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ABSTRACT
This paper presents a comprehensive stochastic framework for modeling the Probability Mass Function (PMF) of 
prime gaps, focusing on the existence and characterization of a stationary distribution. Through theoretical analysis, 
we establish that prime gap sequences can be effectively modelled as stochastic processes and provide a formal proof 
of the existence of a stationary distribution that governs their long-term behavior. 

To support our theoretical findings, we conducted an extensive numerical analysis using the Canadian supercomputer 
"Béluga", computing prime gaps up to 1012 using the Sieve of Eratosthenes. The empirical results validate our models, 
particularly those incorporating arithmetic properties such as prime factorization and modulo 6 congruence, 
demonstrating that they capture the periodic and combinatorial nature of prime gap distributions more accurately 
than simpler models. 

Our study reveals that approximations adopting a geometric PMF structure with piecewise components outperform 
non-piecewise models and align with the stationary distribution. Specifically, prime gaps of 2 and 4 exhibit a uniform 
distribution, comprising approximately 5% of all gaps, while larger gaps follow a geometric progression. This dual 
nature of prime gaps-uniform for smaller gaps and structured for larger ones-offers a novel perspective on their 
distribution. Our formal proof of the stationary distribution not only enhances the understanding of prime gap 
distributions but also contributes to the broader field of stochastic modeling in prime number theory.

Keywords: Multiple kernel learning; Multi-class classification; Kernel clustering

INTRODUCTION

Prime gaps have been the subject of mathematical inquiry for 
centuries, with early contributions from Euclid to more recent 
advancements by mathematicians such as Hardy et al., Erdos [1-
3]. Recent breakthroughs by Goldston et al., Zhang, have provided 
new impetus to this field of study [4,5]. The prime number 
theorem, which approximates the distribution of primes, suggests 
that primes become less frequent as numbers increase, yet does not 
fully explain the variability in the gaps between consecutive primes 
[6].

The distribution of prime gaps is conjectured to follow certain 
probabilistic models, including poisson-like distributions for larger 
gaps. The Hardy et al., conjectures, specifically the first conjecture, 
predict the density of prime pairs separated by a specific even 
gap, proposing that the occurrence of such pairs can be modelled 
by a non-trivial multiplicative function over the primes [2]. This 
study leveraged the computational resources of the Canadian 
supercomputer “Béluga” to perform large-scale calculations, 

generating up to 1012 prime gaps using the Sieve of Eratosthenes 
algorithm. This extensive dataset was crucial in validating the 
accuracy and robustness of the models developed in this research.

MATERIALS AND METHODS

Stochastic modeling of prime gaps using Markov chains

A discrete time Markov chain { : }X n Nn ∈  is a stochastic process with 
statesS {j: j Z}= ∈ indexed by discrete time T such that: 

( )| , ,..., | 10 0 1 11
P X j X j X j X i X j X in n nn P = = = =  = −

−


= =

In the context of a Markov chain, the transition matrix P is a 
matrix that describes the probabilities of transitioning from one 
state to another. Each entry ijP  in the transition matrix represents 
the probability of moving from state i to state j in one step.

The probability 1ü n nP X j X i−= = is denoted by ijP and the matrix
( )P Pij= is called a one-step transition matrix. The matrix P is a 

stochastic matrix in the sense that:
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1, ,
j

ijP j i S= ∈∑

Required to use P as a model for the sequence of prime gaps

1
{ }

nnd
=
∞ where, 1 nn nü += − for 0§n N∈ and nP  is the n-th 

prime number. Although primes are not random, their appearance 
in the number sequence is unpredictable and so, they are often 
modeled as random numbers. We remark that for small values of n, 
the model P is a poor representation of the behavior of prime gaps 
because the probability that the system is in state j at time n depends 
not only on the immediate past state i but also on the states before 
that down to the state at the 0-th step. For moderate to large values 
of n, this dependence on the other past states disappears.

The limiting distribution of a Markov chain is a probability 
distribution that remains unchanged 2 as the chain evolves 
over time. It represents the long-term behavior of the system. 
Define ( ) ( ),n

ni P X i iπ = = ∈ to be the marginal distribution of
, 1, 2,...,nX n = and let ( )nπ  be the row vector:

( ) ( ) ( )( )2
( )

0 1 ,, , ...ünπ π π π=

Then, mathematically, a Markov chain is said to have a limiting 
distribution if for all i, j ∈ S:

jπ∃  such that; 
( )

0 1n
ij jnj j

j S
lim P Xπ π π
→∞ ∈

= ∧ ⊥ ∧ =∑

i.e., 

0 1 2

0 2( )

0 2

3
31
31n

nlim P

π π π π
π π π π
π π π π→∞

 
 
 =  
  







   

The stationary distribution is a special type of limiting distribution 
that satisfies the equation:

 
j S

P j Sj ijj ππ
∈

∀ ∈= ∑
Indicating that once the system reaches this distribution, it remains 
there indefinitely. The stationary distribution can be interpreted as 
the equilibrium state of the Markov chain.

The relationship between the transition matrix, limiting 
distribution, and stationary distribution is important for 
understanding the long-term behavior of the stochastic process. 
The existence of a limiting distribution implies the existence of a 
unique stationary distribution:

( ) !n
ijn

lim P π
→∞

∃ ⇒ ∃

such that Pπ π=
Proof: Let S be the state space of a Markov chain with transition 
matrix P. Assume that there exists a limiting distribution, i.e., 

( ), n
ij jn

i j S lim P π
→∞

∀ ∈ = where, jπ  is independent of the initial state 
i and 1j S jπ∈Σ = . We need to show that there exists a unique 

stationary distribution ( )j j Sπ π ∈=  such that Pπ π= . Since 
the limiting distribution exists, we have;

( )

0 1 2

0 1 2

0 1 2
ijn
nlim P

π π π
π π π
π π π→∞

 
 
 =
 
 
 







   

Let ( )j j S
π π

∈
=  be the row vector such that

( )n
j ijn

lim Pπ
→∞

= . We 
claim that π is a stationary distribution. To show this, consider the 
equation Pπ π= . Hence, we have:

( ) j i ij
i S

P Pπ π
∈

=∑
.

Since 
( )n

ij jn
lim P
→∞

= and 1i S jπ∈∑ = , we can substitute jπ
 

into the equation i S j ij jPπ π∈∑ = .

Next, we show that the stationary distribution is unique. Suppose 
there exist two stationary distributions π and π′. Then, we have πP 
= π and π′P = π′. Consider the difference:

( ) Pπ π π π− ′ = − ′ .
Since both π and π′ are probability distributions, the sum of their 
components is 1:

( ) 0
j S

j jπ π
∈

′∑ − =

This implies that π = π′, proving the uniqueness of the stationary 
distribution of the Markov chain. Hence, the existence of a 
limiting distribution implies the existence of a unique stationary 
distribution.

Knowing this, notice how the heat maps indicate a pattern, 
suggesting the existence of a limiting distribution and, by 
consequence, the existence of the stationary distribution. These 
patterns are vital in understanding the stochastic behavior of prime 
gaps and their probabilistic distribution as shown in Figure 1.

Figure 1: (A): Heat map of the transition matrix for the first 1000 prime gaps; (B): Heat map of the transition matrix50 for the first 1000 prime gaps.
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steps. Similarly, since 8,4 0P ≠ and ü 0P ≠ :

( )2
8,4 8,4 4,2. 0ü = ≠

This indicates that transitioning from 8 to 2 is possible via a gap 
of 4, hence 2↔8. By Lemma 1, 2 communicates with 2k for k ≤ 
4. Assuming 2↔2k for all k, we must show that 2↔2 (k+1). By 
Lemma 1, 2 (k+1) is accessible from at least one smaller prime gap 
{2k,2 (k − 1),2(k−2)...,2}. Since 2 communicates with all smaller 
prime gaps, 2 (k+1) is accessible from 2. The prime gap 2k, prior to 
2(k+1), communicates with 2, hence 2 is accessible from 2 (k+1). 
Thus, 2 communicates with 2 (k+1), i.e., 2 ↔ 2 (k+1).

Aperiodicity: A state i ∈ S of a Markov chain is said to be aperiodic 
if the greatest common divisor (gcd) of the 

set of return times to i is 1. The chain is aperiodic if all states are 
aperiodic. Formally, for a state i ∈ S, let:

( ) { }1| 0n
iid i gcd n P= ≥ > .

The state i is aperiodic if d(i)=1. The entire Markov chain is 
aperiodic if: ∀i ∈ S, d(i)=1

Theorem 2: The states {X
n
} are aperiodic.

Proof: Given that 22 0P ≠ , it follows that di=1. Since all states 
communicate with 2, all states are aperiodic.

Positive recurrence: A state i ∈ S is positively recurrent if the 
expected return time to i is finite. Let T

i
 be the first return time to 

state i. The state i is positively recurrent if:

( )0 0
1

 ||i i
n

E T X i nP T n X i
∞

=
=

 = =  = < ∞∑
The Markov chain is positively recurrent if all states are positively 
recurrent. 

Theorem 3: All states of {X
n
} are positive recurrent. 

Proof: For a fixed number of states S = {j
1
, j

2
,…, j

m
}, Theorem 1 and 

Theorem 2, show that {X
n
} is positive recurrent.

We use induction on the number of states m. Let 1
{ }k k

S j
=

= ∞ and 

assume the statement is true for k=m. Suppose 02, 1jmP =+ . By 
Theorem 1, there exists a state j

l
 with 1 ≤ l ≤ m such that 2, 0jlP ≠

and , 1 0jl jmP + ≠ , indicating that j
m+1

 communicates with 2. Hence, 
j
m+1

 is positive recurrent.

Ergodicity: A Markov chain is said to be Ergodic if it is irreducible, 
aperiodic, and positively recurrent.

Theorem 4: The Markov chain of prime gaps is ergodic.

Proof: To establish that the Markov chain {X
n
} of prime gaps is 

ergodic, we need to verify that it satisfies the conditions of 
irreducibility, aperiodicity, and positive recurrence.

 From Theorem 1, we have shown that all states of {X
n
} communicate 

with each other. Hence, the Markov chain is irreducible.

From Theorem 2, it is established that the states {X
n
} are aperiodic 

since 22 0P ≠ and all states communicate with 2. Thus, the chain 
is aperiodic.

From Theorem 3, all states of {X
n
} are shown to be positively 

recurrent. Since {X
n
} is irreducible, aperiodic, and positively 

recurrent, it follows that the Markov chain of prime gaps is ergodic. 
Consequently, the Markov chain {X

n
} has a unique stationary 

Stationary distribution

Lemmas: These are intermediate propositions used to assist in 
the proof of a larger theorem or statement. They serve as stepping 
stones, simplifying complex arguments by breaking them down 
into more manageable parts, thereby enhancing clarity and rigor in 
mathematical reasoning [7].

Lemma 0: Let { }
1n n

d
=
∞ ; 1 , 0n nnd P P n+= − ≥ be the sequence of 

prime gaps. Then, 6nd ≤ infinitely often. (This is also referred to 
as Tao’s Lemma [8]).

Proof: Suppose, for the sake of contradiction, that 6nd ≤ for all 
sufficiently large n. This implies that there exists an integer N such 

that for all n N≥ , 6nd ≤ . In other words, there exists a point 
beyond which every prime gap exceeds 6. Consider the sequence of 

primes {P
n
}. If 6nd ≤ for all n N≥ , this implies that the primes 

are becoming increasingly sparse as n increases. Specifically, the 
gaps between consecutive primes are at least 7. However, the prime 
number theorem tells us that the gaps between consecutive primes 
P

n
 are asymptotically approximated by log (P

n
). While this allows 

for large gaps, it does not support the idea that all gaps beyond a 
certain point are strictly greater than 6. In fact, it is known that 
there are infinitely many pairs of primes (twinprimes) that are only 
2 units apart. This directly contradicts the assumption that 6nd ≤
for all sufficiently large n. Thus, our initial assumption must be 
false, and it follows that there must be infinitely many n for which

6nd ≤ .

Lemma 1: Let d
n
 be the most recent prime gap and n n kd d −≠

for k = 1,2,...,(n−1). Then, n kd M+ ≤  where, { }max jM d= for 
j=1,2,...,n+1.

Proof: Suppose, for the sake of contradiction, that 1nd M+ >
for all n. This implies that 1n nd d +<  for all n, leading to an 
unbounded sequence of increasing even numbers. This contradicts 
Tao’s Lemma, which states that gaps less than or equal to 6 occur 
infinitely often. ⇒⇐ Therefore, our initial assumption must be 
false, and it follows that 1nd M+ > .

Both lemmas ensure that each new prime gap will connect to 
previous states.

Irreducibility: A Markov chain{ }n NnX ∈ with state space S is said 
to be irreducible if for any two states i, j ∈ S, there exists a positive 

integer n such that the n-step transition probability 0n
i jP > . 

Formally, this can be expressed as: 

( )0|, ,   = 0n
i j ni j S n N such that P P X j X i∀ ∈ ∃ ∈ = = >

Irreducibility implies that it is possible to reach any state from any 
other state in a finite number of steps.

Theorem 1: Let {X
n
} be the Markov chain of prime gaps. Then, 

all states of {X
n
} communicate with each other. Hence, {X

n
} is 

irreducible.

Proof: We need to show that j
1
=2 communicates with all other 

states. Through enumeration, we find that j
1
=2 communicates with 

{4,6}. Consider the one-step transition matrix P=(P
ij
). Let {j

k
} for 

k ≥ 4 be the state’s such that ( )
2, j 0k

mP > . For k=4, j
4
=8 and P

4,8
=0: 

( )2
2,8 2,4 4,8 2,6 6,8 2,4 2,6 6,8 2,6 6,8· 0 · · 0P P P P P P P P P P+ + + + = ≠

Thus, m=2. Therefore, it is possible to transition from 2 to 8 in 2 
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distribution ( )i i sπ π ∈= satisfying Pπ π= and 1ii S
π

∈
=∑ .

Furthermore, the distribution of states converges to the stationary 
distribution, i.e.,

lim || || 0nn
µ π

→∞
− =

Where nµ  is the state distribution at time n and ∥ · ∥ denotes an 
appropriate norm such as the total variation norm.

Since the Markov chain of prime gaps is irreducible, aperiodic, and 
positive recurrent, it is ergodic. Therefore, the Markov chain has a 
stationary distribution π such that, π π= .

Modular pattern of prime gaps

Visual pattern: In this section, we identify a modular pattern in 
prime gaps. Specifically, we categorize prime gaps based on their 
congruence modulo 6 to simplyfy the pattern.

The following categorization reveals a significant structure in 
the distribution of prime gaps. The histogram illustrates the 
distribution of prime gaps modulo 6, with each category of bins 
represented in different colors for clarity. This pattern not only 
supports our theoretical findings but also highlights the regularity 
and structure inherent in the distribution of prime numbers as 
shown in Figure 2.

Arithmeticity of prime numbers: 

Theorem 5: Every prime number p>3 can be written in the form 
6k ± 1 for some k ∈ Z.

Proof: Given any integer p>3, we know by the division algorithm 
that there exist unique integers q ≥ 0 and r ∈ {−1,0,1,2,3,4} such 
that: 6p q r= + . Suppose that p is prime. Then observe that

{ }0,2,4r∉ , since otherwise p would be even (contradicting 

the fact that 2p ≠ )⇒⇐ . Likewise, observe that 3r ≠ , since 
otherwise 6 3p q= + would be divisible by 3 (contradicting the 
fact that 3p ≠ ) ⇒⇐ So, 1r = ± , as desired.

Prime gaps modulo 6: 

Theorem 6: Approximately 50% of prime gaps are congruent to 0 
mod 6 and approximately 25% of prime gaps are congruent to 2 
mod 6.

Proof: Given that we proved that prime gaps have a stationary 
distribution, this implies that the probabilities of prime gaps 

Figure 2: Histogram of the first 100,000 prime gaps categorized by their 
congruence modulo 6. Note: The colors indicate different categories: 
Prime gap ≡ 0 mod 6 (blue); Prime gap ≡ 2 mod 6 (green); Prime gap 
≡ 4 mod 6 (red).

falling into different congruence classes modulo 6 stabilize over 
time. Therefore, the long-term proportions of prime gaps that are 
0 mod 6, 2 mod 6, and 4 mod 6 will remain constant. And since 
the primes are equally likely to be 6k+1 or 6k-1, and the stationary 
distribution reflects these equal probabilities, it follows that: 

( ) ( )1 1lim  0  6 lim   2 4  6
2 4n n

P prime gap mod P prime gap mod
→∞ →∞

≡ = ∧ ≡ ≡ =

Prime factorization of prime gaps

Prime factorization of even numbers: 

Theorem 7: Every prime gaps greater than 1 can be factorized in at 
least one of the following six ways: 2a · q, 2a ·3b ·q, 2a ·5b ·q, 2a ·7b 
·q, 2a ·11b ·q, and 2a ·3b ·5c ·q

Where, a, b, and c are non-negative integers, and q is an odd integer.

Proof: Let 1n n ng p P+= −  represent the prime gap between two 

consecutive primes nP  and 1np + , where, 1ng > . According to 

the Fundamental Theorem of Arithmetic, every integer ng  greater 
than 1 can be factored into primes.

•	 Factorization into powers of 2: Any integer can be factored 

into powers of 2. If ng  is divisible by 2, this is captured by 2a.

•	 Divisibility by small primes: If ng  is divisible by 3, 5, 7, or 11, 
it can be captured by the inclusion of 3b, 5b, 7b, or 11b in the 
factorization.

•	 Odd integer q: Any remaining factor that is not divisible by 2, 
3, 5, 7, or 11 is captured by q, which must be an odd integer.

Thus, every prime gap greater than 1 can be factored into one of 
the six forms by choosing the appropriate powers of 2, 3, 5, 7, 11, 
and an odd q, completing the proof.

Prime factorization pattern in prime gaps

Using Theorem 5 and Theorem 6, we will patternize the prime 
gaps by determining the percentage of prime gaps that fall into each 
category based on their prime factorization.

Theorem 8: 

•	 Approximately 19.96% of prime gaps can be factorized as 2a · q 

•	 Approximately 33.33% of prime gaps can can be factorized as 
2a · 3b · q 

•	 Approximately 20% of prime gaps can be factorized as 2a · 5b 
· q 

•	 Approximately 14.29% of prime gaps can be factorized as 2a 

· 7b · q 

•	 Approximately 9.09% of prime gaps can be factorized as 2a · 
11b · q 

•	 Approximately 3.33% of prime gaps can be factorized as 2a · 
3b · 5c ·q 

Where, a, b, and c are non-negative integers, and q is an odd integer. 

Proof: Prime gaps can be seen as even numbers, so they can be 
analysed by considering their divisibility by small primes (since 
every prime gap g>1 is even). The proportion of numbers divisible 
by 2, 3, 5, 7, and 11 among all even numbers can be approximated 
using the following reasoning:

Prime gaps divisible by 2a · q where q is not divisible by 3, 5, 7, or 
11: 
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Knowing this, for a given sample of n=1012 prime gaps, we 
approximate 

( ) 1.08556674·In( ) 0.4495518E n n≈ +
This formula indicates a linear relationship between the expectation 
of prime gaps and the natural logarithm of n, adjusted by a constant 
term.

Probabilistic mass function of prime gaps

Structure of the PMF of prime gaps: Cramer’s conjecture states that 
the average gap between consecutive primes near a large number n  
is approximately In( )n  [9]. In other words, the gap between the n-th 
prime, pn, and the (n+1)-th prime, pn+1, is bounded by:

2
1= (In ( ))n n n ng p p O p+ − =

This approximation is also supported by the prime number 
theorem, which states that the number of primes less than or equal 
to x  is approximately:

( )
In( )

xx
x

π ≈

Consequently, from these two statements, the density of primes 
around x is given by:

( ) In ( )
( )

In ( )

x xg x xxx
x

π
≈ ≈ =

Hence, the average gap length between consecutive primes near x
is then:

( ) In ( )
( )

In ( )

x xg x xxx
x

π
≈ ≈ =

However, in this research study, we are not basing our calculations 
on a number x ∈ R; instead, we are basing our calculations on n ∈ 
N, representing the set of the first n consecutive prime gaps. Thus, 
we need to adapt Cramer’s conjecture and the prime number 
theorem on n: the set of the first n consecutive prime gaps.

Given primes p
1
, p

2
,…, p

n
, the average prime gap length is the total 

gap divided by n−1, the number of gaps.

Let nP  be the n-th prime. The prime number theorem approximates 

nP  as np n≈  · ln (n). Plus, the total gap length between the first 

n primes is approximately 2np − , since the first prime is 2. So, 

for large n, the average gap ng
 between the first n primes is then:

2 .In ( ) 2 In ( )
1 1n

pn n ng n
n n
− −

≈ ≈ ≈
− −

This result aligns with Cramer’s conjecture and the Prime Number 
Theorem, indicating that the average gap between consecutive 
primes increases logarithmically with the number of primes 
considered.

Now based on this, we can proceed. Knowing that n represents 
the number of prime gaps, the simplest model for the gap 

( ) 1n ng n p p+= −  is that it follows approximately an exponential 

distribution of parameter 
1

In ( )n Following from that, the probability 
that 1 2np k+ + ′  (for k′ ∈ N) is not prime is about:

( ) ( ) ( ) ( ) ( )

1
2 2 2 21 1 2 1  ·

In 2 In In In

k

nP g k
n k n n n

−
 

− ≈ − ⇒ = ≈ −  + ′  

P (Category 1) = { }3,5,7,11

1 2 4 6 101 . . . 0.1996
3 5 7 11p p∈

 
− ≈ ≈ 

 
∏

•	 Prime gaps divisible by 2a · 3b · q where q is not divisible by 5, 
7, or 11: 

P (Category 2) = 
{ }5,7,11

1 1 1 4 6 10. 1 . . . 0.3333
3 3 5 7 11p p∈

 
− ≈ ≈ 

 
∏

•	 Prime gaps divisible by 2a · 5b · q where q is not divisible by 3, 
7, or 11:

P (Category 3) = { }3,7,11

1 1 1 2 6 10. 1 . . . 0.2000
5 5 3 7 11p p∈

 
− ≈ ≈ 

 
∏

•	 Prime gaps divisible by 2a · 7b · q where q is not divisible by 3, 
5, or 11: 

P (Category 4) = 
{ }3,5,11

1 1 1 2 4 10. 1 . . . 0.1429
7 7 3 5 11p p∈

 
− ≈ ≈ 

 
∏

•	 Prime gaps divisible by 2a · 11b · q where q is not divisible by 
3, 5, or 7:

P (Category 5) = { }3,5,7

1 1 1 2 4 6. 1 . . . 0.0909
11 11 3 5 7p p∈

 
− ≈ ≈ 

 
∏

•	 Prime gaps divisible by 2a · 3b · 5c · q where q is not divisible 
by 7 or 11: 

P (Category 6) = { }7,11

1 1 1 1 1 6 10. . 1 . . . 0.0333
3 11 3 5 7 11p p∈

 
− ≈ ≈ 

 
∏

However, it is important to note that these events are not disjoint, 
i.e. 60 ≡ 0 (mod 2,6,10,14,22,30). Therefore, the probability of the 
union of all given states is:

( )1 2 3 4 5 6  P A A A A A A∨ ∨ ∨ ∨ ∨ =

( ) ( )1
1 2 6( ) ( A ) ( A A ) 1 ···n

i i j i j k
i i j i j k

p A p A p A P A A A+

< < <

− ∧ + ∧ ∧ − + − ∧ ∧ ∧∑ ∑ ∑ 

Approximation of expectation

In this section, we approximate the expectation of prime gaps using 
a sample of 1 billion prime gaps.

By applying logarithmic polynomial fitting to the data, we estimated 
the formulas for the expectation and variance of a given set of n 
consecutive prime gaps.

Logarithmic polynomial and fitting: A logarithmic polynomial 
is a polynomial function in terms of the natural logarithm of a 
variable. It is generally expressed in the form:

2
0 1 2(In( )) In( ) In( )) ···  In( ))k

kP n a a n a n a n= + + + +

Where, a
0
,a

1
,...,a

k
 are coefficients and k is the degree of the 

polynomial. 

Logarithmic polynomial fitting is a statistical method used to 
approximate a set of data points by finding the coefficients 
a

0
,a

1
,...,a

k
 that best fit the data in a least-squares sense. The goal is to 

minimize the sum of the squared differences between the observed 
values and the values predicted by the polynomial model. Formally, 
given a set of data points (n

i
,y

i
) for i=1,2,...,m, the fitting process 

involves solving the following optimization problem:

2

 1, ,...,0 1
min ( -P(In( )))i

i
i

m

a a ak
y n

=
∑

Where,
2

0 1 2(In( )) In( ) In( )) ···  In( ))k
i i i k iP n a a n a n a n= + + + +
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Best approximation of the PMF of prime gaps

Models to be tested: Based on all of these results, we will analysed 
compare different models of approximated PMFs for ( )2nP g k= to 
see which approximation fits better the real PMF of Prime Gaps:

Model 1 and 2:

( ) ( ) ( )

1
2 22 1  ·

E E

k

Model nP g k
n n

−
 

= ≈ −  
 
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–Model 1: ( ) ( )InE n n≈

–Model 2: ( ) 1.08556674·In( ) 0.4495518E n n≈ +  

Model 3 and 4:
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With:

–Model 3: ( ) ( )InE n n≈

–Model 4: ( ) ( )1.08556674·In 0.4495518E n n≈ +

Model 5 and 6: 
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Statistical tests

We will compare these 6 different models to determine which best 
approximates the true Probability Mass Function (PMF) of prime 
gaps. The following statistical tests will be used on sample sizes of n 
= 103, 106, 109, and 1012 prime gaps to assess the impact of sample 
size on model performance:

•	 Chi-Square test: Assesses the difference between observed and 
expected frequencies:

( )2
2

1
=

k
i i

i i

O E
E

χ
=

−
∑

•	 Kolmogorov-Smirnov test: Compares the empirical and 
reference cumulative distribution functions:

( ) ( )n n
x

D sup F x F x= −

•	 Anderson-Darling (AD) test: Measures how well data fits a 
specified distribution, improving sensitivity at distribution 
tails:

2A n S= − −

With, S representing a modified sum of differences between 
empirical and theoretical distributions. However, another common 
form for a finite sample is:

2
2 ( ( ) ( )) ( ),

( )(1 ( ))
nF x F xA n dF x

F x F x
∞

−∞

−
=

−∫
•	 Mean Squared Error (MSE): Quantifies the average squared 

difference between observed and predicted values;

( )2

1

1 ˆ
n

i i
i

MSE Y Y
n =

= −∑
•	 Kullback-Leibler Divergence (KL Divergence): Measures 

divergence between true and predicted probability 
distributions;

( )( || ) ( ) log
( )KL

i

p iD P Q p i
q i

∞  
=  

 
∑

Notice that Non-parametric statistics, such as the K-S and Anderson-
Darling tests, are particularly useful when no specific parametric 
distribution is assumed, allowing for a more flexible evaluation 
of model fit. These tests, combined with parametric approaches 
like the Chi-Square Test, provide a robust framework to evaluate 
how well the models to empirical data and determine which best 
approximates the prime gap distribution.

RESULTS

Please note that the graphs below have been adapted up to k=21 to 
enhance readability and make the results easier to interpret.

Sample Size: 310n = as shown in Table 1.

Sample size: 610n =  as shown in Table 2.

Sample size: 910n =  as shown in Tables 3.

Sample size: 1210n =  as shown in Figure 3 and Table 4.
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Figure 3: (A): Empirical probabilities of prime gaps (sample size: n=1012 prime gaps; (B): Comparison of empirical and model predictions of prime 
gaps (sample size: n=1012 prime gaps)

Table 1: Combined test results with best results highlighted, 310n = .

Model Chi-square statistic p-value (Chi-square) KS statistic p-value (KS) AD statistic MSE value KL divergencevalue

Model 1 χ2 =0.1734 0.9999 0.1176 0.9999 1.0069 0.00155 0.0805

Model 2 χ2 =0.1333 0.9999 0.1176 0.9999 0.9714 0.001094 0.0624

Model 3 χ2 =0.0574 1 0.1176 0.9999 1.1548 0.000343 0.0264

Model 4 χ2 =0.0406 1 0.1176 0.9999 1.0204 0.000193 0.0197

Model 5 χ2 =0.0192 1 0.0588 1 1.245 0.000125 0.0098

Model 6 χ2 =0.0296 1 0.1765 0.9631 0.9341 0.000135 0.016

Note: K-S: Kolmogorov-Smirnov Test; AD: Anderson-Darling Test; MSE: Mean Squared Error; KL: Kullback-Leibler Divergence 

Table 2: Combined test results with best results highlighted, 610n = .

Model Chi-square statistic p-value (chi-square) KS statistic p-value (KS) AD statistic MSE value
KL divergence 

value

Model 1 χ2 = 0.1359 1 0.1 0.9999 1.1084 0.000533 0.0642

Model 2 χ2 = 0.1159 1 0.15 0.9831 0.9211 0.000441 0.055

Model 3 χ2 = 0.0309 1 0.15 0.9831 0.9921 0.000105 0.0149

Model 4 χ2 = 0.0188 1 0.15 0.9831 1.0874 0.000057 0.0089

Model 5 χ2 = 0.0098 1 0.1 0.9999 1.1088 0.000025 0.0048

Model 6 χ2 = 0.0085 1 0.1 0.9999 1.1568 0.000021 0.0043

Note: K-S: Kolmogorov-Smirnov Test; AD: Anderson-Darling Test; MSE: Mean Squared Error; KL: Kullback-Leibler Divergence 

Table 3: Combined test results with best results highlighted, 910n = .

Model Chi-square statistic p-value KS statistic p-value (KS) AD statistic MSE value KL divergence value

(chi-square) KS statistic p-value (KS) AD statistic MSE value KL divergence value 0.000533 0.0642

Model 1 χ2 = 0.1271 1.0000 0.1000 0.9999 1.0613 0.000387 0.0595

Model 2 χ2 = 0.1156 1.0000 0.1500 0.9831 0.8666 0.000346 0.0543

Model 3 χ2 = 0.0241 1.0000 0.1500 0.9831 0.9509 0.000070 0.0116

Model 4 χ2 = 0.0165 1.0000 0.1000 0.9999 1.1158 0.000044 0.0079

Model 5 χ2 = 0.0098 1.0000 0.1000 0.9999 1.0666 0.000021 0.0048

Model 6 χ2 = 0.0083 1.0000 0.1000 0.9999 1.1350 0.000019 0.0041

Note: K-S: Kolmogorov-Smirnov Test; AD: Anderson-Darling Test; MSE: Mean Squared Error; KL: Kullback-Leibler Divergence 
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to more accurate models of the distribution of prime gaps. These 
refinements account for empirical observations and theoretical 
insights that extend beyond the basic logarithmic approximation.

Geometric structure: All the models considered in this study 
follow a geometric Probability Mass Function (PMF) structure. This 
choice is based on the assumption that the distribution of prime 
gaps can be effectively approximated using a geometric distribution. 
The general form of the geometric PMF used in these models is:

( ) ( ) ( )

1
2 22 1 ·

k

nP g k
E n E n

−
 

= ≈ −  
 

Where, ( )E n represents the expected value, which varies across 
different models. This structure implies that the probability of 
observing a gap of size 2k between consecutive primes decreases 
exponentially with k, consistent with the properties of geometric 
distributions.

The geometric PMF structure captures the idea that larger prime 
gaps are less likely than smaller ones, a characteristic feature of prime 
gaps. In other words, the geometric PMF inherently incorporates 
an exponential decay, reflecting the decreasing likelihood of larger 
prime gaps, which aligns well with empirical observations.

Piecewise approximations: The comparative analysis reveals that 
piecewise approximations, which categorize prime gaps based on 
modulo 6 congruence or their prime factorization, consistently 
outperform non piecewise approximations. This observation 
suggests that the PMF of prime gaps exhibits a combinatorial 
nature influenced by specific sub-properties intrinsic to the prime 
numbers themselves:
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DISCUSSION

Test specific observations

The models under consideration can be categorized into three 
distinct groups based on their approach to the prime gaps:

•	 Category 1: Basic models (Models 1 and 2)-These models 
do not incorporate any specific categorization of prime gaps, 
relying solely on a fundamental approximation of E(n). 

•	 Category 2: Modulo 6 congruence models (Models 3, 
4,)-These models classify prime gaps based on their congruence 
modulo 6, capturing the periodic properties inherent in prime 
distributions. 

•	 Category 3: Prime factorization models (Models 5 and 
6)-These models categorize prime gaps based on their prime 
factorization, leveraging the deeper arithmetic structure of the 
gaps.

While all three categories exhibit commendable performance, 
effectively approximating the PMF of prime gaps to a significant 
extent, notable distinctions emerge across different statistical tests. 
For all tests, excluding Anderson-Darling (AD) test, the category 
3 models, which incorporate prime factorization, consistently 
demonstrate the highest accuracy, followed by category 2 models 
that consider modulo 6 congruence. The basic models in category 
1 rank the lowest. This trend underscores the superiority of models 
that account for more intricate arithmetic structures. 

Interestingly, the AD test results deviate from the aforementioned 
trends. Category 1 models attain the highest ranking in this test. 
This anomalous result can be attributed to the AD test’s sensitivity 
to the tails of the distribution. The basic models’ simplicity and 
broader assumptions may lead to a better fit for the extreme 
values of the prime gap distribution, explaining their superior 
performance in this specific test.

Approximation of the expectation of prime gaps: The expectation 

of prime gaps, ( )E n , is an essential parameter in accurately 
modeling the distribution of gaps between consecutive prime 
numbers. It is generally approximated by the natural logarithm 
of n, i.e., ( ) In ( )E n n≈ . This approximation is widely accepted 
in number theory due to its basis in the prime number theorem, 
which states that the average gap between consecutive primes near 
a large number n is approximately In ( )n . However, our analysis 

shows that more refined approximations of ( )E n can significantly 
improve the accuracy of models, ( ) 1.08556674·In ( ) 0.4495518E n n≈ +  

In summary, while ( ) In ( )E n n≈  is a widely known and useful 
approximation, incorporating refined estimates of ( )E n can lead 

Table 4: Combined test results with best results highlighted,  

Model Chi-square statistic p-value KS statistic p-value (KS) AD statistic MSE value KL divergence value

(chi-square) KS statistic p-value (KS) AD statistic MSE value KL divergence value 0.000533 0.0642

Model 1 χ2 = 0.1134 1.0000 0.2000 0.8319 0.7446 0.000329 0.0533

Model 2 χ2 = 0.1105 1.0000 0.2000 0.8319 0.6624 0.000314 0.0521

Model 3 χ2 = 0.0152 1.0000 0.1000 0.9999 1.1562 0.000039 0.0073

Model 4 χ2 = 0.0145 1.0000 0.1000 0.9999 1.1841 0.000034 0.0070

Model 5 χ2 = 0.0130 1.0000 0.1000 0.9999 1.2085 0.000033 0.0065

Model 6 χ2 =0.0090 1.0000 0.1000 0.9999 1.1658 0.000021 0.0045

Note: K-S: Kolmogorov-Smirnov Test; AD: Anderson-Darling Test; MSE: Mean Squared Error; KL: Kullback-Leibler Divergence 
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The superior performance of Model 6 implies that the best 
approximation for the PMF of prime gaps must be a combinatorial 
PMF that leverages the arithmetic properties of prime numbers. 
Specifically, it suggests that modular behaviors of the gaps, as 
well as the prime factorization of even numbers, are important in 
accurately modeling prime gaps. The intricate structure captured 
by model 6, which combines these properties, provides a more 
precise fit for the empirical distribution of prime gaps as shown 
in Figure 4. 

Moreover, the combinatorial nature of this approximation can also 
influence ( )E n , indicating that the formula for

the average gap length must be more complex than just ( ) ( )InE n n≈ . 
The refined function

( ) ( )1.08556674·In 0.4495518E n n≈ +  used in model 6 underscores 
this complexity, suggesting that a more sophisticated understanding 
of prime gaps involves a detailed analysis of their arithmetic 
properties and combinatorial classifications.
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The superior performance of piecewise models highlights the 
necessity of incorporating de tailed arithmetic properties and 
combinatorial classifications when approximating the PMF of 
prime gaps. This approach not only provides a more accurate fit 
to empirical data but also aligns with the intrinsic mathematical 
complexities of prime distributions.

Best approximation: The overall best approximation for the PMF 
of prime gaps is provided by Model 6. This model leverages a 
sophisticated combinatorial approach, integrating the arithmetic 
proper ties of prime numbers and utilizing both prime factorization 
and refined expectation.

• Model 6:
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Figure 4: (A): Empirical probabilities of prime gaps (sample size: n=1012 prime gaps); (B) Comparison of empirical and model 6 (sample size: n = 1012 
prime gaps)
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Using the approximated PMF and ( )E n ,the ratio of the 
probabilities of gaps 4 to 2 is:
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Given the existence of a stationary distribution of the Markov 
chain made of prime gaps, the probabilities for gaps

of lengths 2 and 4 converge to the same asymptotic value. Let the 
prime counting function π be our stationary distribution:

( ) ( )1 7 7 2 4Iim 2 Iim 4pn pn Model n Model nn n
P g P gπ π π+ − →∞ →∞

∃ ∧ = = = → =

The twin prime conjecture states that there are infinitely many 

pairs of primes ( ), 2p p + where the gap between the primes is 
2. Although this conjecture has not yet been proven, substantial 
evidence supports its validity.

Empirically, it is observed that prime gaps of length 2 are quite 
frequent among smaller primes. However, as numbers get larger, 
the distribution of prime gaps becomes more varied. Despite this, 
twin primes continue to appear even among large numbers, though 
less frequently.

Let ( )2 xπ  be the number of twin primes less than or equal to x, and
( )xπ  be the total number of primes less than

or equal to x . The proportion of twin primes relative to all primes 
can be estimated using:

( )
( )

2
   Iim  

x

x
Proportion of twin primes

x
π
π→∞

=

The Hardy-Little wood conjecture for the density of twin primes 
suggests that

( )
( )2 2 22

2
 

x dtx C
log t

π ∼ ∫

Where, C
2
 is the twin prime constant, approximately 0.660161.

Using the prime number theorem:

( ) xx
logx

π ∼

While an exact percentage is difficult to calculate without exhaustive 
data, we can use empirical and asymptotic

Results-based conjecture 

Hypotheses: Based on the empirical results obtained and the 
comprehensive investigation conducted, we hypothesize that the 
Probability Mass Function (PMF) of prime gaps exhibits a uniform 
distribution for gaps of size 2 and 4, while for larger gaps, it follows 
a more complex structure. Specifically, we conjecture that the 
PMF of prime gaps from 6 onward is best described by an infinite 
combination of geometric distributions, each corresponding to 
a distinct prime factorization of even numbers. This framework 
suggests a deep connection between the arithmetic properties of 
integers and the distribution of prime gaps, providing a novel 
perspective on their underlying structure. 

Conjectures: 

Conjecture 0: The percentage of prime gaps of length 2 and 
length 4 among all prime gaps is approximately 5% for both gaps 
respectively. I.e. for π being the stationary distribution of prime 
gaps, then π

2
 = π

4

≈ 0.05. 

Proof: First we will prove that as n approaches infinity, the percentage 
of prime gaps of lengths 2 and 4 asymptotically converges to the 
same value. We’ll combine the provided model for prime gaps, the 
given probabilities P(A

i
), and theorems related to the distribution 

of prime gaps.

Theorem 4, indicates that the Markov chain made of prime 
gaps has a stationary distribution, implying that the proportion 
of different prime gaps stabilizes as n increases. And based on 
the outstanding performance of model 6 in approximating the 
probabilistic distribution of prime gaps, we will use it to compute 
the probabilities of specific

prime gaps:

• Model 6:
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distribution of prime gaps.

Thus, we conjecture:

( )
( )

1
2

.

1 2,
2

2 3,ci c i i

n

nw

if k
P g k

g k f kP i∈

= ∨
=

= ≥


= 
∑

for:

( )
1

 
2 22 1 .
( ) ( )

k

i nP g k
E n E n

−
 

= = − 
 

Where ( )E n is the expectation of the prime gaps, and iw is the 
weight associated with the i-th prime factorization category C

i
.

CONCLUSION

This study has provided significant insights into the distribution of 
prime gaps, emphasizing the importance of models that incorporate 
arithmetic and combinatorial properties. We categorized models 
into three groups: Basic, modulo 6 congruence, and prime 
factorization models. Among these, prime factorization models 
consistently yielded the most accurate predictions, particularly for 
larger prime gaps, high lighting the intricate arithmetic structures 
that influence prime gaps. 

A critical advancement in this research is the refinement of 
the expectation of prime gaps, ( )E n . The refined function,
( ) ( )1.08556674·In 0.4495518E n n≈ + , offers a more precise 

estimate than the traditional logarithmic approximation, 
improving model accuracy, especially when combined with a piece 
wise approach.

The geometric Probability Mass Function (PMF) structure 
effectively captures the exponential decay of prime gaps, with larger 
gaps becoming increasingly rare. This study led to conjecture 1, 
which posits that while the PMF of prime gaps is uniform for gaps 
of size 2 and 4, it follows an infinite combination of geometric 
distributions for gaps of size 6 and greater, determined by prime 
factorization. This conjecture highlights the dual nature of prime 
gaps-simple and uniform for small gaps, but complex and structured 
for larger ones.

Prime factorization serves as a critical factor in understanding 
these larger gaps, suggesting that the distribution of prime gaps is 
not random but deeply connected to the arithmetic properties of 
integers. The more complex the factorization, the more intricate 
the gap’s distribution becomes. In conclusion, conjecture 1 offers 
a unifying framework that links small, uniform gaps with larger, 
more complex gaps through the lens of prime factorization. Future 
research should focus on testing and refining this conjecture, 
potentially uncovering deeper connections between prime numbers 
and their gaps.
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This model suggests that prime gaps are deeply connected to 
the arithmetic structure of integers. Their distribution can be 
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geometric distributions. The more we account for the different 
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