Mathematica Eterna

Mathematica Eterna
Open Access

ISSN: 1314-3344

+44-77-2385-9429

Mathematica Eterna : Citations & Metrics Report

Articles published in Mathematica Eterna have been cited by esteemed scholars and scientists all around the world. Mathematica Eterna has got h-index 11, which means every article in Mathematica Eterna has got 11 average citations.

Following are the list of articles that have cited the articles published in Mathematica Eterna.

  2024 2023 2022 2021 2020 2019 2018 2017

Total published articles

31 36 20 26 15 2 23 36

Conference proceedings

0 0 0 0 0 0 0 0

Citations received as per Google Scholar, other indexing platforms and portals

109 161 184 183 194 184 176 129
Journal total citations count 1892
Journal impact factor 4.13
Journal 5 years impact factor 4.25
Journal cite score 3.35
Journal h-index 11
Journal h-index since 2019 10
Important citations (1006)

Wahash, h. a., abdo, m. s., & panchal, s. k. (2020). existence and ulam-hyers stability of the implicit fractional boundary value problem with ?-caputo fractional derivative. journal of applied mathematics and computational mechanics, 19(1).

Ali, a., mahariq, i., shah, k., abdeljawad, t., & al-sheikh, b. (2021). stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions. advances in difference equations, 2021(1), 1-17.

Haoues, m. o. u. s. s. a., ardjouni, a. b. d. e. l. o. u. a. h. e. b., & djoudi, a. h. c. e. n. e. (2018). existence, interval of existence and uniqueness of solutions for nonlinear implicit caputo fractional differential equations. tjmm, 10(1), 09-13.

Ardjouni, a., & djoudi, a. (2019). initial-value problems for nonlinear hybrid implicit caputo fractional differential equations. malaya journal of matematik, 7(2), 314-317.

Ardjoun?, a., & djoud?, a. (2019). existence and uniqueness of solutions for nonlinear implicit caputo-hadamard fractional differential equations with nonlocal conditions. advances in the theory of nonlinear analysis and its application, 3(1), 46-52.

Ardjouni, a., lachouri, a., & djoudi, a. (2019). existence and uniqueness results for nonlinear hybrid implicit caputo-hadamard fractional differential equations. open journal of mathematical analysis, 3(2), 106-111.

Jia, z., khan, s., khan, n., khan, b., & asif, m. (2021). faber polynomial coefficient bounds for-fold symmetric analytic and bi-univalent functions involving-calculus. journal of function spaces, 2021.

Omar, r., rossdy, m., & halim, s. a. (2019, april). fekete-szegö inequalities for certain subclasses of bi-univalent functions. in journal of physics: conference series (vol. 1212, no. 1, p. 012006). iop publishing.

AkgÜl, a. (2019). a new general subclass of $ m $-fold symmetric bi-univalent functions given by subordination. turkish journal of mathematics, 43(3), 1688-1698.

?adi, ?. (2019). konveks ve quasi-konveks stokastik süreçler ?çin ?ntegral e?itsizlikleri Üzerine baz? tahminler (master's thesis, fen bilimleri enstitüsü).

Koman, f. (2018). baz? konveks stokastik süreçler ?çin ostrowski tipi e?itsizlikler (master's thesis, fen bilimleri enstitüsü).

Jung, c. y., saleem, m. s., bilal, s., nazeer, w., & ghafoor, m. (2021). some properties of ?-convex stochastic processes. aims mathematics, 6(1), 726-736.

Ozcan, s. (2019). hermite-hadamard type inequalities for m-convex and (?, m)-convex stochastic processes. international journal of analysis and applications, 17(5), 793-802.

Hernandez, j. e., & vivas, m. ostrowski inequality for (m, h, h) convex stochastic processes using fractional integral operators.

Yang, p., & zhang, s. (2021). mean square integral inequalities for generalized convex stochastic processes via beta function. journal of function spaces, 2021.

Sitthiwirattham, t., ali, m. a., budak, h., & chasreechai, s. (2021). quantum hermite-hadamard type integral inequalities for convex stochastic processes. aims mathematics, 6(11), 11989-12010.

Nurgül, o. k. u. r., & karahan, v. some integral inequalities of the hermite-hadamard type for s-convex stochastic processes on n-coordinates. communications faculty of sciences university of ankara series a1 mathematics and statistics, 68(2), 1959-1973.

Ibrahim, a. (2020). on strongly h-convex stochastic processes. journal of quality measurement and analysis jqma, 16(2), 243-251.

González, l., & merentes, n. separation by h? convex stochastic processes.

González, l., merentes, n., & valera-lópez, m. (2016). on (k; h)-convex stochastic processes. journal of new theory, (10), 19-29.

Top