Mathematica Eterna : Citations & Metrics Report
Articles published in Mathematica Eterna have been cited by esteemed scholars and scientists all around the world. Mathematica Eterna has got h-index 11, which means every article in Mathematica Eterna has got 11 average citations.
Following are the list of articles that have cited the articles published in Mathematica Eterna.
2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | |
---|---|---|---|---|---|---|---|---|
Total published articles |
31 | 36 | 20 | 26 | 15 | 2 | 23 | 36 |
Conference proceedings |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Citations received as per Google Scholar, other indexing platforms and portals |
109 | 161 | 184 | 183 | 194 | 184 | 176 | 129 |
Journal total citations count | 1892 |
Journal impact factor | 4.13 |
Journal 5 years impact factor | 4.25 |
Journal cite score | 3.35 |
Journal h-index | 11 |
Journal h-index since 2019 | 10 |
Important citations (1006)
chandok s, karapinar e. common fixed point of generalized rational type contraction mappings in partially ordered metric spaces. thai journal of mathematics. 2012 jan 11;11(2):251-60. |
|
nashine hk, karapinar e. fixed point results in orbitally complete partial metric spaces. bull. malays. math. sci. soc. 2013 jan 1;36(4):1185-93. |
|
nashine hk, karapinar e. fixed point results in orbitally complete partial metric spaces. bull. malays. math. sci. soc. 2013 jan 1;36(4):1185-93. |
|
karapınar e, nashine hk. fixed point theorem for cyclic chatterjea type contractions. journal of applied mathematics. 2012;2012. |
|
karapinar e. remarks on suzuki (c)-condition. indynamical systems and methods 2012 (pp. 227-243). springer, new york, ny. |
|
erhan im, karapınar e, türkoglu d. different types meir-keeler contractions on partial metric spaces. j. comput. anal. appl. 2012 oct 1;14(6):1000-5. |
|
chen cm. fixed point theory for the cyclic weaker meir-keeler function in complete metric spaces. fixed point theory and applications. 2012 dec 1;2012(1):17. |
|
chen cm. fixed point theory for the cyclic weaker meir-keeler function in complete metric spaces. fixed point theory and applications. 2012 dec 1;2012(1):17. |
|
jleli m, samet b, vetro c. fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces. journal of inequalities and applications. 2014 dec 1;2014(1):426. |
|
arshad m, ahmad j, karapınar e. some common fixed point results in rectangular metric spaces. international journal of analysis. 2013;2013. |
|
karapinar e. some fixed point theorems on the class of comparable partial metric spaces. applied general topology. 2011 oct 1;12(2):187-92. |
|
karapinar e, shatanawi w, tas k. fixed point theorem on partial metric spaces involving rational expressions. miskolc mathematical notes. 2013;14(1):135-42. |
|
karapinar e, shatanawi w, tas k. fixed point theorem on partial metric spaces involving rational expressions. miskolc mathematical notes. 2013;14(1):135-42. |
|
alghamdi ma, shahzad n, valero o. on fixed point theory in partial metric spaces. fixed point theory and applications. 2012 dec 1;2012(1):175. |
|
karapinar e. a note on common fixed point theorems in partial metric spaces. miskolc mathematical notes. 2011;12(2):185-91. |
|
karapınar e, yuce is. fixed point theory for cyclic generalized weak ðœ™-contraction on partial metric spaces. inabstract and applied analysis 2012 (vol. 2012). hindawi. |
|
abbas mu, nazir t, romaguera s. fixed point results for generalized cyclic contraction mappings in partial metric spaces. revista de la real academia de ciencias exactas, fisicas y naturales. serie a. matematicas. 2012 sep 1;106(2):287-97. |
|
abdeljawad t, karapınar e, taş k. a generalized contraction principle with control functions on partial metric spaces. computers & mathematics with applications. 2012 feb 1;63(3):716-9. |
|
aydi h, karapınar e, salimi p. some fixed point results in gp-metric spaces. journal of applied mathematics. 2012;2012. |
|
shatanawi w, samet b, abbas m. coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. mathematical and computer modelling. 2012 feb 1;55(3-4):680-7. |
|