.e)

However,
b

ix(m+(1—z)b)dz=iX(zb+(1—t)a)dr=ﬁ£x(s)ds,(a.e)

and the result is obtained.

Theorem 3.3. Let X: [xQ2—R be a mean-square stochastic process on I,
a,bel with a<b and I=[0,}. If X is m-convex stochastic process me(0,1],
then one has the inequality:

b X(u)+mX(lj
X[a+bj3 1 J' m du
2 b—a 2

a
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Proof. By the m-convexity of the stochastic process X, we have that

(2] e

2 m

If we choose u=tat+ (1-t)b,v=(1-t) a+tb, we deduce:

X(ﬂj < ;_j’X(nH(lt)b)dt+ij((]_t)WfHﬂdet},(a.e)

2 0

For all t€[0,1]. Integrating over t€[0,1], we get:

X(Mj <;_'][X(ta+(1—t)b)dt+mj.X((lt)njmjjdt},(a.e)

2

Almost everywhere for all #€[0,1], Taking into account that:

b

JX(S)ds,(a.e)

Sy S—

X(ta+(1—t)b)a7t:b1

—a
and

b
' a b m [ 14 u
'([X(tm+(l—t)mjdt = b2 !X(u)du = 2 :!.X(m)du,(a.e)
We deduce from (8) that

X(a;bjgé{biaTX(u)dqub'i’an(%jdu}

a

, X(u)+mX(:;J

1
:b—aI 2

a

u,(a.e)

By the m-convexity of the stochastic process X, from Definition
2.2. we have the following immediate results:

%{X(m(l—t)b)*m)(((l_t)—amyﬂ

S[tX(a)+m(l—t)X(£j+m(l—t)X(£H ©

m m
b
(-1 X| =
o (1-0) (L |.

Almost everywhere, for all t€[0,1].

Integrating (9) over t on [0,1]., we deduce:

, X(u)+mX(1) X(a)+mx(ﬁ) mX(£j+m2X(izj
1 m 1 m m m
—J. du <— +
b—as 2 2 2 2

Almost everywhere. By similar argument we can state:

X(u)+mX(::J »

1 b
b—a! 2

g;{x(a)+X(b)+2m(X(;]+X[iD+’"z [X[nj)”(;jm

And the proof is completed.

In order to prove the following inequalities, we need lemma bellow,
demostrated in (Barraez, Gonzalez, Merentes, & Moros, 2015).
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Lemma 3.4. Let X: [xQ—R be a stochastic process mean-square
differentiable on I, a,bel with a<b. If X (t) is mean-square integrable on
[a,b], then the following equality holds almost everywhere:

ﬁ:f)((u)du:

Theorem 3.5. Let X: [xQ—R be a stochastic process mean-square
differentiable on I, a,bel with a<b. If |X (t)|is a m-convex stochastic
process, them the following inequality holds almost everywhere:

2

b_za) :[t(l—z)X(ta+(1—t)b)dt.

X(a)+mX(b) B
2

an

X (a)+X(b)
2

ooy | KN ()
12

1 b
——— | X(t)dt| <
bfa'[ © 2

Proof. First suppose that g=1. From Lemma 3.4. we have:

IX(a) +2mX(b) - 1 _ [x@a

(b_za)z j;t(l—t)|X(ta+(1—t)b)|dt

Since |X]| is m -convex stochastic process we know that for any

te[0,1]:
o)

t‘X +m (1-1)

)

(10)

IN

X (ta+(1-2)b)| <] X (a)|+ m(1-1) (a.e)

Therefore,

2

X (a)+ mX(b) _ij(t)dt - (b-a)
2 b-a? a

1
J't
0

]

|
_(b-af ‘x(a)\jﬂ (1—t)dt+mX(

2

j't(l—t)zdt

b
m

Almost everywhere, which complete the proof for this case.

Suppose now that g >1. Using Lemma 3.4. and the Hoélder's
inequality for q, p=q/(q-1), we obtain:

:I;t(l—t)‘X(ta+(l—t)b)‘dt

L

SCINE

SH(Z—%)dt}q ﬁ(t—tz)‘X(taJr(l—t)b)‘q dt};,

0

tz)i‘X(ta-i—(l—t)b)‘dt

o:_._.

almost everywhere. Since |X'|9is m-convex stochastic process we

know that fOI‘ every tE[O, 1]
( j
m

X (ta+(1-)b) <t|x (a)f +m(1-1)

(ae)

Hence, from (10) and (11) we obtain:
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@D 1

2“ } ' 'Htfzz\x(zm(l—z)b)‘” d,]’

ol o]

‘ X (a)+X(b)

1 b
-—— | X(¢)d
2 b—a!. t) 1~

2r @ 1
s(b_za) L[(t—tz)dt:l .{j;(t—tz){tX(a)um(l—t)
_-a (1) [Jx @ +mxor T
T2 (8) { 12 }

_(b=a)'| X (a)f +m|x ) g
T2 2

almost everywhere, which completes the proof.

Remark 3.6. If in Theorem 3.5 we choose m=1 and if |X (t,-)|<K

on I, we obtain:

which is the right-hand side of (10).

Theorem 3.7. Let X: 1 XQ—R be a stochastic process mean-
square differentiable on I, a,bel with a<b. If |X]? is a m-convex

stochastic process for some fixed ¢>1 and me (0,1], then the following
inequality holds: |
” " ")

‘X(a)‘ +m X[;)

X (0l r(1+p) [

T

Proof. From Lemma 3.4. and using the well-know Hoélder's

| X (a +m\X(b)\ 1
2

Almost everywhere, where p=q/(q-1).

inequality we have successively almost everywhere:
2

|X@+mx®b) 1
| 2

j X(t)dt| <

.lft 1=1)|X (ta+(1-1)b)|dt
0

_(b - U(t t)"dt]p.|X(a)|qitdt
(o]

(b—a)2 2’1’“01’(14— p)

> A3
> p

Almost everywhere, where 1/p+1/q=1. We note that, the Beta and

Gamma function
1

B(x.)=]

£ (1-1)" dr, %y>0,
0

1
r(x) = je”t“dt, x>0,

0
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And used to evaluate the integral

P

(t—tz) dt = jtp(l—t)Pdt = B(p+1,p+1),

ct—

Where
r(l]r(p+l)
91-2(p+1) 2
)
> p

and I'(1/2)=Vmr, which completes the proof.

,6’(p+l p+1)

Corollary 3.8. With the above assumptions give that |X" (t,-)| <K on
[a,b] and 0<m<1, we have the inequality almost everywhere:

X (a)+ X (0)
o2

r(1+p)
&

Corollary 3.9. From Theorem 3.5. and 3.7. we have the inequality for
g>1:

1 (b-a) Lm o
b—a-[X(t)dtSk 3 ( j

2

b
IX(a)erX(b)_bl jX(t)dtSmin{klkZ}’(a'e)
—a
Where
. e
(b-ay| ¥ () +mX(Z)
= = > ,(a.e)
and
» q b .
B e ),
k2=(b a) | r(1+p) m ,(a.e)

Gl 7
) p

Theorem 3.10. With the assumptions of Theorem 3.7 we have the
following inequality almost everywhere:

w sU);)Z{X"(a,)HM(Hq)X"(ZJ

1

:

=

1 b
—E‘[X(t,)dt

Proof. From Lemma 3.4. and Holder inequality, we obtain:

|X(a);><<b) L fxoa

(b_z")z jt(l—t)|X(ta+(l—t)b)|q dt

0

~a) Ur”dt] [i’l t) |X (ta+(1- t)b)| dt

a)f +m(1+q)‘X[’[:J‘

(g+1)(q+2)

< -

IA
—
>
S~
©
TN
[SY ————
~
=
S
N~
S =

Almost everywhere. Since,

. 1) . 1)y 1
lim| — | =land lim|—— | =—,
oo\ 1+ p 1\ 1+ p 2
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We have,

1
11 )
= — 1 1 .
2(1+pj <Lge(l)
Hence, for q€(1,)

1
q:|q
b

Theorem 3.11. Let X: [xQQ—R be a stochastic proce ss mean-square
differentiable On I, a, b € I with a<b. If |X'|”qis a m-convex
stochastic process for some fixed g>1 and m €(0,1], then the

|X@+X®) 1
| 2 b-a

_bf X (t)dt

<(b a) {|X(a)| +m(1+q)‘ [Zj

almost everywhere.

following inequality holds:

X(a)+X(b)_1j-X(t)dt

(b—a)’ e 2
5 hoa) S {ZX(a) +m(1+q)X( j

AHE
m b

Proof. From Lemma 3.4. and the well-known power-mean inequality,
we obtain:

almost everywhere.

|X(a>;><<b>_b1ajx(t)dt

S@it(l—t)|)((ta+(l—t)b)|dt

O a) Utdt} qUt(l—t)P((mHl_t)b)rjt

00 (I fdtj [I H1-9]x (f“(l‘t)b)'q]l
0 0 q
(b a) Utdt] q{j-,(l—t)q {1|X(a)|q +m(l—t)X(£jthDl
0 ; '
b\ i é
() fra-o “”J
bj]

Gl “) [Jtdt] [|X(a)|"jz2(1—t)wz+m

<

|X@)|" +m

1
__ |x
(g+2)(qa+3)

)

_(b-a) (7) 2
2 (2) [(¢+)@+2)@+3)

_(b-ay 2 . )
T ((q+l)(q+2)(q+3)J [2|X(a)| +m(q+1)

Almost everywhere.

1

Since [ 2 J;, <1, q€[1,%0) we obtain

(g+1)(q+2)(q+3)

IX(a)erX(b)_ 1aIX(t)dt

With completes the proof.
Remark 3.12. From Theorem 3.7. - 3.11., we have:

<min{E,,E,,E,},(a.c)

|X(a)-2kX(b) S,

<min{E,,E,,E,},(a.e)

Where:

| 1

B . b\ )
2 X X| —
Elz(b_”) r(1+p) @) +m‘ (m) J(ae)

8 3 2
=+
r(z) ’
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SR

q

|X@|" +m(q+1)

)

2 2

q

Q=

b
2 2|X(a)|q+m(q+1)X(—)
E :(b—a) " ,(a.e)

} 4 2

In Fejér, 1906, L. Fejér gives a generalization of (6). Now, we shall
present the definition of Fejér inequality for convex stochastic
processes.

Theorem 3.13. Let X:IxQ—>R be a non-negative convex mean-square
integrable stochastic process. For every a,bel with a<b, the following
inequality is satisfied almost everywhere:

[“bij t)dt<—jx
< X@*X(b) (a)gx(b) [ (o,

(12)

Where Y: [a,b]x©Q2—R is a non-negative mean-square integrable stochastic

process, symmetric with respect to (a+b)/2 that is, Y (a+b—tv)=Y(1,v).

The following establishes some results that represent the
counterpart of the results presented by M. Bracamonte et al. in
(Bracamontes, Giménez, Merentes, & Vivas, 2016) for m-convex
stochastic processes:

Theorem 3.14. Let X:[0,)xQ2—R be a m-convex mean-square
integral stochastic process with me[0,1]. For every a,bel with a<b, and
Y:[a,b]xQ—R is a nonnegative mean-square integrable stochastic process,
symmetric with respect to (a+b)/2, then the following inequality is satisfied
almost everywhere:

: X(a)+X(b) ¢ b—t
! XY () dt< : j (b - aj}/(t) dt

EROROIIEEE

Proof. Since Y is a non negative mean-square integrable stochastic
processes on [a,b]EQ and symmetric with respect to (a+b)/2, then:

IX(t)Y(t)dt:%HX(t)Y
:%ﬁX(t)+X(a+b—t)}Y(t)dt

£ REERIRE I

Almost everywhere. Hence, the m-convexity of X implies:

:[X(t)Y(t)dt
R R
Mj(b ZJY(t)dHZ{ (%) ( HT( }V(t)dt
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almost everywhere and the proof is complete.

Remark 3.15. Notice that if we make m=1 in (13) we get the right-
hand side of inequality (12) that is:

j‘X(t)Y(t)dt swim)dz,(a.e)

In the following, a bound is obtained for the lefthand side of
inequality (12) for m-convex stochastic processes.

Theorem 3.16. Let X: [0,%0)xQ—R be a m-convex mean-square
integrable stochastic process in [a,b] with 0<a<b and me(0,1). For every
be(0,0) 0<a<b, and X:[a,b]*xQ2—R is a nonnegative meansquare
integrable stochastic process, symmetric with respect to ((a+b))2, then the
following inequality is satisfied almost everywhere:

X(a;b ,I[Y(t,)dt < %ij(t,)Y(t,)dt+%jX(é,jY(r,)dt

Proof. The m-convexity of the stochastic process X implies that

e e LN (e

1% m t
=—|X(a+b—-t)Y(t)dt+— | X| — |Y(t)dt
ess-poss2fa{ o
Almost everywhere. Now, X is symmetrical then:

1} m t
_E!X(a+b—t)Y(a+b—t)dt+3£X(ZjY(t)dt

1} m t
=—[x()Y(y)dt+—[ x| = |¥(¢)dt,
HrroaZfx( Lo
Which proves the result.
Remark 3.17. If m=1 in Theorem 3.16 we obtain:

X(‘”bjjy t)dz<jX

Which is the left-hand side of (12).

(t)dt,(a.e)

Now, we present a generalization of (12). First, we prove the
following result:

Lemma 3.18. Let X:[0,50)xQ2— R be a m-convex mean-square integrable
stochastic process with me(0,1). For every € [a,b]c[0,0)t, there is a=0_
t€[0,1], such that the following inequality holds almost everywhere:

X(a+bt)ﬁm(la){X(a]+X[bH+a[X(a)+X(b)]X(t)(14)
m m
Proof. Since any t€[a,b] can be written as t=0+(1-a)b, for some

a€l0, I]J and a+b-t=a+b-0a{1-a)b=(1-a)a+ab, we have:

X(a+b—t):X((l—a)a+ab):m(l—a)()([%)+X(%J]+a(z\’(a)+x(b))
fonwrat-on(2)
- m(l—a)[X(%j+X(%D+a(X(a)+X(b))
[ (aa+(1-a)p)]
:m(l—a)(X[le+X[ij}+a(X(a)+X(b))—X(t),
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Almost everywhere.
Theorem 3.19. Under the same hypotheses of Theorem 3.14, the

following inequality holds almost everywhere:

IX(t)Y(t)dts{%[X( j+X(mﬂ X(a)“LX(b)}jY (t)dr

Proof. By the symmetry of Y with respect to ((a+b))2 and Lemma
3.18:

[x (O @dt= %jx(a +b—1)Y(a+b-t)dt +le(z)Y(t)dt

a

:%:[X(cwb—t)( {)de+~ jx ()

- %j‘{m(l —a){X(%} + X(%H ra X (a)+X()] —X(t)}Y(t)dt

a

% j X(©)Y()dt

g{%{x(m}rx(mﬂ M}IY(t)dt

Almost everywhere.
Remark 3.20. Notice that if m=1 in Theorem 3.19, we indeed get:

j X(t
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