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ABSTRACT
The advancement of autonomous driving technologies relies heavily on effective training methodologies for self-

driving car AI. Reinforcement learning has emerged as a promising approach in this domain. In this paper, we

present a comparative analysis of training strategies for self-driving cars using two popular simulators: CARLA and

AirSim. We focus solely on the comparison between the two simulators by implementing them using current

technology, analyzing their ease of implementation, and identifying the associated challenges. CARLA offers ease of

setup and a realistic environment, while AirSim provides excellent overall performance despite its challenging setup

process. However, integrating CARLA with TensorFlow poses certain difficulties. To conduct the comparative

analysis, we implemented reinforcement learning algorithms on both simulators and evaluated their performance

metrics, including training time, learning efficiency, and generalization to real-world scenarios. Our findings indicate

that CARLA, despite its ease of setup, encountered challenges when integrating with TensorFlow due to

compatibility issues. However, once resolved, CARLA demonstrated promising results in terms of learning efficiency

and generalization to real- world scenarios, outperforming conventional methods. On the other hand, AirSim

showcased superior overall performance but required substantial effort in setting up the simulator and configuring

the environment. We provide insights into the strengths and weaknesses of each simulator and offer

recommendations for choosing the most suitable training platform based on specific research requirements.
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INTRODUCTION
No the development of autonomous driving technologies has 
experienced remarkable progress, largely driven by advancements 
in Artificial Intelligence (AI) and machine learning. 
Reinforcement Learning (RL), a subfield of machine learning, 
has emerged as a promising approach for training AI systems in 
self-driving cars. RL enables autonomous vehicles to learn 
decision-making models by interacting with their environment, 
making it an ideal technique for addressing complex driving 
scenarios.

Simulators play a pivotal role in the development and evaluation 
of AI algorithms for self- driving cars. They provide a controlled 
and safe environment for training and testing, enabling 
researchers  and  developers  to iterate rapidly  without the risks 

associated with real- world experiments. Among the leading 
simulators used in autonomous driving research, CARLA and 
AirSim have gained prominence.

CARLA, an open-source simulator developed by the Computer 
Vision center at the Universität Autònoma de Barcelona, offers 
a highly realistic platform for autonomous driving. It 
encompasses features such as a rich urban environment, sensor 
models, and a variety of traffic scenarios. CARLA boasts a user-
friendly setup process, making it an attractive option for 
researchers and practitioners. However, integrating CARLA with 
popular deep learning frameworks like TensorFlow can present 
challenges due to compatibility issues and additional 
configuration requirements.
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“Deep reinforcement learning for autonomous
driving" by Intel labs

The paper "Deep reinforcement learning for autonomous 
driving" by Intel labs explores the application of Deep 
Reinforcement Learning (DRL) techniques in the field of 
autonomous driving [1]. The authors acknowledge the 
limitations of traditional approaches that often rely on 
handcrafted rules and heuristics, which may not capture the 
complex dynamics of real-world driving scenarios. In response to 
these challenges, the paper proposes a novel framework that 
leverages DRL algorithms to enable autonomous vehicles to 
learn driving behaviors directly from raw sensor data.

The paper begins by providing a comprehensive overview of 
reinforcement learning and its potential in the context of 
autonomous driving. It discusses the fundamental concepts of 
state, action, reward, and the Markov Decision Process (MDP) 
formulation. The authors emphasize the advantages of deep 
reinforcement learning, which allows the agents to learn 
complex representations and make decisions based on raw 
sensor inputs.

To demonstrate the efficacy of their approach, the authors 
present an experimental setup in which the DRL agent is 
trained in a simulated driving environment. They describe the 
key components of their framework, including the perception 
module, action space representation, reward function design, 
and the training process itself. The training process involves 
iterative updates using state-of-the-art DRL algorithms like Deep 
Q-Networks (DQN) or Proximal Policy Optimization (PPO).

The results of their experiments reveal promising performance 
in terms of decision-making and control in various driving 
scenarios, including urban, highway, and off-road conditions. 
The DRL agent exhibits the ability to navigate complex 
environments, handle dynamic obstacles, and make informed 
driving decisions. The paper also discusses the challenges and 
limitations of their approach, such as the need for significant 
computational resources and the difficulty of scaling these 
techniques to real-world applications.

One of the key applications of this research paper is the 
improvement of driving behaviors. Traditional approaches in 
autonomous driving often rely on handcrafted rules and 
heuristics, which may not fully capture the complex dynamics of 
real-world driving scenarios. By utilizing DRL algorithms, the 
paper aims to enable autonomous vehicles to learn driving 
behaviors directly from raw sensor data. This approach has the 
potential to enhance the adaptability and decision-making 
capabilities of autonomous vehicles, allowing them to navigate 
various driving scenarios such as urban, highway, and off-road 
conditions.

Another important application of this research paper is its 
contribution to real-world deployment of autonomous driving 
systems. Deploying autonomous vehicles in real-world 
environments poses numerous challenges, and the paper 
recognizes the limitations of traditional approaches in addressing 
these challenges. 
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On the other hand, AirSim, an open-source simulator developed 
by microsoft research, focuses on high-fidelity physics-based 
simulation and provides realistic environments spanning urban, 
rural, and off-road scenarios. AirSim offers flexibility in terms of 
customization and sensor modeling. However, its setup process 
is more complex, which may pose a steep learning curve for 
users.

In this paper, our primary objective is to perform a 
comprehensive comparative analysis of CARLA and AirSim 
simulators by implementing them using current technology, 
analyzing their ease of implementation, and identifying the 
associated challenges. We concentrate solely on comparing these 
two simulators to gain valuable insights into their respective 
strengths and weaknesses. By focusing on the implementation 
aspect, we aim to provide practical guidance to researchers and 
practitioners in selecting the most suitable training platform 
based on their specific needs.

To achieve our objective, we implemented and evaluated various 
reinforcement learning algorithms on both CARLA and AirSim 
simulators. However, the primary emphasis of our analysis lies 
in identifying and addressing the challenges encountered during 
the implementation process. We sought to gain a deep 
understanding of the difficulties and complexities associated 
with setting up and integrating CARLA with TensorFlow, as well 
as the challenges involved in configuring the AirSim simulator. 
By prioritizing these challenges, we provide valuable insights 
into the practical aspects of implementing these simulators using 
current technology.

The outcomes of this research contribute significantly to the 
understanding of implementing CARLA and AirSim simulators 
using current technology. By conducting a thorough 
comparison, we provide insights into the ease of 
implementation and associated challenges of each simulator. 
This study serves as a valuable resource for researchers and 
developers in the autonomous driving domain, assisting them in 
making informed decisions and optimizing their training 
methodologies for autonomous vehicles. Ultimately, our 
findings aim to drive further advancements in this exciting field.

LITERATURE REVIEW
In this section, the literature review investigates and analyzes two 
influential papers that have contributed significantly to the 
field. The selected papers, "Deep reinforcement learning for 
autonomous driving" by Intel Labs and "reinforcement learning-
based control for autonomous driving" by Stanford University, 
are examined in detail to understand their methodologies, key 
findings, and contributions to the advancement of autonomous 
driving [1,2]. By critically analyzing these papers, this literature 
review aims to provide a comprehensive understanding of the 
current state of research in the application of reinforcement 
learning techniques for autonomous driving and to identify any 
gaps or areas for further investigation.
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and variability of real-world driving scenarios. By leveraging RL 
techniques, the authors propose an end-to-end learning 
framework that integrates perception, planning, and control. 
This framework enables the autonomous vehicle to learn driving 
policies directly from data, resulting in improved accuracy and 
robustness in various driving environments, including urban 
and highway scenarios.

Another important application of this research paper is the 
inclusion of human demonstrations and expert knowledge to 
enhance the safety and performance of the learned policy. RL 
algorithms typically require extensive training, which can be 
time-consuming and potentially unsafe in real-world settings. By 
incorporating human demonstrations and expert knowledge 
into the training process, the authors aim to accelerate the 
learning process and improve the reliability and safety of the 
autonomous driving system. This application highlights the 
practicality and effectiveness of RL-based control strategies in 
autonomous driving.

Furthermore, the research paper contributes to the advancement 
of RL-based control systems for autonomous driving by 
discussing the challenges associated with real-world deployment. 
Safety concerns, scalability, and interpretability are crucial 
factors that need to be addressed when deploying RL-based 
control systems in autonomous vehicles. By acknowledging these 
challenges, the authors provide valuable insights into the 
practical considerations and limitations of RL techniques in 
real-world autonomous driving applications.

Overall, the research paper "Reinforcement learning-based 
control for autonomous driving" by Stanford University presents 
applications of RL techniques in the context of autonomous 
driving. The focus on improving driving accuracy and 
robustness, incorporating human demonstrations and expert 
knowledge, and addressing the challenges of real-world 
deployment contributes to the development of more effective 
and reliable autonomous driving systems. This research paper 
serves as a foundation for further exploration and advancement 
of RL-based control strategies in the field of autonomous 
driving.

Methodology

The methodology for building a reinforcement learning AI for 
autonomous driving involves a series of well-defined steps. We 
recognized that most of the processes, including data collection, 
preprocessing, reinforcement learning algorithm selection, agent 
design, training, evaluation, and fine-tuning, were similar for 
both CARLA and AirSim simulators. These common steps 
provided a solid foundation for implementing the AI models in 
both environments. However, our main focus in this research 
was on the implementation process, as it presented unique 
challenges and considerations (Figure 1).
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By leveraging DRL algorithms, the authors aim to overcome 
these limitations and provide a more effective solution. The 
ability of DRL algorithms to learn from raw sensor data 
and make decisions based on complex representations 
offers promising potential for improving the performance 
and safety of autonomous driving systems.

Overall, the paper "deep reinforcement learning for autonomous 
driving" provides valuable insights into the potential of using 
DRL algorithms to enhance autonomous driving systems. It 
highlights the advantages of learning driving behaviors directly 
from raw sensor data and presents encouraging results in 
simulated environments. While there are challenges to overcome 
for real-world deployment, the paper serves as a foundation for 
further research and development in the exciting intersection of 
deep reinforcement learning and autonomous driving.

"Reinforcement learning-based control for
autonomous driving" by Stanford University

The paper "Reinforcement learning-based control for 
autonomous driving" by Stanford University explores the use of 
Reinforcement Learning (RL) techniques in the context of 
autonomous driving [2]. The authors address the limitations of 
traditional rule-based approaches, which often struggle to 
handle the complexity and variability of real-world driving 
scenarios. To overcome these challenges, the paper proposes an 
end-to-end learning framework that integrates perception, 
planning, and control using RL algorithms.

The paper begins by providing a comprehensive overview of the 
principles of RL and its application to autonomous driving. It 
explains the key concepts of state, action, reward, and the 
Markov Decision Process (MDP) formulation. The authors 
emphasize the potential of RL to learn driving policies directly 
from data and highlight the importance of learning from 
human demonstrations to enhance the training process.

The proposed framework consists of several components, 
including perception modules, a high-level planner, and a low-
level controller. RL algorithms such as Deep Deterministic 
Policy Gradient (DDPG) or Trust Region Policy Optimization 
(TRPO) are employed to train the driving policy. The authors 
emphasize the significance of incorporating expert knowledge 
and human demonstrations to improve the safety and 
performance of the learned policy.

To evaluate the effectiveness of their approach, the authors 
conduct extensive experiments in various driving scenarios, 
including urban and highway environments. The results 
demonstrate improved driving accuracy, robustness, and 
generalization capabilities compared to traditional rule-based 
methods. The paper also discusses the challenges associated with 
real-world deployment, including safety concerns, scalability, and 
interpretability of RL-based control systems.

One of the key applications of this research paper is the 
improvement of driving accuracy and robustness. Traditional 
rule-based approaches often struggle to handle the complexity  
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analysis between the two simulators. Throughout our research,
we encountered various challenges and obstacles that greatly
contributed to our understanding of the strengths and
limitations of each simulator.

In the following sections, we have thoroughly explained the
details of the methodology employed in building a
reinforcement learning AI for autonomous driving. This
included selecting a suitable reinforcement learning algorithm,
designing neural network models, conducting the training
process, and evaluating the performance of the trained AI agent.
Through our research, we aimed to provide a comprehensive
understanding of the training strategies implemented. It is
important to note that we addressed the specific
implementation details of CARLA and AirSim simulators
separately in subsequent sections, where we highlighted the
challenges we faced, and the approaches we took to overcome
them.

Algorithmic framework

In our study, we have implemented a neural network
architecture that adheres to a Convolutional Neural Network
(CNN) structure commonly employed in reinforcement learning
tasks. The design of this network plays a crucial role in enabling
our AI agent to learn and make informed decisions in the
context of autonomous driving.

The input shape of our neural network is concatenated with the
specific input shape of the data. This allows us to handle
variable-length sequences of input data and effectively capture
temporal dependencies.

The network consists of several layers, starting with a
permutation layer. The permutation layer rearranges the input
dimensions to (2, 3, 1), ensuring compatibility between the
input data and the subsequent convolutional layers.

Following the permutation layer, we incorporate three
convolutional layers with progressively decreasing filter sizes (32,
64, 64). Each convolutional layer is accompanied by a Rectified
Linear Unit (ReLU) activation function. The ReLU activation
function introduces non-linearity to the network, allowing it to
capture complex patterns and learn hierarchical representations
from the input data.

The output of the final convolutional layer is flattened into a
one-dimensional vector, transforming the spatial information
into a format that can be fed into a fully connected layer. This
fully connected layer comprises 512 units and is followed by
another ReLU activation, further enabling the network to
capture high-level features and relationships in the data.

Lastly, we employ a dense layer with a number of units
equivalent to the available action space. This dense layer uses a
linear activation function, allowing the network to directly
output Q-values for each possible action. By mapping inputs to
Q-values, our agent can evaluate the potential outcomes of
different actions and make informed decisions in the
autonomous driving context.

By implementing this neural network architecture, we enable
our AI agent to learn and adapt based on the input data,
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Figure 1: Sequential steps in the implementation of a 
Reinforcement Learning (RL) system.

During the implementation process, particularly in environment 
building, we carefully selected between CARLA and AirSim as 
the simulation environments for training the AI models. This 
decision played a crucial role in laying the groundwork for 
subsequent development stages and facilitated the comparative
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ultimately empowering it to navigate and make optimal
decisions in autonomous driving scenarios (Figure 2) [3].

This step involved a comprehensive procedure, encompassing 
the download of the epic games launcher, installation of unreal 
engine, and meticulous setup of AirSim within the unreal engine 
environment [4].

However, it is worth noting that setting up AirSim presented 
certain challenges and required additional effort compared to 
other simulators. Allow us to provide a more detailed account of 
the difficulties encountered during the setup process.

Upon downloading the epic games launcher and installing 
unreal engine, we anticipated a smooth transition into 
integrating AirSim. However, we soon discovered that 
configuring AirSim within the unreal engine environment 
involved a more intricate setup compared to other simulators. 
The initial challenge we encountered was identifying the 
appropriate version of unreal engine compatible with the AirSim 
plugin [5]. Due to the rapid evolution of both unreal engine and 
AirSim, ensuring compatibility between the two became a crucial 
consideration (Figure 3).

Figure 3: Unreal engine.

Once the compatible version of unreal engine was selected, we 
proceeded to add the AirSim plugin to our project through the 
unreal marketplace. While the plugin itself was readily available, 
we encountered difficulties in navigating the vast array of 
options within the marketplace and identifying the most 
suitable plugin version for our research objectives. This process 
required careful evaluation and consideration to ensure seamless 
integration and optimal performance.

Furthermore, configuring the AirSim environment to align with 
our research requirements posed additional challenges. 
Customizing the simulated driving scenarios, defining the 
complexity of the environment, and adjusting various simulation 
settings demanded a deep understanding of both AirSim and 
unreal engine functionalities. Meticulous attention to detail was 
required to accurately replicate real-world driving conditions and 
scenarios, ensuring the authenticity and effectiveness of our AI 
model's training experience.

The complexity of the AirSim setup process also extended to the 
importation of assets for visual fidelity and accuracy. Integrating 
3D models of buildings, roads, traffic signs, and other objects 
into our unreal engine project required thorough selection, 
placement, and alignment to create a realistic and immersive 
environment. This task demanded both technical expertise and 
a keen eye for detail to accurately capture the intricacies of real-
world driving environments.
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Figure 2: Illustration of the neural network model used in the 
Study (Note that the last layer 1 × 128 is variable and depends 
on the available action space of the agent).

We have employed the same neural network architecture and 
training methods for both the CARLA and AirSim simulators.

Reward engineering for navigation

In our study, we have designed a similar reward function for the 
environment. The calculation of the reward is based on the car's 
position relative to the center of the track. We have 
implemented a method to estimate the perpendicular distance 
to the line connecting the two closest waypoints, which serves as 
a proxy for the distance to the center. By utilizing this distance 
and considering the track width, we have established a reward 
scheme that incentivizes the agent to stay on the track and 
penalizes deviations.

Furthermore, we have incorporated termination conditions in 
the reward function. If the reward falls below zero, indicating a 
significant deviation from the desired behavior, we terminate 
the episode. Additionally, if the car approaches the destination 
within a close proximity (within 5 meters), we consider the 
episode as complete.

By devising this reward function, we have aimed to guide the 
agent's learning process towards successful navigation. The 
formulation aligns with our specific objectives of encouraging 
the agent to follow the desired path, maintain track adherence, 
and reach the destination. We believe that these design choices 
effectively shape the agent's behavior and contribute to 
improved performance.

It is important to note that the reward function can be further 
customized and refined based on project requirements or 
domain expertise. However, the approach we have implemented 
in the provided code serves as a solid foundation for evaluating 
the agent's performance and driving capabilities in the context 
of our study.

AirSim

In our research, we have extensively performed the environment 
building process for training a reinforcement learning AI 
model for autonomous driving using AirSim. 
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This allowed us to gain a comprehensive understanding of 
CARLA's architecture, features, and system requirements.

During the initial setup of the CARLA simulator, we 
encountered various challenges that required careful attention 
and troubleshooting. One of the challenges we faced was related 
to dependencies and library installations. Due to differences in 
our system environment and dependencies required by CARLA, 
we encountered missing or incompatible packages during the 
installation process. This required us to carefully analyze the 
error messages, search for relevant solutions, and ensure that all 
the necessary dependencies were installed correctly.

Another challenge we encountered was configuring CARLA's 
environment variables. CARLA relies on specific paths and 
configurations to function properly, and any misconfiguration 
could lead to errors or inconsistencies. We had to carefully set 
up the environment variables, ensuring that the necessary paths 
were correctly specified and that the configurations matched our 
system setup.

As we made progress, we began exploring the diverse features 
offered by CARLA. This involved experimenting with different 
maps, vehicle models, and traffic scenarios to create realistic 
driving environments for our research. We utilized CARLA's 
extensive APIs to interact with the simulator, enabling us to 
control vehicles, gather sensor data, and simulate various driving 
scenarios. This hands-on experimentation allowed us to gain a 
deeper understanding of CARLA's capabilities and tailor our 
research to specific use cases.

Moving on to the code implementation phase, we encountered a 
significant challenge related to compatibility issues with 
TensorFlow and Keras, which are popular deep learning 
frameworks. Specifically, we faced problems with CUDA and 
cuDNN, which are essential components for GPU acceleration. 
These compatibility issues resulted in errors during installation 
or while executing our code. To address this, we meticulously 
verified and ensured that we had the correct versions of 
TensorFlow, Keras, CUDA, and cuDNN installed, aligning 
them with CARLA's documentation and our specific algorithm 
requirements. This involved carefully checking version 
compatibility, reinstalling libraries, and adjusting configurations 
as necessary.

Errors

Moving on to the code implementation phase, we encountered a 
significant challenge related to compatibility issues with 
TensorFlow and Keras, which are popular deep learning 
frameworks. Specifically, we faced problems with CUDA and 
cuDNN, which are essential components for GPU acceleration. 
These compatibility issues resulted in errors during installation 
or while executing our code.

One of the errors we encountered was a "ValueError: Calling 
Model.fit in graph mode is not supported when the Model 
instance was constructed with eager mode enabled" [8]. This 
error occurred when trying to train our neural network model 
using the Model.fit method in TensorFlow. It indicated a 
conflict between graph mode and eager mode, which are 
different execution modes in TensorFlow.
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Despite the challenges encountered during the setup process of 
AirSim, we made a strategic decision to focus our training efforts 
on a simplified racetrack environment. Given that this research 
primarily aims to compare and analyze the implementation 
difficulties of different simulators, we opted for a controlled and 
manageable environment to ensure a fair and accurate 
evaluation of AirSim. By using a simplified racetrack, we were 
able to isolate and assess the specific challenges and complexities 
associated with AirSim setup, enabling us to provide a 
comprehensive analysis of its implementation process.

While our choice of a simplified racetrack may limit the 
diversity and complexity of real-world driving scenarios, it 
allowed us to effectively evaluate the fundamental aspects of 
AirSim's setup and training procedures. By streamlining the 
environment, we could focus on the core functionalities of 
AirSim, such as sensor integration, vehicle dynamics, and 
reinforcement learning algorithms, without being overwhelmed 
by extraneous factors. This approach enabled us to conduct a 
detailed comparison of the challenges and performance 
characteristics specific to AirSim, offering valuable insights into 
the simulator's capabilities and limitations.

By leveraging the simplicity of the racetrack environment, we 
were able to assess the efficiency and effectiveness of AirSim's 
setup process in a controlled setting. This approach facilitated a 
targeted analysis of the difficulties encountered during 
integration, while still providing sufficient context for evaluating 
the simulator's performance. Our findings and observations from 
this research can serve as a valuable resource for researchers and 
practitioners seeking to understand the intricacies of 
implementing AirSim for autonomous driving AI training 
(Figure 4).

Figure 4: Unreal engine AirSim simulator.

DISCUSSION

CARLA

To implement the CARLA simulator for our autonomous 
driving research, we followed a stepwise approach. Firstly, we 
downloaded the CARLA simulator package from the official 
website [6] to ensure we had the most recent version compatible 
with our operating system. Next, we thoroughly studied 
CARLA's extensive documentation, which included installation 
guides, API references, and tutorials [7]. 
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Figure 5: CARLA simulator.

Working and validation

During the working and validation phase, our focus shifted 
towards rigorous testing, fine-tuning, and validation of the 
autonomous driving models implemented using CARLA and 
AirSim. By subjecting the models to extensive testing scenarios, 
benchmark evaluations, and meticulous analysis of the outputs, 
our aim was to ascertain their accuracy, reliability, and ethical 
behavior. Through this study, we strive to contribute a valuable 
resource that empowers researchers and practitioners in 
advancing the field of autonomous driving. Our comprehensive 
approach ensures that the insights gained from this phase can 
guide future developments and pave the way for safer and more 
efficient autonomous driving systems (Figure 6).

CONCLUSION
In this research, we have successfully achieved our primary 
objective of performing a comprehensive comparative analysis of 
CARLA and AirSim simulators, focusing on their 
implementation aspects and identifying associated challenges. 
Through the implementation and evaluation of various 
reinforcement learning algorithms on both simulators, we gained 
valuable insights into their strengths, weaknesses, and the 
practical considerations involved in their integration.
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Another error we faced was "Failed precondition: Could not find 
variable Variable. This could mean that the variable has been 
deleted. In TF1, it can also mean the variable is uninitialized." 
This error message typically indicates an issue with variable 
initialization or usage in TensorFlow. It can occur when 
attempting to access a variable that has not been properly 
initialized or when the variable has been deleted.

There were more random errors while running the code like 
“Tensorflow-FailedPreconditionError: Could not find variable 
dense_24/bias. This could mean that the variable has been 
deleted” but the main reason for these errors to generate were 
compatibility issues, such as version mismatches between 
TensorFlow, Keras, CUDA, and cuDNN. These version 
discrepancies could result in a lot of various errors and failures 
during the execution of our code. To overcome these challenges, 
we meticulously cross-checked the required versions specified by 
CARLA's documentation, verified the compatibility of all 
dependencies, and made necessary updates, including 
reinstalling libraries and adjusting configurations.

By addressing these compatibility issues and troubleshooting the 
encountered errors, we were able to successfully navigate 
through the code implementation phase and make progress in 
our research. These challenges taught us the importance of 
meticulous version management and compatibility verification 
when working with deep learning frameworks like TensorFlow 
and Keras in conjunction with CARLA.

Proposed solution

Based on our experience, we recommend using the following 
versions for a more seamless implementation process:

CUDA version: cuda_10.0.130_411.31_win10

cuDNN version: cudnn-10.0-windows10-x64-v7.6.0.64

TensorFlow GPU version: tensorflow_gpu-1.1.5

Python version: 3.6

By using these specific versions, researchers and developers can 
minimize the potential for version mismatch and related errors. 
These versions have been found to work well together, providing 
a stable and compatible environment for building autonomous 
driving projects using CARLA and TensorFlow. Following this 
recommended version setup can help researchers and developers 
save time and effort by avoiding unnecessary troubleshooting 
and compatibility challenges, allowing them to focus more on 
the core aspects of their projects.

Throughout the process, we relied heavily on CARLA's 
comprehensive documentation, which provided detailed 
guidance and troubleshooting steps for various scenarios. 
Additionally, we actively sought assistance from online forums 
and developer communities to seek advice from experienced 
CARLA users who had encountered similar compatibility issues.

By meticulously addressing these challenges and persistently 
troubleshooting compatibility issues, we were able to successfully 
overcome initial hurdles and progress in implementing CARLA 
for our autonomous driving research (Figures 5 and 6).
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Figure 6: Visual progression of the AI car's training journey 
captured through a captivating collage of real-time screenshots, 
reflecting the evolving capabilities and adaptive nature of the 
learning process.



Throughout our study, we encountered numerous challenges
and obstacles, ranging from compatibility issues to configuration
complexities. However, we actively addressed these challenges by
providing proper solutions and recommendations to overcome
them. Notably, we emphasized the significance of using specific
versions which have been found to work harmoniously and
minimize version mismatch errors.

In conclusion, this research provides a valuable resource for
advancing the implementation of CARLA and AirSim
simulators using current technology. By highlighting the ease of
implementation, challenges faced, and offering practical
solutions, we aim to contribute to the development of more
robust and efficient autonomous driving systems. Our findings
aim to drive further advancements in this exciting field and
inspire future research endeavors.
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