
A Comparative Analysis of CARLA and AirSim Simulators: Investigating
Implementation Challenges in Autonomous Driving

Manav Khambhayata*

Department of Computer Science, Chandigarh University, Chandigarh, India

ABSTRACT
The advancement of autonomous driving technologies relies heavily on effective training methodologies for self-

driving car AI. Reinforcement learning has emerged as a promising approach in this domain. In this paper, we

present a comparative analysis of training strategies for self-driving cars using two popular simulators: CARLA and

AirSim. We focus solely on the comparison between the two simulators by implementing them using current

technology, analyzing their ease of implementation, and identifying the associated challenges. CARLA offers ease of

setup and a realistic environment, while AirSim provides excellent overall performance despite its challenging setup

process. However, integrating CARLA with TensorFlow poses certain difficulties. To conduct the comparative

analysis, we implemented reinforcement learning algorithms on both simulators and evaluated their performance

metrics, including training time, learning efficiency, and generalization to real-world scenarios. Our findings indicate

that CARLA, despite its ease of setup, encountered challenges when integrating with TensorFlow due to

compatibility issues. However, once resolved, CARLA demonstrated promising results in terms of learning efficiency

and generalization to real- world scenarios, outperforming conventional methods. On the other hand, AirSim

showcased superior overall performance but required substantial effort in setting up the simulator and configuring

the environment. We provide insights into the strengths and weaknesses of each simulator and offer

recommendations for choosing the most suitable training platform based on specific research requirements.

Keywords: Reinforcement learning; CARLA; AirSim; TensorFlow

INTRODUCTION
No the development of autonomous driving technologies has
experienced remarkable progress, largely driven by advancements
in Artificial Intelligence (AI) and machine learning.
Reinforcement Learning (RL), a subfield of machine learning,
has emerged as a promising approach for training AI systems in
self-driving cars. RL enables autonomous vehicles to learn
decision-making models by interacting with their environment,
making it an ideal technique for addressing complex driving
scenarios.

Simulators play a pivotal role in the development and evaluation
of AI algorithms for self- driving cars. They provide a controlled
and safe environment for training and testing, enabling
researchers and developers to iterate rapidly without the risks

associated with real- world experiments. Among the leading
simulators used in autonomous driving research, CARLA and
AirSim have gained prominence.

CARLA, an open-source simulator developed by the Computer
Vision center at the Universität Autònoma de Barcelona, offers
a highly realistic platform for autonomous driving. It
encompasses features such as a rich urban environment, sensor
models, and a variety of traffic scenarios. CARLA boasts a user-
friendly setup process, making it an attractive option for
researchers and practitioners. However, integrating CARLA with
popular deep learning frameworks like TensorFlow can present
challenges due to compatibility issues and additional
configuration requirements.

Journal of Research and Development Review Article

Correspondence to: Manav Khambhayata, Department of Computer Science, Chandigarh University, Chandigarh, India; E-mail:
mumairhassanqais11@gmail.com

Received: 20-Jul-2023, Manuscript No. JRD-23-25779; Editor assigned: 24-Jul-2023, PreQC No. JRD-23-25779 (PQ); Reviewed: 07-Aug-2023,
QC No. JRD-23-25779; Revised: 16-Dec-2024, Manuscript No. JRD-23-25779 (R); Published: 23-Dec -2024, DOI: 10.35248/2311-3278.24.10.281

Citation: Khambhayata M (2024) A Comparative Analysis of CARLA and AirSim Simulators: Investigating Implementation Challenges in
Autonomous Driving. J Res Dev. 12:281.

Copyright: © 2024 Khambhayata M. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Res Dev, Vol.12 Iss.4 No:1000281 1

“Deep reinforcement learning for autonomous
driving" by Intel labs

The paper "Deep reinforcement learning for autonomous
driving" by Intel labs explores the application of Deep
Reinforcement Learning (DRL) techniques in the field of
autonomous driving [1]. The authors acknowledge the
limitations of traditional approaches that often rely on
handcrafted rules and heuristics, which may not capture the
complex dynamics of real-world driving scenarios. In response to
these challenges, the paper proposes a novel framework that
leverages DRL algorithms to enable autonomous vehicles to
learn driving behaviors directly from raw sensor data.

The paper begins by providing a comprehensive overview of
reinforcement learning and its potential in the context of
autonomous driving. It discusses the fundamental concepts of
state, action, reward, and the Markov Decision Process (MDP)
formulation. The authors emphasize the advantages of deep
reinforcement learning, which allows the agents to learn
complex representations and make decisions based on raw
sensor inputs.

To demonstrate the efficacy of their approach, the authors
present an experimental setup in which the DRL agent is
trained in a simulated driving environment. They describe the
key components of their framework, including the perception
module, action space representation, reward function design,
and the training process itself. The training process involves
iterative updates using state-of-the-art DRL algorithms like Deep
Q-Networks (DQN) or Proximal Policy Optimization (PPO).

The results of their experiments reveal promising performance
in terms of decision-making and control in various driving
scenarios, including urban, highway, and off-road conditions.
The DRL agent exhibits the ability to navigate complex
environments, handle dynamic obstacles, and make informed
driving decisions. The paper also discusses the challenges and
limitations of their approach, such as the need for significant
computational resources and the difficulty of scaling these
techniques to real-world applications.

One of the key applications of this research paper is the
improvement of driving behaviors. Traditional approaches in
autonomous driving often rely on handcrafted rules and
heuristics, which may not fully capture the complex dynamics of
real-world driving scenarios. By utilizing DRL algorithms, the
paper aims to enable autonomous vehicles to learn driving
behaviors directly from raw sensor data. This approach has the
potential to enhance the adaptability and decision-making
capabilities of autonomous vehicles, allowing them to navigate
various driving scenarios such as urban, highway, and off-road
conditions.

Another important application of this research paper is its
contribution to real-world deployment of autonomous driving
systems. Deploying autonomous vehicles in real-world
environments poses numerous challenges, and the paper
recognizes the limitations of traditional approaches in addressing
these challenges.

Khambhayata M

On the other hand, AirSim, an open-source simulator developed
by microsoft research, focuses on high-fidelity physics-based
simulation and provides realistic environments spanning urban,
rural, and off-road scenarios. AirSim offers flexibility in terms of
customization and sensor modeling. However, its setup process
is more complex, which may pose a steep learning curve for
users.

In this paper, our primary objective is to perform a
comprehensive comparative analysis of CARLA and AirSim
simulators by implementing them using current technology,
analyzing their ease of implementation, and identifying the
associated challenges. We concentrate solely on comparing these
two simulators to gain valuable insights into their respective
strengths and weaknesses. By focusing on the implementation
aspect, we aim to provide practical guidance to researchers and
practitioners in selecting the most suitable training platform
based on their specific needs.

To achieve our objective, we implemented and evaluated various
reinforcement learning algorithms on both CARLA and AirSim
simulators. However, the primary emphasis of our analysis lies
in identifying and addressing the challenges encountered during
the implementation process. We sought to gain a deep
understanding of the difficulties and complexities associated
with setting up and integrating CARLA with TensorFlow, as well
as the challenges involved in configuring the AirSim simulator.
By prioritizing these challenges, we provide valuable insights
into the practical aspects of implementing these simulators using
current technology.

The outcomes of this research contribute significantly to the
understanding of implementing CARLA and AirSim simulators
using current technology. By conducting a thorough
comparison, we provide insights into the ease of
implementation and associated challenges of each simulator.
This study serves as a valuable resource for researchers and
developers in the autonomous driving domain, assisting them in
making informed decisions and optimizing their training
methodologies for autonomous vehicles. Ultimately, our
findings aim to drive further advancements in this exciting field.

LITERATURE REVIEW
In this section, the literature review investigates and analyzes two
influential papers that have contributed significantly to the
field. The selected papers, "Deep reinforcement learning for
autonomous driving" by Intel Labs and "reinforcement learning-
based control for autonomous driving" by Stanford University,
are examined in detail to understand their methodologies, key
findings, and contributions to the advancement of autonomous
driving [1,2]. By critically analyzing these papers, this literature
review aims to provide a comprehensive understanding of the
current state of research in the application of reinforcement
learning techniques for autonomous driving and to identify any
gaps or areas for further investigation.

J Res Dev, Vol.12 Iss.4 No:1000281 2

and variability of real-world driving scenarios. By leveraging RL
techniques, the authors propose an end-to-end learning
framework that integrates perception, planning, and control.
This framework enables the autonomous vehicle to learn driving
policies directly from data, resulting in improved accuracy and
robustness in various driving environments, including urban
and highway scenarios.

Another important application of this research paper is the
inclusion of human demonstrations and expert knowledge to
enhance the safety and performance of the learned policy. RL
algorithms typically require extensive training, which can be
time-consuming and potentially unsafe in real-world settings. By
incorporating human demonstrations and expert knowledge
into the training process, the authors aim to accelerate the
learning process and improve the reliability and safety of the
autonomous driving system. This application highlights the
practicality and effectiveness of RL-based control strategies in
autonomous driving.

Furthermore, the research paper contributes to the advancement
of RL-based control systems for autonomous driving by
discussing the challenges associated with real-world deployment.
Safety concerns, scalability, and interpretability are crucial
factors that need to be addressed when deploying RL-based
control systems in autonomous vehicles. By acknowledging these
challenges, the authors provide valuable insights into the
practical considerations and limitations of RL techniques in
real-world autonomous driving applications.

Overall, the research paper "Reinforcement learning-based
control for autonomous driving" by Stanford University presents
applications of RL techniques in the context of autonomous
driving. The focus on improving driving accuracy and
robustness, incorporating human demonstrations and expert
knowledge, and addressing the challenges of real-world
deployment contributes to the development of more effective
and reliable autonomous driving systems. This research paper
serves as a foundation for further exploration and advancement
of RL-based control strategies in the field of autonomous
driving.

Methodology

The methodology for building a reinforcement learning AI for
autonomous driving involves a series of well-defined steps. We
recognized that most of the processes, including data collection,
preprocessing, reinforcement learning algorithm selection, agent
design, training, evaluation, and fine-tuning, were similar for
both CARLA and AirSim simulators. These common steps
provided a solid foundation for implementing the AI models in
both environments. However, our main focus in this research
was on the implementation process, as it presented unique
challenges and considerations (Figure 1).

Khambhayata M

By leveraging DRL algorithms, the authors aim to overcome
these limitations and provide a more effective solution. The
ability of DRL algorithms to learn from raw sensor data
and make decisions based on complex representations
offers promising potential for improving the performance
and safety of autonomous driving systems.

Overall, the paper "deep reinforcement learning for autonomous
driving" provides valuable insights into the potential of using
DRL algorithms to enhance autonomous driving systems. It
highlights the advantages of learning driving behaviors directly
from raw sensor data and presents encouraging results in
simulated environments. While there are challenges to overcome
for real-world deployment, the paper serves as a foundation for
further research and development in the exciting intersection of
deep reinforcement learning and autonomous driving.

"Reinforcement learning-based control for
autonomous driving" by Stanford University

The paper "Reinforcement learning-based control for
autonomous driving" by Stanford University explores the use of
Reinforcement Learning (RL) techniques in the context of
autonomous driving [2]. The authors address the limitations of
traditional rule-based approaches, which often struggle to
handle the complexity and variability of real-world driving
scenarios. To overcome these challenges, the paper proposes an
end-to-end learning framework that integrates perception,
planning, and control using RL algorithms.

The paper begins by providing a comprehensive overview of the
principles of RL and its application to autonomous driving. It
explains the key concepts of state, action, reward, and the
Markov Decision Process (MDP) formulation. The authors
emphasize the potential of RL to learn driving policies directly
from data and highlight the importance of learning from
human demonstrations to enhance the training process.

The proposed framework consists of several components,
including perception modules, a high-level planner, and a low-
level controller. RL algorithms such as Deep Deterministic
Policy Gradient (DDPG) or Trust Region Policy Optimization
(TRPO) are employed to train the driving policy. The authors
emphasize the significance of incorporating expert knowledge
and human demonstrations to improve the safety and
performance of the learned policy.

To evaluate the effectiveness of their approach, the authors
conduct extensive experiments in various driving scenarios,
including urban and highway environments. The results
demonstrate improved driving accuracy, robustness, and
generalization capabilities compared to traditional rule-based
methods. The paper also discusses the challenges associated with
real-world deployment, including safety concerns, scalability, and
interpretability of RL-based control systems.

One of the key applications of this research paper is the
improvement of driving accuracy and robustness. Traditional
rule-based approaches often struggle to handle the complexity

J Res Dev, Vol.12 Iss.4 No:1000281
3

analysis between the two simulators. Throughout our research,
we encountered various challenges and obstacles that greatly
contributed to our understanding of the strengths and
limitations of each simulator.

In the following sections, we have thoroughly explained the
details of the methodology employed in building a
reinforcement learning AI for autonomous driving. This
included selecting a suitable reinforcement learning algorithm,
designing neural network models, conducting the training
process, and evaluating the performance of the trained AI agent.
Through our research, we aimed to provide a comprehensive
understanding of the training strategies implemented. It is
important to note that we addressed the specific
implementation details of CARLA and AirSim simulators
separately in subsequent sections, where we highlighted the
challenges we faced, and the approaches we took to overcome
them.

Algorithmic framework

In our study, we have implemented a neural network
architecture that adheres to a Convolutional Neural Network
(CNN) structure commonly employed in reinforcement learning
tasks. The design of this network plays a crucial role in enabling
our AI agent to learn and make informed decisions in the
context of autonomous driving.

The input shape of our neural network is concatenated with the
specific input shape of the data. This allows us to handle
variable-length sequences of input data and effectively capture
temporal dependencies.

The network consists of several layers, starting with a
permutation layer. The permutation layer rearranges the input
dimensions to (2, 3, 1), ensuring compatibility between the
input data and the subsequent convolutional layers.

Following the permutation layer, we incorporate three
convolutional layers with progressively decreasing filter sizes (32,
64, 64). Each convolutional layer is accompanied by a Rectified
Linear Unit (ReLU) activation function. The ReLU activation
function introduces non-linearity to the network, allowing it to
capture complex patterns and learn hierarchical representations
from the input data.

The output of the final convolutional layer is flattened into a
one-dimensional vector, transforming the spatial information
into a format that can be fed into a fully connected layer. This
fully connected layer comprises 512 units and is followed by
another ReLU activation, further enabling the network to
capture high-level features and relationships in the data.

Lastly, we employ a dense layer with a number of units
equivalent to the available action space. This dense layer uses a
linear activation function, allowing the network to directly
output Q-values for each possible action. By mapping inputs to
Q-values, our agent can evaluate the potential outcomes of
different actions and make informed decisions in the
autonomous driving context.

By implementing this neural network architecture, we enable
our AI agent to learn and adapt based on the input data,

Khambhayata M

Figure 1: Sequential steps in the implementation of a
Reinforcement Learning (RL) system.

During the implementation process, particularly in environment
building, we carefully selected between CARLA and AirSim as
the simulation environments for training the AI models. This
decision played a crucial role in laying the groundwork for
subsequent development stages and facilitated the comparative

J Res Dev, Vol.12 Iss.4 No:1000281 4

ultimately empowering it to navigate and make optimal
decisions in autonomous driving scenarios (Figure 2) [3].

This step involved a comprehensive procedure, encompassing
the download of the epic games launcher, installation of unreal
engine, and meticulous setup of AirSim within the unreal engine
environment [4].

However, it is worth noting that setting up AirSim presented
certain challenges and required additional effort compared to
other simulators. Allow us to provide a more detailed account of
the difficulties encountered during the setup process.

Upon downloading the epic games launcher and installing
unreal engine, we anticipated a smooth transition into
integrating AirSim. However, we soon discovered that
configuring AirSim within the unreal engine environment
involved a more intricate setup compared to other simulators.
The initial challenge we encountered was identifying the
appropriate version of unreal engine compatible with the AirSim
plugin [5]. Due to the rapid evolution of both unreal engine and
AirSim, ensuring compatibility between the two became a crucial
consideration (Figure 3).

Figure 3: Unreal engine.

Once the compatible version of unreal engine was selected, we
proceeded to add the AirSim plugin to our project through the
unreal marketplace. While the plugin itself was readily available,
we encountered difficulties in navigating the vast array of
options within the marketplace and identifying the most
suitable plugin version for our research objectives. This process
required careful evaluation and consideration to ensure seamless
integration and optimal performance.

Furthermore, configuring the AirSim environment to align with
our research requirements posed additional challenges.
Customizing the simulated driving scenarios, defining the
complexity of the environment, and adjusting various simulation
settings demanded a deep understanding of both AirSim and
unreal engine functionalities. Meticulous attention to detail was
required to accurately replicate real-world driving conditions and
scenarios, ensuring the authenticity and effectiveness of our AI
model's training experience.

The complexity of the AirSim setup process also extended to the
importation of assets for visual fidelity and accuracy. Integrating
3D models of buildings, roads, traffic signs, and other objects
into our unreal engine project required thorough selection,
placement, and alignment to create a realistic and immersive
environment. This task demanded both technical expertise and
a keen eye for detail to accurately capture the intricacies of real-
world driving environments.

Khambhayata M

Figure 2: Illustration of the neural network model used in the
Study (Note that the last layer 1 × 128 is variable and depends
on the available action space of the agent).

We have employed the same neural network architecture and
training methods for both the CARLA and AirSim simulators.

Reward engineering for navigation

In our study, we have designed a similar reward function for the
environment. The calculation of the reward is based on the car's
position relative to the center of the track. We have
implemented a method to estimate the perpendicular distance
to the line connecting the two closest waypoints, which serves as
a proxy for the distance to the center. By utilizing this distance
and considering the track width, we have established a reward
scheme that incentivizes the agent to stay on the track and
penalizes deviations.

Furthermore, we have incorporated termination conditions in
the reward function. If the reward falls below zero, indicating a
significant deviation from the desired behavior, we terminate
the episode. Additionally, if the car approaches the destination
within a close proximity (within 5 meters), we consider the
episode as complete.

By devising this reward function, we have aimed to guide the
agent's learning process towards successful navigation. The
formulation aligns with our specific objectives of encouraging
the agent to follow the desired path, maintain track adherence,
and reach the destination. We believe that these design choices
effectively shape the agent's behavior and contribute to
improved performance.

It is important to note that the reward function can be further
customized and refined based on project requirements or
domain expertise. However, the approach we have implemented
in the provided code serves as a solid foundation for evaluating
the agent's performance and driving capabilities in the context
of our study.

AirSim

In our research, we have extensively performed the environment
building process for training a reinforcement learning AI
model for autonomous driving using AirSim.

J Res Dev, Vol.12 Iss.4 No:1000281

5

This allowed us to gain a comprehensive understanding of
CARLA's architecture, features, and system requirements.

During the initial setup of the CARLA simulator, we
encountered various challenges that required careful attention
and troubleshooting. One of the challenges we faced was related
to dependencies and library installations. Due to differences in
our system environment and dependencies required by CARLA,
we encountered missing or incompatible packages during the
installation process. This required us to carefully analyze the
error messages, search for relevant solutions, and ensure that all
the necessary dependencies were installed correctly.

Another challenge we encountered was configuring CARLA's
environment variables. CARLA relies on specific paths and
configurations to function properly, and any misconfiguration
could lead to errors or inconsistencies. We had to carefully set
up the environment variables, ensuring that the necessary paths
were correctly specified and that the configurations matched our
system setup.

As we made progress, we began exploring the diverse features
offered by CARLA. This involved experimenting with different
maps, vehicle models, and traffic scenarios to create realistic
driving environments for our research. We utilized CARLA's
extensive APIs to interact with the simulator, enabling us to
control vehicles, gather sensor data, and simulate various driving
scenarios. This hands-on experimentation allowed us to gain a
deeper understanding of CARLA's capabilities and tailor our
research to specific use cases.

Moving on to the code implementation phase, we encountered a
significant challenge related to compatibility issues with
TensorFlow and Keras, which are popular deep learning
frameworks. Specifically, we faced problems with CUDA and
cuDNN, which are essential components for GPU acceleration.
These compatibility issues resulted in errors during installation
or while executing our code. To address this, we meticulously
verified and ensured that we had the correct versions of
TensorFlow, Keras, CUDA, and cuDNN installed, aligning
them with CARLA's documentation and our specific algorithm
requirements. This involved carefully checking version
compatibility, reinstalling libraries, and adjusting configurations
as necessary.

Errors

Moving on to the code implementation phase, we encountered a
significant challenge related to compatibility issues with
TensorFlow and Keras, which are popular deep learning
frameworks. Specifically, we faced problems with CUDA and
cuDNN, which are essential components for GPU acceleration.
These compatibility issues resulted in errors during installation
or while executing our code.

One of the errors we encountered was a "ValueError: Calling
Model.fit in graph mode is not supported when the Model
instance was constructed with eager mode enabled" [8]. This
error occurred when trying to train our neural network model
using the Model.fit method in TensorFlow. It indicated a
conflict between graph mode and eager mode, which are
different execution modes in TensorFlow.

Khambhayata M

Despite the challenges encountered during the setup process of
AirSim, we made a strategic decision to focus our training efforts
on a simplified racetrack environment. Given that this research
primarily aims to compare and analyze the implementation
difficulties of different simulators, we opted for a controlled and
manageable environment to ensure a fair and accurate
evaluation of AirSim. By using a simplified racetrack, we were
able to isolate and assess the specific challenges and complexities
associated with AirSim setup, enabling us to provide a
comprehensive analysis of its implementation process.

While our choice of a simplified racetrack may limit the
diversity and complexity of real-world driving scenarios, it
allowed us to effectively evaluate the fundamental aspects of
AirSim's setup and training procedures. By streamlining the
environment, we could focus on the core functionalities of
AirSim, such as sensor integration, vehicle dynamics, and
reinforcement learning algorithms, without being overwhelmed
by extraneous factors. This approach enabled us to conduct a
detailed comparison of the challenges and performance
characteristics specific to AirSim, offering valuable insights into
the simulator's capabilities and limitations.

By leveraging the simplicity of the racetrack environment, we
were able to assess the efficiency and effectiveness of AirSim's
setup process in a controlled setting. This approach facilitated a
targeted analysis of the difficulties encountered during
integration, while still providing sufficient context for evaluating
the simulator's performance. Our findings and observations from
this research can serve as a valuable resource for researchers and
practitioners seeking to understand the intricacies of
implementing AirSim for autonomous driving AI training
(Figure 4).

Figure 4: Unreal engine AirSim simulator.

DISCUSSION

CARLA

To implement the CARLA simulator for our autonomous
driving research, we followed a stepwise approach. Firstly, we
downloaded the CARLA simulator package from the official
website [6] to ensure we had the most recent version compatible
with our operating system. Next, we thoroughly studied
CARLA's extensive documentation, which included installation
guides, API references, and tutorials [7].

J Res Dev, Vol.12 Iss.4 No:1000281 6

Figure 5: CARLA simulator.

Working and validation

During the working and validation phase, our focus shifted
towards rigorous testing, fine-tuning, and validation of the
autonomous driving models implemented using CARLA and
AirSim. By subjecting the models to extensive testing scenarios,
benchmark evaluations, and meticulous analysis of the outputs,
our aim was to ascertain their accuracy, reliability, and ethical
behavior. Through this study, we strive to contribute a valuable
resource that empowers researchers and practitioners in
advancing the field of autonomous driving. Our comprehensive
approach ensures that the insights gained from this phase can
guide future developments and pave the way for safer and more
efficient autonomous driving systems (Figure 6).

CONCLUSION
In this research, we have successfully achieved our primary
objective of performing a comprehensive comparative analysis of
CARLA and AirSim simulators, focusing on their
implementation aspects and identifying associated challenges.
Through the implementation and evaluation of various
reinforcement learning algorithms on both simulators, we gained
valuable insights into their strengths, weaknesses, and the
practical considerations involved in their integration.

Khambhayata M

Another error we faced was "Failed precondition: Could not find
variable Variable. This could mean that the variable has been
deleted. In TF1, it can also mean the variable is uninitialized."
This error message typically indicates an issue with variable
initialization or usage in TensorFlow. It can occur when
attempting to access a variable that has not been properly
initialized or when the variable has been deleted.

There were more random errors while running the code like
“Tensorflow-FailedPreconditionError: Could not find variable
dense_24/bias. This could mean that the variable has been
deleted” but the main reason for these errors to generate were
compatibility issues, such as version mismatches between
TensorFlow, Keras, CUDA, and cuDNN. These version
discrepancies could result in a lot of various errors and failures
during the execution of our code. To overcome these challenges,
we meticulously cross-checked the required versions specified by
CARLA's documentation, verified the compatibility of all
dependencies, and made necessary updates, including
reinstalling libraries and adjusting configurations.

By addressing these compatibility issues and troubleshooting the
encountered errors, we were able to successfully navigate
through the code implementation phase and make progress in
our research. These challenges taught us the importance of
meticulous version management and compatibility verification
when working with deep learning frameworks like TensorFlow
and Keras in conjunction with CARLA.

Proposed solution

Based on our experience, we recommend using the following
versions for a more seamless implementation process:

CUDA version: cuda_10.0.130_411.31_win10

cuDNN version: cudnn-10.0-windows10-x64-v7.6.0.64

TensorFlow GPU version: tensorflow_gpu-1.1.5

Python version: 3.6

By using these specific versions, researchers and developers can
minimize the potential for version mismatch and related errors.
These versions have been found to work well together, providing
a stable and compatible environment for building autonomous
driving projects using CARLA and TensorFlow. Following this
recommended version setup can help researchers and developers
save time and effort by avoiding unnecessary troubleshooting
and compatibility challenges, allowing them to focus more on
the core aspects of their projects.

Throughout the process, we relied heavily on CARLA's
comprehensive documentation, which provided detailed
guidance and troubleshooting steps for various scenarios.
Additionally, we actively sought assistance from online forums
and developer communities to seek advice from experienced
CARLA users who had encountered similar compatibility issues.

By meticulously addressing these challenges and persistently
troubleshooting compatibility issues, we were able to successfully
overcome initial hurdles and progress in implementing CARLA
for our autonomous driving research (Figures 5 and 6).

J Res Dev, Vol.12 Iss.4 No:1000281 7

Figure 6: Visual progression of the AI car's training journey
captured through a captivating collage of real-time screenshots,
reflecting the evolving capabilities and adaptive nature of the
learning process.

Throughout our study, we encountered numerous challenges
and obstacles, ranging from compatibility issues to configuration
complexities. However, we actively addressed these challenges by
providing proper solutions and recommendations to overcome
them. Notably, we emphasized the significance of using specific
versions which have been found to work harmoniously and
minimize version mismatch errors.

In conclusion, this research provides a valuable resource for
advancing the implementation of CARLA and AirSim
simulators using current technology. By highlighting the ease of
implementation, challenges faced, and offering practical
solutions, we aim to contribute to the development of more
robust and efficient autonomous driving systems. Our findings
aim to drive further advancements in this exciting field and
inspire future research endeavors.

REFERENCES
1. Kiran BR, Sobh I, Talpaert V, Mannion P, Al Sallab AA,

Yogamani S, et al. Deep reinforcement learning for autonomous

driving: A survey. IEEE Trans Intell Transp Syst. 2021;23(6):
4909-4926.

2. Yu A, Palefsky-Smith R, Bedi R. Deep reinforcement learning for
simulated autonomous vehicle control. Course Project Reports:
Winter. 2016;2016:1-7.

3. Store. Epic Games. 2023.

4. Github. Build AirSim on Windows. 2023.

5. Carla. CARLA: Open-source simulator for autonomous driving
research. CARLA Team. 2024.

6. Github. tensorflow/tensorflow. 2024.

7. NVIDIA Developer. CUDA Toolkit Archive. NVIDIA
Corporation, California, United States. 2007.

8. NVIDIA Developer. cuDNN Archive. NVIDIA Corporation,
California, United States. 2007.

Khambhayata M

J Res Dev, Vol.12 Iss.4 No:1000281 (MRPFT) 8

https://arxiv.org/abs/2002.00444
https://arxiv.org/abs/2002.00444
http://vision.stanford.edu/teaching/cs231n/reports/2016/pdfs/112_Report.pdf
http://vision.stanford.edu/teaching/cs231n/reports/2016/pdfs/112_Report.pdf
https://store.epicgames.com/en-US/download
https://github.com/microsoft/AirSim/blob/main/docs/build_windows.md
https://github.com/carla-simulator/carlahttps:/carla.org/
https://github.com/carla-simulator/carlahttps:/carla.org/
https://github.com/tensorflow/tensorflow
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/rdp/cudnn-archive

	Contents
	A Comparative Analysis of CARLA and AirSim Simulators: Investigating Implementation Challenges in Autonomous Driving
	ABSTRACT
	INTRODUCTION
	LITERATURE REVIEW
	“Deep reinforcement learning for autonomous driving" by Intel labs
	"Reinforcement learning-based control for autonomous driving" by Stanford University
	Methodology
	Algorithmic framework
	Reward engineering for navigation
	AirSim

	DISCUSSION
	CARLA
	Errors
	Proposed solution

	WORKING AND VALIDATION
	CONCLUSION
	REFERENCES

