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Theorem 1. (Strong Nullstellensatz) If K is an algebraically closed 
field and I is an ideal in K[x

1
, ..., x

n
] then

( )( )   I V I I= √

Theorem 2. (Ideal-Variety Correspondence) Let K be an arbitrary 
field; the maps

Affinevarieties ideals→

and
ideals Affinevarieties→

are inclusion reversing and
( )( )   V I V V=

for all affine varieties V, if K is an algebraically closed then
Affinevarieties radicalideals→

and
radicalideals Affinevarieties→  

are inclusion reversing bijections and inverses for each other. 

Our free resolution is guaranteed from the following theorem.

Theorem 3. The boundary of a boundary vanishes, that is;

1 0p p+∂ ∂ =

Proof. We have;
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INTRODUCTION

The main idea of this paper is reconstructing molecular shapes 
by using alternative to the interpreted graph neural networks 
that are using geometric parametres for building artificial 
intelligence models, so we can access a theoretical justification 
of the topological signature from our previous work and explore 
new topological models for application purposes [1]. We will be 
considering the metrical representation of a boundary operator 
defined on the set of edges to the set of vertices in the context 
of an affine varieties so we can reconstruct the variety from an 
already defined algebraic topological space, let’s illustrate by a 
first example, the following is a filtered simplicial table.

A quantification of the boundary operator obtained from Grobner 
and Buchberger algorithms using ideals as basis generators to 
solve a hidden polynomial equations system would be;

The two following theorems will play a central role in road 
mapping the inverse of the boundary and would also give us a 
justification to work in a commutative algebraic setting.

ABSTRACT
In the aim of presenting a learning approach derived from algebraic topology for protein structure prediction, we 
will be showing how our quotient spaces could qualitatively give insight into how building good homomorphism’s 
can help identifying accurate neural networks. We will also be giving as an example of application the use of a model 
generated after extracting an algebraic invariant which is in our case a persistent diagram on some biological data, by 
encoding the two first homologies H

1
 to H

0
 using a boundary operator, the algorithms are originated from algebraic 

geometry. Basically two main algorithms are used the Buchberger’s algorithm and Shreyer’s algorithm.
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intervals. We should mention before getting in the proposed 
probabilistic models or the way they are writing that computer 
simulations nowadays made the theoretical frame quite flexible 
but less deliberate, especially when a new theory is proposed. This 
is the case with persistent diagrams. We should also mention that 
persistent diagrams are either derived from a learning process or 
functional summaries within a larger Hilbert space, for that reason 
one should investigate how the replicated persistent diagrams can 
be generated and what makes it different from other traditional 
constructions, principal component analysis as an example. To 
prove existence and definition of a replicated persistent diagram, 
we will be solving the problem of replication by investigating the 
behaviour of a persistent diagram near its greatest lower bound 
given by following [2].

( ) ( ), b,b/  /a a
l a l l a lH X F H X F×

From the already defined inclusion of topological spaces, we 
derive the following commutative diagram;

then we induce by using relative homology the following exact 
sequence;

' '

   
f g f gu

Kerp Kerq Kerw cokerp cokerq cokerw→ → → → →

Which means the caution could be defined for the whole 
inclusion, then a replicated persistent diagram is theoretically 
guaranteed. To fulfill the definition we consider the following 
diagram.

The uniqueness of our persistent diagram to conclude the 
definition depends on a factorization of the previous in the 
functor h back to the previous relative sequence we have.

p, q ∈ H∗ are well defined projections which implies H ∈ W it 
is now sufficient to prove Imp ∈ W or Imp ∈ H

l
 or (X

a
)/F

l
b,b ∈ 

H∗ the second inclusion is given by construction or in H
l
 (Xa)/

F
l
b,b every map calculate a homology within F

l
b,b we confirm that 

W has the same topological degree as P.D(X
a+b

) which gives the 
commutativity of the diagram. We conclude the uniqueness of 
P.D(X

a+b
) then P.D(X) for any topological space (X) with some 

degree p.

Being said, the immediate way to start is building a confidence 
set interval for ( , )W P P

Λ

∞

With P
Λ

is an estimate of the persistent diagram constructed from 
a sample.

W∞ is the bottleneck distance, we consider for that reason the 
theorem.

Theorem 4. Let f, g : K → R be monotone functions. Then;

( ) ( )( )  ,  |   |p k k pW Dgm f Dgm g f g≤ −

for a homology dimension k we have;

( ) ( )( )
1( ) ,
| (  ,     ) ( ) |p k k

dim k

p

k

p
W Dgm f Dgm g f g

σ
σ σ

∈ +
≤ ∑ −

We then bound
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Let’s now detail the computing part of the previous.

MATERIALS AND METHODS

Persistent diagram with different methods of construction

Let’s consider the following revision from which we can derive a 
clear description of the class of linear statistical representations;

  X Y×

as universal components in a set theoretical context.

It is now sufficient to consider the pushout of the precedent 
diagram so the existence of our persistent diagram is guaranteed. 
Let us now involve more components to full-fill the definition, 
for that reason and to exploit efficiently theorems and proofs of 
the investigated theory, let us consider the functoriality of the 
main definition,

With ,ψ ϕ  are well defined vertex mappings between different set 
vertices contained in a filtered simplicial complexes, we should 
also mention that no theoretical frame or applied one is given in 
the literature for a comparison between kernel density estimation 
construction vs alpha complex one of the persistent diagram in 
topological data analysis.

To be able to visualize the filtration process, one needs to consider 
the pullback given by,

Then given a sequence of inclusions of topological spaces
...a b a bX X X +⊆ ⊆ ⊆

and its homology groups cautioned by their tames, a persistent 
diagram up to isomorphism is given by the following;

The inclusions of topological spaces induces immediately an 
inclusion between the cautioned spaces, we now can be sure from 
the greatest lower bound which is

( ) ( ), b,b/  /a a
l a l l a lH X F H X F×

This gives a theoretical frame to construct our confidence sets 
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1

1
/   

im

j j j
j

A q a q R
+

=
< >= ∑ ∈

to get a final result computing ∂
i+1

. Things seems easier for 
the cycle submodule, which is a submodule of the polynomial 
module. As previously, this time ∂

i
 has m

i−1
 rows and m

i
 columns,

1
1,...( ), , i

i

m
m iA a a a R −= ∈

Where a
i
 is the ith column in the matrix, the set of all [q

1
, ..., q

mi
]T 

such that

1
0

im

i i
i

q a
=
∑ =

 is a R  submodule of 
imR  which is the first Syzygy 

module of (a
1
, ..., a

mi
). A set of generators of the previous would 

finish the task, then finally to compute our homologies it suffices 
to verify whether the generators of the Syzygy submodule are in 
the boundary submodule.

Solving the problem of the boundary within a variety would 
consists of solving all edges and vertices within a set of 
polynomials equations without losing topological significance. 
The inverse inclusion would give an exact sequence for the 
boundary operators. The problem then takes the form of a free 
resolution, so we have the following computation.

Computation of homologies and rank invariant: Let’s consider 
the polynomial module Rm with the standard basis e

1
, ..., e

m
 where 

e
i
 is the standard basis vector with constant polynomial 0 in all 

positions except 1 in position i, min Rm is of the form xue
i
 for some 

i and we say m contains e
i
. For, u, v ∈ Nn u > v, if u − v ∈ Zn the left 

most nonzero entry is positive, this gives a total order on Nn as an 
example (1, 4, 0)>(1, 3, 1) since (1, 4, 0)−(1, 3, 1)=(0, 1, 0) the left 
most nonzero is 1, for two monomials xu, xv in R, xu>xv if u>v which 
gives a monomial order on R we then extend the order on Rm by 
using xue

i
>xve

j
 if i<j or if i=j and xu>xv, r ∈ Rm can be written in a 

unique way, as a k linear combination of monomials m
i
; 

im

i i
i

c m∑

Where c
i
 ∈ K, c

i
 ≠ 0 and m

i
 ordered according to monomial order. 

As an example, if we consider 
2 3 2

1 2 1 37 , ]3 5[ Tf k x x x x R= − ∈

Then we can write f in terms of the standard basis 
2 3 2 3

1 2 3 1 1 2 1 3 2 1 27 ,0 5 0, 3 0, 7[ ] [ ] [ 5] 3T T Tf x x x x x x e x e x e= − + = − +

We then extend operations such as least common multiple to 
monomials in R and Rm we summarize them by saying 

/ /u v u vm n x x x −= =
After a division, we get

1

t

i ia q a r= ∑ +

So, if r=0 then a ∈ <A> so the division is not a sufficient condition, 
for that reason we use Grobner basis then by forcing the leading 
terms to be equal we get a sufficient condition. For unicity and 
minimality, we reduce each polynomial in G by replacing g ∈ G by 
the remainder of g/(G − g) then im∂

i+1
 is well computed.

Still to compute generators for the Syzygy submodule, we compute 
a Grobner basis.

1,... },{ sA a a=

( ),  H S M

such that H is the Hausdorff distance;

( ) { },    :H K M inf K M andM Kε ε ε= ⊂ ⊕ ⊂ ⊕

to obtain a bound on

( , )W P P
Λ

∞

with ( ) Z VectMε ∗=

We can now easily define a 1 − α confidence set interval for the 
bottleneck distance;

( , )W P P
Λ

∞

that is;

[ ] ( , ) 0,  1( )n
n

infP W P P plim α
Λ

∞
→∞

∈ ≥ −

With p
n
 an adequate statistical descriptor of P

Λ  the last step is to 
find α such that

( (  ), )n n
n

supP H S M clim α
→∞

> ≤

Then the set of persistent diagrams are given.

( )nCε ⊕ such that; nC is the confidence set related to P
Λ .

Being said, we get a confirmed theoretical frame to start the 
statistical study that involve point clouds representing atoms 
lying in a high dimensional space with a hidden locally Euclidean 
manifold. The next step consists of presenting algorithms derived 
from the previous result mentioned in the introduction, which is 
persistent homology of filtered complex is nothing but the regular 
homology of a graded module over a polynomial ring [3-6].

Polynomial solutions of boundary operators

Boundary and cycles modules: The concept of boundary and 
cycles is theoretically formalized in the previous definition of a 
persistence homology, homology gives a description of the set of 
cycles, by using the caution over the set of boundaries, which 
also means by persistence, preserving the cycles that are not 
boundaries.

, (/ )l p l l p l
k k k kH Z B Z+= ∩

In our context, cycles are the significant topological signatures of 
all types including loops and loops of loops, holes and cavities 
and so on. Let’s now compute our homologies, as already 
mentioned in the introduction persistent homology of filtered 
complex is nothing but the regular homology of a graded module 
over a polynomial ring, our module is defined over the n graded 
polynomial ring;

[ ]1 ,  ...,  n
nA k x x=

with standard grading
. ,n v n

vA k x v N= ∈

then
nR A=

Then our vector of polynomials is writing as [a
1
, ..., a

m
]T , a

i
 is a 

polynomial where the matrix M
i+1

 for ∂
i+1

 has m
i
 rows and m

i+1
 

columns where mj stands for the number of j − simplices in 
the complex, a

i
 is the ith column in M

i+1
 thus we can separate 

polynomials from the derived coefficients, let

11,... ,( ), i

i

m
m iA a a a R

+
= ∈

Where a
i
 is the ith column in M

i+1
 one now can write a polynomial 

vector a in a submodule in term of some basis A as in
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For <A> where the ordering is the monomial one, we then follow 
the same process as for im∂

i+1
 we get

1
( ),

s

i j ijk kS a a q g= ∑

with g
k
 elements of the Grobner we need now a Grobner basis for

1,...( , )sSYZ a a

which can be obtained by using Schreyer’s theorem, guaranteeing 
the existence of

       
( ) ( )
ij ij S

i j i j i j
i j

h h
S q R

LT a LT a
ε ε= − − ∈

otherwise, we use this basis to find generators

1,...( , )sSYZ g g

for a metrical representation we consider elements a
i
 and g

i
 from 

S as columns of a given M
A
 and M

G
 respectively, the two basis 

generate the same module. ∃A, B such that M
G
=M

A
A, M

A
=M

G
B 

with each column of M
A
 is divided by M

G 
since M

G
 a Grobner 

basis for M
A
. We conclude, there is a column in B for each 

column a
i
 ∈ M

A
 that can be obtained by division of a

i
 by M

G
. Let;

1,  ...,  tS S

be the columns of the t × t matrix I
t
 – AB. Then;

1 1,...,( , ...,) ,t i j tSYZ a a AS S S=< >

Then the Ker∂
i
 is computed. Finally we need to compute the 

caution H
i
 given im∂

i+1
=<G> and Ker∂

i
=SYZ(a

1
, ..., a

t
). We divide 

every column in Ker∂
i
 by im∂

i+1
 using the same process as in 

computing im∂
i+1

 if the remainder is non zero we add it both to 
im∂

i+1
 and H

i
. Therefore, we count only unique cycles. We obtain 

for the previous bifiltration the following homogenous matrix for 
∂

1
 So M

11
 is obtained by cautioning

 2 2
1 2:j x x  by 2

1 2:A x x  we get 11 2  M x=  

and so on, the full matrix then has the form

To compute the rank invariant, we can use the multigraded 
approach, then if we take the previous bifiltration, matrices for 
SYZ(G

1
) and Grobner of Z

1
 for ∂

1
 are obtained as previously,

Multi-filtered dataset: In topological data analysis, a multifiltered 
data set can be defined as;

Definition 1. (S, {f
j
} j), where S is a finite set of d-dimensional 

points with n – 1 real-valued functions.

 :jf S R→

Defined on it, for n>1. We assume our data is a multifiltered 
dataset (S, {f

j
} j).

In the following definitions, the calculations are made in 
commutative algebraic setting, this induces an order on the 
multifiltration, which can be viewed as an action of a ring over a 
module plus an inclusion maps relating copies of vertices within 
complexes, we will be using the ring of polynomials to relate 
the chain groups in the different grades of the module as the 
following;

1 0

1 00 ( ) ( ) ... ( ) 0
p pi i

p pC K C K C K
−∂ ∂ ∂

−→ → → → →

with
( )i u i uC C K= ⊕

For that purpose, let us detail the definition.

Definition 2. A p-dimensional simplex or p − simplex σp = [e
0
, e

1
, 

..., e
p
] is the smallest convex set in a Euclidean space Rm containing 

the p+1 points e
0
, ..., e

p
;

1
0

0
{( ) :,...,  0     0,  ..1 ,  }.P

p
p

p i
i

t t R t and ti for all i p+

=
∆ = =∈ ∑ ≥ =

Another interesting and explicit description of persistent 
homology via visualization of barcodes can be found in [7]. 
We suggest here a concise precise definition via classification 
theorem.

Remark 1 (Persistence modules). We apply the “homology 
functor” to the filtered chain complexes, so we get our “homology 
groups” category [8,9]. This can be viewed as;

1 01

1 00 ( ) ( ) ... ( ) 0
p pi

p pH K H K H K
−∂ ∂ ∂∂

−→ → → → →

Where → denotes the inclusion map.

For a finite persistence module C with filed F coefficients

* [ ] (( ; ) . . / . ,( [ ] ( [ ])))j ji r St
i jH C F x F x x F x x F x≅ ⊕ ⊕ ⊕

that are the quantification of the filtration parameter over a field, 
with clear description [10].

Definition 3. The p-persistence k-th homology group
, (/ )

l pl p l l
k k k kH Z B Z

+

= ∩

well defined since l p

kB
+  and l

kZ  are subgroups of 
l p

kC
+

.

Let us consider the previous bi filtration from the introduction; 
we assume the computation are in

Z Z⊕

and u
1
=(0, 2), u

2
=(0, 1), u

3
=(0, 0), u

4
=(1, 2), u

5
=(1, 1), u

6=
(1, 0), 

u
7
=(2, 2), u

8
=(2, 1), u

9
=(2, 0), u

10
=(3, 2), u

11
=(3, 1), u

12
=(3, 0) to be 

read from top to the bottom.

In this example, we have F
4
 in grade (0, 0),

F
5
=x

1
 × F

4
 in grade (0, 0).

F
6
=x

2
 × F

5
= x

1
 × x

2
 × F

4
 in grade (1, 1) and so on, then ∂

1
 as from

1 01

1 00 ( ) ( ) ... ( ) 0
p pi

p pC K C K C K
−∂ ∂ ∂∂

−→ → → → →

can be computed

Computation of homologies and rank invariant for atoms point 
cloud: Being said gives a clear road map to start hypothesizing over 
a real data set. For that reason, let us consider a folding protein 
that constitutes N particles and has the spatiotemporal complexity 
of R3N ∗ R+. We assume that our system can be described as a set 
of N nonlinear oscillators of dimension RnN ∗ R+, where n is the 
dimensionality of a single nonlinear oscillator. We will be using 
data from the freely data bank of Protein Data Bank (PDBs), the 
molecule in consideration has 1cos as an ID. Our point cloud 
lying in a R3.700, coordinates of atoms are considered as the input 
of our multidimensional filtration (Figure 1).
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The topological signature was given in Figure 4.

Figure 4: Fingerprint of Coarse-Grained (CG) representation of an 
alpha helix generated from a protein of Protein Data Bank (PDB) ID 
1cos. Note: A) 1cos (dimension 0); B) 1cos (dimension 1).

This means our final result when the end of the multifiltration is 
a one dimensional simplex, with eighteen vertex at the beginning 
of the multifiltration; u

1
=(3, 20, 21), u

2
=(3, 19, 21), u

3
=(4, 21, 22), 

u
4
=(3, 21, 23), u

5
=(3, 19, 23), u

6
=(3, 20, 24), u

7
=(4, 21, 23), u

8
=(3, 

22, 25), u
9
=(4, 20, 22), u

10
=(3, 21, 24), u

11
=(3, 22, 26), u

12
=(3, 23, 

26), u
13

=(4, 25, 26), u
14

=(4, 24, 25), u
15

=(4, 19, 25), u
16

=(3, 23, 19), 
u

17
=(4, 23, 26), u

18
=(4, 22, 27).

We get after calculations the following matrix;

which means the final shape conserve only one type of homology, 
with four loops as generators. Let us now involve more parameters, 
we consider decreasing radial basis functions. The general form 
is;

( , )i j i j i j i jc rω η= Φ

Where, ω
ij
 is associated with atomic types, then a generalized 

exponential kernel has the form;
( )/( , ) krr e ηη −Φ =

k>0 one then can construct the following matrix.
,1 ( )

0{ }i j i j i j
i i j

r
jM Ifη

=
Φ− ≠= with

1,
1 ( )

( )
r/

r νη
η

Φ =
+  

This matrix can easily be obtained following the division 
algorithm mentioned in the previous section. By considering, xyz 
coordinates of atoms as the input of the multifiltration, and then 
the result can be used as the input for the persistent homology 
calculations following the same process. This clearly shows the 
path for an easiest extraction of a shape of a protein, since the 
traditional methods use many complicated parameters to build 
matrices supposed to rebuild the geometric conformation as 
the case of molecular nonlinear dynamics and flexibility rigidity 
index involving exponential kernels with parameters. For more 

Figure 1: The all-atom representation of an alpha helix. 

We obtain in a first sight the following topological signatures 
which means our final result is a three dimensional simplex 
(Figure 2).

Figure 2: Topological fingerprints of the molecule. Note: A) cois5 
(dimension 0); B) cois5 (dimension 1); C) cois5 (dimension 2).

To simplify the task let us consider the alpha carbon atoms of our 
molecule (Figure 3).

Figure 3: Coarse-Grained (CG) representation of an alpha helix 
generated from a protein of Protein Data Bank (PDB) ID 1cos. 
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Table 1: Comparison of DeepCNF and DNN-Pred models.

Metric DeepCNF (2018) DNN-Pred (2019)

Accuracy ~ 80% 75%-78%

Precision
High for residue-level 

prediction
Good for domain 

classification

Recall
High for secondary 

structure tasks
Good for protein 

interactions

Complexity High (CNN+CRF) Moderate (MLP)

Training data Large PDB datasets
CASP and other 

benchmarks

Computational 
cost

High due to CRFs and 
CNNs

Moderate due to MLP

Note: DeepCNF: Deep Convolutional Neural Fields; DNN-Pred: Deep 
Neural Network-based Prediction; CNN: Convolutional Neural Network; 
CRF: Conditional Random Field; MLP: Multilayer Perceptron; PDB: 
Protein Data Bank; CASP: Critical Assessment of Structure Prediction.

Figure 5: Persistent diagrams generated from xyz distributions of the 
alpha carbon atoms. Note: A) Protein Data Bank (PDB) id 1cos; B) 
PDB id 2jox; C) PDB id 6idd and D) PDB id 1dgv.

Figure 6: Comparison of Deep Convolutional Neural Fields 
(DeepCNF) and Deep Neural Network-based Prediction (DNN-Pred) 
models.

enlightenment through an interesting detailed investigation of 
topology function relationship paradigm of proteins [3,11].

RESULTS 

As we have already mentioned in the previous section a full 
description of persistent homology can be obtained following; 
persistent homology of filtered complex is nothing but the 
regular homology of a graded module over a polynomial ring. 
The computation is also easy following; a division algorithm 
then a Buchberger algorithm to seek generators then basis 
(ideals) for modules. The final step for a statistical analysis is a 
quantification of the result of the second section to figure out 
the so-called replicated persistent diagrams. We can observe the 
significant topological difference between tertiary structures and 
secondary structures from Figure 5; the interesting task would 
be a separation between the alpha helices and beta sheets. Those 
can be literally expressed as the length of the coefficients lying in 
the metrical representation of our computed quotient Hi [2,12].

The total loss function incorporating homology into the learning 
process is given by;

1 1
( ) ( ; ,( ) )

n m

i i j
i j

L Loss f y hθ θ λ
= =

= ∑ + ∑x

Where

• L (θ) is the total loss function of the model.

• Loss (f (x
i
; θ), y

i
) is the standard loss function for the ith data 

point.

• f (x
i
; θ) is the model’s prediction for input xi with parameters 

θ .

• y
i
 is the true label for the ith data point.

• h
j
 is the homology coefficient for the jth feature or level.

• λ is the regularization parameter that controls the weight of 
the homology term.

After running the model through our dataset, we get a folding 
process describing the behavior of different types of homologies 
through variation of our Gaussian probability distribution.

For a neural network with a single hidden layer, the learning 
function can be summarized as follows;

3 2 1 1 2 3( ( ( ) ) )pred σ σ σ= + + +y W W W x b b b

Where,

• σ (z) is the activation function (e.g., sigmoid for binary 
classification, soft-max for multi-class classification).

• L(y, y
pred

) is the loss function (e.g., binary cross-entropy or 
categorical cross-entropy).

The parameter updates using gradient descent are given by;
,( )pred

i i
i

L
η
∂

← −
∂

y y
W W

W

( , )pred
i i

i

L
b b

b
η
∂

← −
∂

y y

Where,

• η is the learning rate.

• 
i

L∂
∂W and  

i

L
b
∂
∂ are the gradients of the loss with respect to 

weights and biases.

Statistical summary of models is given (Table 1, Figures 5-7).
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Vietoris-Rips Stream (ecos, max_dimension , . . .  max_filtration_v 
a l u e, n u m _d i v i s i o n s);

>> n u m _s i m p l i c e s = s t r e a m . g e t S i z e ()

n u m s i m p l i c e s =3259289

>> p e r s i s t e n c e = a p i . P l e x 4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m (max_dimension, 2);

>> o p t i o n s . f i l e n a m e  =  ’ c o i s ’ ;

>> o p t i o n s . m a x f i l t r a t i o n v a l u e

=  m a x  f i l t r a t i o n  v a l u e ;

>> o p t i o n max_dimension=max_dimension–1;

>> o p t i o n s . s i d e_ b y_ s i d e = t r u e ;

>> p l o t _b a r c o d e s (i n t e r v a l s , o p t i o n s) ;

We utilize the Coarse-Grained (CG) with each amino acid 
represented by its Alpha Carbon (Cα) atom. The simplices 
are constructed which is helpful for the detection of the helix 
structure, so the corresponding barcode is simplified. As the 
last construction a Vietoris-Rips stream is largely sufficient to 
decipher the topological features of our data which is an 18 
points in a 3-dimensional space. A part of the Matlab© code is 
shown below.

>> load ecos 1

>> s i z e (e c o s)

ans  =

18 3

>> m a x_d i m e n s i o n = 2 ;

>> m a x _f i l t r a t i o n _v a l u e =2 3 ;

>> n u m _d i v i s i o n s =1000 ;

>> s t r e a m = a p i . P l e x 4 . c r e a t e V i e t o r i s R i p s S t r 
e a m (ecos, m a x_d i m e n s i o n, . . . m a x _f i l t r a t i o n _v 
a l u e ,  n u m d i v i s i o n s) ;

>> o p t i o n s . f i l e n a m e  =  ’ c o i i s 2 ’ ;

>> o p t i o n s . m a x f i l t r a t i o n v a l u e = m a x f i l t r a t 
i o n v a l u e ;

>> o p t i o n s.max dimension=max dimension−1;

>> p e r s i s t e n c e  =  a p i . P l e x 4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m (max_dimension, 2) ;

>> o p t i o n s . s i d e b y s i d e  =  t r u e ;

>> i n t e r v a l s  = p e r s i s t e n c e . c o m p u t e I n t e r v a 
l s (s t r e a m) ;

>> p l o t b a r c o d e s (i n t e r v a l s ,  o p t i o n s) ; 

for the beta sheet construction, we use the following:

>> l o a d f i n b e t a

>> max_dimension=2;

>> m a x _f i l t r a t i o n _v a l u e = 5 ;

>> n u m _d i v i s i o n s =1000

 n u m d i v i s i o n s =

1000

>> s t r e a m = a p i . Plex 4 . c r e a t e V i e t o r i s R i p s S t r e 
a m (b e t i 0 0 1, max_dimension, . . . m a x _f i l t r a t i o n _v 
a l u e, n u m _d i v i s i o n s) ;

>> n u m s i m p l i c e s = s t r e a m . g e t S i z e () n u m s i m 
p l i c e s =

149776

Figure 7: Behaviour of homologies through variation of the 
distribution.

Experimental procedures

In the all-atom model, atoms are considered the same; each atom 
is associated with the same radius in the distance-based filtration. 
The stream will be constructed for the point cloud data, which 
is the xyz, coordinates of the all atom representation (Figure 8). 
The size is not too large to choose a landmark selector, so we 
will simply build a Vietoris-Rips stream. We can choose a better 
filtration but for the limited computation power, we stick with 
the value of 8. In this case a Vietoris-Rips complex is largely 
sufficient to decipher the topological fingerprints (a small data 
set) so there is no need to use a landmark selector, which can be 
seen in the code shown below [13-16].

Figure 8: Example of structure used in our training data set with 
Protein Data Bank (PDB) Id 6IDD.

>> s i z e (ecos)

ans  =

696 3

>> max_dimension = 3;

>> max_filtration_value = 8;

 >> num_divisions = 1000;

>> stream =  api.Plex4.create
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import p d b r e a d e r

p d b = p d b r e a d e r . r e a d p d b (” / c o n t e n t / 2 j o x . 
p d b ”)

from google.colab import drive 

d r i v e . m o u n t (’ / c o n t e n t / d r i v e ’)

”””#  Nouvelle section ”””

for key in pdb:

print (key)

ATOM = pdb [’ATOM’]

type (ATOM)

for key in ATOM:

print (key)

matrix = [ATOM [’x’]],

ATOM [’y’],

ATOM [’z’]]

p r i n t  (m a t r i x)

table=np.empty ((696, 3))

p r i n t  (t a b l e)

for i in range (0,696):

table [i] = [np.array (row [i]) for row in matrix]

print (table [i])

a = n p . a s a r r a y  (t a b l e)

np.savetxt (”/content/matrixNOTordered.csv”, a, delimiter=”,”)

tabEX = table

print (tabEX)

a = n p . a s a r r a y (t a b E X)

n p . s a v e t x t (” / c o n t e n t / c c . c s v ” ,  a , d e l i m i t e 
r =” , ”)

d e f  a r r a n g e (t a b E X ,  n , m) :

for i in range (0, m):

line = tabEX [i] − tabEX [i+1]

for j in range (0, n):

if line [j]<0:

temp = tabEX [i]

tabEX [i] = tabEX [i+1] 

tabEX [i+1] = temp

break

elif line [j]>0:

break

elif i<18: print (tabEX [i])

else: continue

return tabEX

print (tabEX)

a = n p . a s a r r a y (t a b E X)

n p . s a v e t x t (” / c o n t e n t / k k . c s v ” ,  a , d e l i m i t e 
r =” , ”)

from typing import KeysView 

table au = np.empty ((696,3))

for i in range (696, 3):

for j in range (696, 3):

>> p e r s i s t e n c e  =  a p i . P l e x 4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m (max_dimension, 2);

>> i n t e r v a l s  =  p e r s i s t e n c e . c o m p u t e I n t e r v a 
l s (s t r e a m) ;

>> o p t i o n s. f i l e n a m e  =  ’1 bet ’ ;

>> o p t i o n s. m a x f i l t r a t i o n v a l u e = m a x _f i l t r a t 
i o n _v a l u e ;

>> o p t i o n s.max_dimension=max_dimension–1;

>> o p t i o n s . s i d e b y s i d e  =  t r u e ;

>> p l o t b a r c o d e s (i n t e r v a l s , o p t i o n s) ;

Then we simplify without loosing topological significance by 
using the following:

>> l o a d b e t y

>> s i z e (b e t i 0 1) a n s =

 24 3

>>max_dimension=2;

>> m a x _f i l t r a t i o n _v a l u e  = 2 0 ;

>> n u m d i v i s i o n s =1 0 0 0 n u m d i v i s i o n s =

1000

>> s t r e a m = a p i . P l e x 4 .

c r e a t e V i e t o r i s R i p s S t r e a m

(b e t i 0 1 , max_dimension, . . .

m a x _f i l t r a t i o n _v a l u e , n u m _d i v i s i o n s) ;

>> n u m s i m p l i c e s = s t r e a m . g e t S i z e () n u m s i m 
p l i c e s =

410

>> p e r s i s t e n c e  =  a p i . P l e x 4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m (max_dimension, 2);

>> i n t e r v a l s = p e r s i s t e n c e . c o m p u t e I n t e r v a l 
s (s t r e a m) ;

>> o p t i o n s . f i l e n a m e  =  ’ b e t ’ ;

>> o p t i o n s . m a x f i l t r a t i o n v a l u e = 

m a x _f i l t r a t i o n _v a l u e ;

>>options.max_dimension=max_dimension−1;

>> o p t i o n s . s i d e _b y _s i d e = t r u e ;

>> plotbarcodes (intervals, o p t i o n s) ;

# −*− coding: utf−8−*− 

””” U n t i t l e d 1 . i p y n b

 ”””

import numpy as  np

import m a t p l o t l i b . p y p l o t  as plt

import numpy as np

impo

rt seaborn as sns

from matplotlib import colors

from mpltoolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from pylab import*

from array import array

pip install pdbreader
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Figure 9: Each row is a sample in our data set.

pip install tensorflow biopython numpy pandas

import numpy as np

import pandas as pd

from Bio import PDB

def load_pdb_data (file_path): 

parser = PDB.PDBParser()

structure = parser.get_structure (’protein’, file path)

atom_data = []

for model in structure:

for chain in model:

for residue in chain:

for atom in residue:

atom_data.append ([atom.get name (), atom.coord [0],

atomdf = pd.DataFrame (atom data, columns =[’AtomName’, 
’X’, ’Y’,

return atom_df

#Example usage

pdb_data = load_pdb_data (’example.pdb’)

print (pdb data.head ())

# Data preparation

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

def prepare_data (df, labels):

features = df [[’X’, ’Y’,’Z ’]]. v a l u e s 

s c a l e r = S t a n d a r d S c a l e r ()

f e a t u r e s =  s c a l e r . f i t  t r a n s f o r m (f e a t u r e s)

X _ t r a i n , X _ t e s t , y _ t r a i n , y _ t e s t  = t r a i n _t e s t 
_ s p l i t  (f e a t u r e s ,  l a b

return X _ t r a i n, X _ t e s t , y _ t r a i n ,  y _ t e s t

#Example labels  (you  would  need  actual labels for  your dataset)

labels=np.random.randint (0, 2, len (pdb data)) # Example: 
Binary cl

X_train, X_test, y_train, y_test=prepare_data (pdb_data, labels)

#Define and train the model

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout

def build_model (input_shape): 

model=Sequential ([

Dense (64, activation=’relu’, input_shape=(input_shape,)), 

Dropout (0.5),

Dense (32, activation=’relu’),

Dense (1, activation=’sigmoid’)

for k in range (0, 2):

t a b l e a u [ i ] = tabEX [j] [k] * tabEX [j] [k+1]

p r i n t (t a b l e a u)

from typing import KeysView

Grobner = np.empty ((696,3))

def  Grobnera (tableau, X, Y, Z):

for j in range (696, 3):

for k in range (0, 2):

Grobner [j] [k] = tableau [j] [k]/table a u [j] [k+1]

return Grobner

”””#  Nouvelle section”””

a=np.asarray (Grobner)

np.savetxt (”/content/kk.csv”, a, delimiter=”,”)

tableau.shape

def Gaussian_kernel_matrix (Grobner, sigma):

distances = np.sum ((Grobner [:,np.newaxis] − X) ** 2, axis 
= −1) 

kernel_matrix = np.exp (−distances/(2*sigma**2))

return kernel_matrix

X = Grobner 

sigma =1

kernel_matrix = gaussian_kernel_matrix (X, sigma)

print (kernel_matrix)

a=np.asarray (kernel matrix)

np.savetxt (”/content /matrixNOTordered.csv”, a, delimiter=”,”)

type (Grobner)

import numpy as np

import matplotlib.pyplot as plt

import numpy as np

def heatmap2d (arr: Grobner):

p l t . i m s h o w (a r r , c m a p = ’ v i r i d i s ’)

p l t . c o l o r b a r ()

p l t . s h o w ()

t e s t a r r a y = n p . a r a n g e (2 0 0 * 2 0 0) . r e s h a p e (2 0 
0 , 2 0 0) 

heatmap2d (test_array)

Linking different types of homologies to figure out the full 
simulation of persistent homology will be done using a training 
parameter under a reinforcement learning approach. We will be 
building neural networks using numpy library from python; with 
only two hidden layers our model seems to hide greater strategies 
in capturing alpha shapes from a twenty data set of matrices 
representing Hi as our training data set (Figure 9); to figure out 
probabilities we use the following softmax activation function 
[10].
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2013;139(19):194109. 

3. Buchet M, Chazal F, Oudot SY, Sheehy DR. Efficient and 
robust persistent homology for measures. Comput Geom. 
2016;58:70-96.  

4. Edelsbrunner H, Morozovy D. Persistent homology: Theory 
and practice. European Congress of Mathematics. 2014:31-
50.  

5. Ichinomiya T, Obayashi I, Hiraoka Y. Protein-folding analysis 
using features obtained by persistent homology. Biophys J. 
2020;118(12):2926-2937. 

6. Kovacev-Nikolic V, Bubenik P, Nikolić D, Heo G. Using 
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protein binding. Stat Appl Genet Mol Biol. 2016;15(1):19-38. 

7. Carlsson G. Topology and data. Bull Amer Math Soc. 
2009;46(2):255-308.  

8. Liu J, Xia KL, Wu J, Yau SS, Wei GW. Biomolecular 
topology: Modelling and analysis. Acta Math Sin Engl Ser. 
2022;38(10):1901-1938. 

9. Hatcher A. Algebraic Topology. 2005. 

10. Zomorodian A, Carlsson G. Computing Persistent 
Homology. Proceedings of the twentieth annual symposium 
on Computational geometry. 2004. 347-356.  

11. Xia K, Wei GW. Stochastic model for protein flexibility 
analysis. Phys Rev E Stat Nonlin Soft Matter Phys. 
2013;88(6):062709. 

12. Bramer D, Wei GW. Atom-specific persistent homology and 
its application to protein flexibility analysis. Comput Math 
Biophys. 2020;8(1):1-35. 

13. Gräßler J, Koschützki D, Schreiber F. CentiLib: 
Comprehensive analysis and exploration of network 
centralities. Bioinformatics. 2012;28(8):1178-1179. 

14. Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, 
et al. VisANT 3.5: Multi-scale network visualization, analysis 
and inference based on the gene ontology. Nucleic Acids 
Res. 2009;37(suppl_2):W115-W121. 

15. Lee MS, Ji QC. Protein analysis using mass spectrometry: 
Accelerating protein biotherapeutics from lab to patient. 
John Wiley & Sons. 2017. 

16. Opron K, Xia K, Burton Z, Wei GW. Flexibility–rigidity 
index for protein–nucleic acid flexibility and fluctuation 
analysis. J Comput Chem. 2016;37(14):1283-1295. 

17. Kovacev-Nikolic V, Bubenik P, Nikolic D, Heo G. Using 
persistent homology and dynamical distances to analyze protein 
binding. Stat Appl Genet Mol Biol. 2016;15(1):19-38. 

])

model.compile (optimizer=’adam’,

loss=’binary_crossentropy’,

m e t r i c s =[ ’ a c c u r a c y ’ ])

return model

#Example usage

model=build model (X_train.shape [1]) 

model.summary ()

#Train the model

history=model.fit (X_train, y_train, epochs=10, batch_size=32, 
valid)

#Evaluate the model

loss, accuracy=model.evaluate (X_test, y_test)

print (f ” Test Loss: {loss}”)

print (f” Test Accuracy: {accuracy}”)

DISCUSSION

It was out of the scope of this proposition to deal theoretically 
with the use of statistical tests on the set of barcodes, but the 
application shows clearly that the method can surpass a simple 
statistical approach and instead of conducting a molecular 
dynamic simulation it is easier to use existing information 
from models to construct a quantified sequence of barcodes 
then to look for its convergence limit. We can find interesting 
productions in the literature but none exploited fully persistent 
homology far from being a statistical tool. An interesting attempt 
by using dynamical distances was made by Peter Bubenik and 
collaborators, but couldn’t theoretically justify barcodes as a 
statistical observation, instead it gives birth to a new functional 
tool which is persistent landscapes [17].

CONCLUSION

This work is providing a complete roadmap for persistent 
homology and application to protein structure design, prediction 
and analysis. Persistent homology is a powerful tool in the field of 
computational biology, allowing researchers to analyze complex 
biological structures with greater accuracy and efficiency. In order 
to fully understand the fundamental concept, the mathematical 
model is thoroughly explained. To get familiarized with the 
axiomatic idea, the full mathematical model is detailed, as already 
mentioned in the computational part and give a stochastically 
approval to our work but without getting in the details of the 
calculations and the theoretical justifications.
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