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ABSTRACT
Background: Sports anaemia is a condition associated with high levels of haemolysis after intensive exercise such 
as ultra-endurance rowing competitions. Studies have shown that large or continuous muscle contractions can 
increase the fragility of Red Blood Cells (RBCs), which can lead to intracapillary mechanical haemolysis. Toxicity 
from haemolysis is caused by the release of cell free Haemoglobin (cfHb), haem and iron from the lysed RBCs. 
Early detection of sports anaemia can prevent toxicity by facilitating earlier intervention of preventative treatments. 
However, there are currently no rapid, low-cost and easy-to-use sensors to detect sports anaemia.

Methods: An electrochemical sensor was developed to detect cfHb in urine which is a good biomarker for haemolysis. 
The sensor utilises low-cost carbon black and screen-printed electrodes. The pseudo-peroxidase activity of cfHb was 
used as the sensing mechanism and dried-on meta-Chloroperoxybenzioc Acid (m-CPBA) was used as the reaction 
oxidant. The chronoamperometric response was characterised and calibrated with Hb spiked urine before evaluating 
with four ultra-endurance rowers (The Enginoars) during a 37-day cross-Atlantic rowing expedition-the Talisker 
Whiskey Atlantic Challenge.

Results: The Limit-of-Detection (LoD) of the sensor was determined as 2.2 μM and the 5 μM recovery was 110%. 
The intercept was -0.28 ± 0.1 μA and the slope was -0.18 ± 0.02 μA μM-1. The mean cfHb concentration of the four 
rowers was 2.40, 1.56, 2.29 and 3.69 μM. The max cfHb concentration of the four rowers was 11.94, 3.77, 16.73 
and 11.91 μM.

Conclusion: The study provided proof-of-principal for the sensor in ultra-endurance competitions. It showed that 
while there were several haemolysis spikes during the competition, cfHb levels returned to normal within 1 to 2 days.

Keywords: Sports anaemia; Haemolysis; Electrochemical sensor; Urine biomarker; Sensor calibration

Sickle Cell Disease (SCD), malaria, thalassemia, Paroxysmal 
Nocturnal Haemoglobinuria (PNH), atypical Haemolytic 
Uraemic Syndrome (aHUS), COVID-19 and cardiovascular 
surgery, as well as exercise-induced damage [5]. 

In runners, sports anaemia is sometimes referred to as foot 
strike haemolysis as it has been hypothesised that the high levels 
of haemolysis are caused by plantar mechanical trauma from 
repeated impact with hard running surfaces [6]. This theory is 
supported by studies by Davidson et al., where they reported 
reduced levels of the cfHb scavenging protein Haptoglobin (Hp) 
in runners directly after marathons and long-distance runs [7,8]. 
However, the foot strike haemolysis theory does not explain 

INTRODUCTION

Sports anaemia, also known as exercise induced haemolysis, is a 
condition associated with high levels of haemolysis after physical 
activities such as running, swimming, rowing and cycling [1]. 
Haemolysis is the rupture of RBCs and the release of red cell 
contents into blood circulation [2]. Toxicity from haemolysis is 
caused by the release of cfHb, haem and iron from the lysed RBCs 
which can activate innate immune responses and inflammatory 
pathways [3]. This causes damage to cells and organs, particularly 
the kidney as this is the normal route for expulsion of excess 
cfHb from the circulation [4]. Haemolysis is also characteristic of 
several inherited, acquired and iatrogenic conditions including 
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is then made good by the electron flow from the amperometric 
measurement process [37]. The solid oxidant was dried onto 
the working electrode, so no pre-analytical mixing steps were 
necessary and this is highly desirable for a PoC sensor. 

The sensor was characterised in the laboratory with Phosphate 
Buffered Saline (PBS) and using hydrogen peroxide as the oxidant 
before evaluating in urine with hydrogen peroxide and the dried-
on solid oxidant. The sensors were then used with portable 
Amulet potentiostats by a team of ultra-endurance rowers during 
the Talisker Whiskey Atlantic Challenge where they conducted 
measurements onboard the Enginoars Atlantic rowing boat over 
37 days. The aims of the study were to provide proof-of-principal 
for the sensor’s functionality in the harsh environment of the 
Atlantic Ocean and to determine the extent of haemolysis that 
the rowers experienced.

MATERIALS AND METHODS

Mesoporous carbon nanopowder <500 nm particle size (from 
dynamic light scattering measurements), Polyethylene Imine 
(PEI), m-CPBA, hydrogen peroxide (H2O2, 30% w/w in H2O), 
phosphate buffer, Potassium Chloride (KCl), Sodium Chloride 
(NaCl), ethanol (absolute) and human Hb were purchased from 
Merck Ltd. Screen-printable inks were purchased from sun 
chemical. Various concentrations of Hb were prepared with 
deionized water obtained from a millipore Simplicity water 
purification system. Human urine was donated by volunteers 
from Imperial College London with informed consent.

Sensor fabrication

The Screen-Printed Carbon Electrodes (SPCEs) were fabricated 
by OG Carbon Ltd in the following manner. Carbon paste, Ag, 
AgCl paste and insulation ink were screen-printed onto 250 μm 
Polyethylene Terephthalate (PET) sheets in that order. A 30 min 
curing step at 60°C was included after each layer was printed. The 
individual SPCEs were separated and trimmed with a guillotine 
prior to use.

Carbon black ink was prepared by mixing 180 mg mesoporous 
carbon nanopowder <500 nm particle size and 45 mg 
Polyethylenimine (PEI) in 25 mL deionized water. The solution 
was dispersed by sonication using a FisherbrandTM probe 
sonicator for 60 min. The solution was then mixed with a vortex 
mixer prior to use to ensure it was fully dispersed. 5 μL of the ink 
was dropcast onto the working electrode and cured at 60°C for 
60 min.

24 mg/mL m-CPBA in ethanol was prepared and was dried onto 
the sensor by pipetting 0.3 μL of the solution onto the carbon 
black modified working electrode. The electrodes were then 
cured at 60°C for 10 min.

The surface morphology of the bare carbon working electrode, 
silver/silver chloride reference electrode and dropcast carbon 
black working electrode was examined with a Scanning Electron 
Microscope (SEM). The electrodes were coated with chromium 
and mounted onto stubs for examination. The SEM used was 
an EVO 15 SEM/EDX, provided by the department of Earth 
Science and Engineering in the Royal School of Mines at Imperial 
College London.

Electrochemical laboratory measurements

A Gamry reference 3000TM potentiostat was used for all 
electrochemical measurements. Chronoamperometry was 

the phenomenon in non-hard floor runners, swimmers, rowers 
or cyclists, leading to alternative theories being proposed [9]. 
Intracapillary mechanical haemolysis due to large or continuous 
muscle contractions is the most likely explanation. Studies have 
shown that intensive training can increase the fragility of RBCs 
[10]. Dehydration and acidosis post exhaustive exercise has 
been shown to cause electrolyte changes and increased plasma 
osmolarity/viscosity which promotes RBC damage [11]. The 
intensity of hypoglycaemia and increase in body temperature 
associated with strenuous exercise has also been shown to affect the 
osmotic resistance of RBCs [12,13]. Furthermore, inflammatory 
activation during strenuous exercise has been linked to changes 
in the RBC composition and increased fragility [14]. Moreover, 
foot strike haemolysis is likely less relevant than it was 20-30 years 
ago due to improvements in running shoe construction, which 
has significantly reduced plantar mechanical trauma [15]. It is 
likely that sports anaemia is caused by a variety of mechanisms 
including intracapillary mechanical haemolysis.

Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD) 
are the most common kidney injuries associated with haemolysis 
[16]. Kidney injury is so prevalent with haemolysis because 
the kidneys are the main route for cfHb clearance once Hp 
protective removal strategies have become overwhelmed and are 
therefore susceptible to dysfunction from cfHb accumulation 
[17]. Haemoglobinuria is the presence of cfHb in urine and is a 
common feature of kidney injury caused by haemolysis [18]. It is 
suggested that cfHb materialises in the urine once the resorptive 
ability of Hp for cfHb is exceeded [19]. Therefore, it is reasonable 
to suggest that cfHb in urine can be considered an excellent 
biomarker for haemolysis and by extension, an effective predictor 
for kidney diseases.

There are several commonly used clinical tests for haemolysis, 
including direct measurements of RBC survival using 
chromium-51 labelling, serum Hp and Hb assays and measuring 
reticulocyte count [20-22]. The International Council for 
Standardisation in Haematology (ICSH) recommends the 
quantification of cfHb in serum after Hp saturation using the 
cyanmethemoglobin method as a standard, but haemoglobinazide 
and oxyhaemoglobin detection methods are also used [23,24]. 
However, these techniques are not practical for monitoring 
sports anaemia in ultra-endurance competitions as they are 
time consuming, laborious and cannot be performed in the 
field as they require laboratory equipment [25]. Furthermore, 
while several potentially Point-of-Care (PoC) methods have been 
described for the detection of cfHb, these are usually optical 
sensors that require a variety of costly nanomaterials [26-31].

Within this manuscript we describe a PoC urinary cfHb sensor 
for diagnosing haemolysis in ultra-endurance athletes. The 
sensing method is electrochemical which has benefits over optical 
sensors as it enables rapid or real-time analysis, is highly accurate 
and reproducible, has a low LoD, is low-cost and is easy-to-use. 
The sensor uses highly scalable screen-printed carbon electrodes 
which make up the working, counter and reference electrodes. 
The working electrode is modified with low-cost carbon black 
which is highly conductive and has a unique surface architecture 
suited to the adsorption of cfHb. The signal is then generated 
by the peroxidase activity of cfHb. Hb is considered a pseudo-
peroxidase which mean that under certain circumstances it 
displays peroxidase-like activity [32-36]. In the sensor, cfHb 
catalyses the reduction of hydrogen peroxide or other oxidant 
to generate a two-electron deficit at the electrode surface which 
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of the study.

The sensors provided were foiled by hand using mylar foil and 
sealed with an impulse heat sealer to prevent exposure to moisture 
and salt. The portable meters were supplied by Amulet, Inc. 
The Amulets were programmed with the chronoamperometry 
procedure. A Three-Dimensional (3D) printed connector 
port was developed for each Amulet to allow the sensor to be 
connected to the device.

Ethics approval was obtained from the Head of Department at 
the Molecular Sciences Research Hub (MSRH), Imperial College 
London and the College’s Science, Engineering and Technology 
Research Ethics Committee (SETREC). The study was conducted 
in accordance with the recommendations for physicians involved 
in research on human subjects adopted by the 18th World 
Medical Assembly, Helsinki 1964 and later revisions. Consent 
was obtained from each participant only after a full explanation 
was given and signed participant consent forms were obtained.

The data was downloaded from the Amulet devices to a smart 
phone through bluetooth after the race. The data was then 
transferred to Imperial College London servers for further 
analysis.

The Enginoars started the race on 12/12/2022 and finished on 
18/01/2023 after spending a total of 37 days at sea. They rowed 
a total distance of 2666 nautical miles and reached a top speed of 
10.5 knots (Figures 1 and 2).

conducted at -0.2 V for 70 s. Several conditions were evaluated 
with this technique including carbon black electrodes using 
100 μL Hb spiked PBS containing 10 mM H2O2, carbon black 
electrodes modified with m-CPBA using 100 μL Hb spiked urine.

A sensor stability profile was conducted over the course of 
several weeks to evaluate the deterioration of the signal overtime. 
Carbon black/m-CPBA sensors were stored unpackaged at 22°C 
until testing with 100 μL urine.

Calibration of the sensors was achieved by plotting the Hb 
concentration against the amperometric response and fitting 
a linear regression. The slope and intercept were used for the 
calibration. A recovery value was obtained by measuring the sensor 
response of a known Hb concentration (5 μM) and comparing 
the calibrated sensor response to the known concentration. 
The LoD was calculated as the mean blank sample +2 Standard 
Deviation (SD).

Rowing study

The Talisker Whiskey Atlantic Challenge is a 3000-mile race made 
up of teams of four that row continuously in ocean rowing boats 
for up to 60 days across the Atlantic Ocean from La Gomera to 
Antigua. The rowers maintain a 2-hours-on, 2-hours-off schedule, 
follow a polyphasic sleep pattern and are therefore exposed to 
intense exercise for prolonged periods. The participants were 
provided with 300 foiled sensors, 4 portable meters, 2 pipettes 
and 300 pipette tips that were stored on the boat for the duration 

Figure 1: Route taken during the Talisker Whiskey Atlantic Challenge from De La Gomera to Antigua (a). Participants of the rowing study training 
in the Atlantic rowing boat in Norway in 2022 (b and c).

Figure 2: Amulet portable potentiostat inserted with a SPCE via a 3D printed connector (a). An individual foiled sensor that was sealed to prevent 
deterioration from salt and moisture in sea water (b). Note: SPCE: Screen-Printed Carbon Electrodes.



4

Griffiths OT, et al. OPEN ACCESS Freely available online

J Clin Chem Lab Med, Vol.7 Iss.4 No:1000296

Scanning Electron Microscope (SEM) to provide a qualitative 
assessment of the geometry and surface area. The silver/silver 
chloride reference electrode was also inspected. Images of these 
electrodes captured at 10,000 magnifications are also shown in 
Figure 5b.

An interference study with Myeloperoxidase (MPO) was also 
conducted. Like cfHb, MPO is a human peroxidase and if present 
in high enough concentrations it could interfere with the cfHb 
sensing mechanism. While studies have shown that it is usually 
present in very low concentrations (1 ng/mL in urine), it was 
nevertheless investigated as during infection it’s concentration 
has been reported to be up to 3.7 times higher than in sterile 
urine [38,39]. Chronoamperometry was used to quantify the 
carbon black sensor’s amperometric response at -0.2 V with 10 
mM hydrogen peroxide and a range of spiked Hb concentrations 
(0, 1 and 10 μM) and a high MPO concentration (1 mg/mL) in 
PBS. The results are shown in Figure 5c.

The primary aims of the rowing study were to determine whether 
the carbon black/m-CPBA sensors could detect sports anaemia 
in ultra-endurance athletes rowing the Atlantic Ocean. A team 
of four rowers called the Enginoars taking part in the Talisker 
Whiskey Atlantic Challenge were recruited for the study as over 
the month-long challenge, it was likely that haemolysis would 
occur. The secondary aim of the study was to evaluate the 
performance of the sensors and Amulet portable potentiostats in 
the harsh environment of the Atlantic Ocean.

Initially, each of the four Amulet portable potentiostats were 
calibrated with dried-on carbon black/m-CPBA sensors and three 
levels of spiked Hb urine samples (0 μM, 5 μM and 10 μM). The 
results, linear regression models and equations for the Amulets 
are shown in Figure 6a. Linear regression was used to fit the data 
and the slopes and intercepts obtained were used to calibrate the 
Amulets. The slopes and intercepts are shown in Table 2 and the 
calibrated response is shown in Figure 6b.

The field measurements were obtained over the course of the 
Atlantic crossing which took 37 days in total. The urinary cfHb 
concentration measurements as measured with the Amulet-
carbon black/m-CPBA sensors for each of the four rowers over the 
duration of the race are shown in Figure 7a. The trendlines from 
start to finish for each of the athlete’s urinary cfHb concentration 
is shown in Figure 7b. This plot also includes R-squared values 
which show the goodness-of-fit for the trendlines. The mean 
urinary cfHb concentration, SD and minimum/maximum cfHb 
concentrations are presented in Table 2.

RESULTS

Sensor development

Chronoamperometry was used to validate the carbon black 
modified sensor’s amperometric response at -0.2 V using PBS 
with 10 mM hydrogen peroxide and a range of spiked Hb 
concentrations (0, 0.25, 0.75 and 1 μM). These results are shown 
in Figure 3 and they show that Hb’s pseudo-peroxidase activity 
can generate catalytic currents in the PBS medium with hydrogen 
peroxide as the oxidant.

Chronoamperometry was then used to quantify the carbon black 
urine sensor’s amperometric response. This was conducted at 
-0.2 V with 10 mM hydrogen peroxide and a range of spiked 
Hb concentrations (0, 1 and 10 μM). These results are shown in 
Figure 3 and the amperometric response forms a stable, plateaued 
catalytic current after 5 s. 

Figure 3 also shows the amperometric response for the dried-
on m-CPBA/carbon black sensors at -0.2 V using human urine 
and a range of spiked Hb concentrations (0, 2.5, 7.5 and 10 
μM). As with the mixed in hydrogen peroxide urine sensor, the 
amperometric response forms a stable, plateaued catalytic current 
after 5 sec.

Two additional repeats with fresh carbon black modified sensors 
were conducted for each Hb level in urine for the carbon 
black/H

2
O

2
 sensor and the carbon black/m-CPBA sensor. The 

current generated for the plateaued (catalytic) phase of each 
chronoamperometric transient was calculated by taking the mean 
value between 5-70 sec. Linear regression was then used to fit the 
data and the slope and intercepts obtained from the equations 
were used to calibrate the two sensor types. Figure 4 shows the 
sensor response plots with the linear regression for the two sensor 
types along with the calibrated response plots. The calibrated 
response plots also include the 5 μM Hb concentration which 
was used to calculate the recovery values. The intercept, slope, 
recovery values, LoD and Root Mean Squared Error (RMSE) are 
shown in Table 1.

A stability profile was then conducted over 22 days to evaluate the 
deterioration of the dried-on m-CPBA sensors. The sensors were 
stored in sealed petri dishes at 22°C and tested approximately 
every 5 days. Figure 5a shows the mean catalytic current (5-70 sec) 
as a percentage of the original signal. 

The surface of the bare carbon (graphite) and carbon black 
modified (mesoporous carbon) electrodes were inspected by 

Figure 3: Chronoamperometry currents generated with carbon black modified SPCEs tested at -0.2 V for a range of Hb concentrations in PBS 
and urine with 10 mM H

2
O

2
 and in urine with carbon black/m-CPBA modified SPCEs. Note: SPCE: Screen-Printed Carbon Electrodes; Hb: 

Haemoglobin; PBS: Phosphate Buffered Saline; m-CPBA: meta-Chloroperoxybenzioc Acid.
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Figure 4: Sensor responses are the mean catalytic currents over a range of Hb concentration in urine fitted with a linear regression. Calibrated 
responses are the fitted Hb concentration against actual Hb concentration including the 5 μM Hb recovery measurement. Highlighted areas are 
95% confidence intervals. Note: Hb: Haemoglobin.

Table 1: Intercept, slope, recoveries, LoD and RMSE calculated from calibration curves for hydrogen peroxide and m-CPBA sensor types.

Oxidant Intercept ± SE (μA) Slope ± SE (μA μM-1) 5 μM recovery (%) LoD (μM) RMSE (μM)

H2O2 -0.96 ± 0.03 -0.071 ± 0.006 96 2.7 0.9

m-CPBA -0.28 ± 0.1 -0.18 ± 0.02 110 2.2 1.25

Note: H2O2: Hydrogen Peroxide; SD: Standard Deviation; SE: Standard Error; m-CPBA: meta Chloroperoxybenzioc Acid; LoD: Limit of Detection; 
RMSE: Root Mean Square Error.

Figure 5: a) Stability profile for the sensors prior to being foiled; b) SEM images of the carbon, carbon black and silver/silver chloride electrodes; 
c) Chronoamperometry currents generated with carbon black modified SPCEs tested at -0.2 V for a range of Hb concentrations in PBS and urine 
with 10 mM H2

O
2
 and in urine with carbon black/m-CPBA modified SPCEs. Note: SEM: Scanning Electron Microscope; Hb: Haemoglobin; 

SPCE: Screen-Printed Carbon Electrodes.
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Figure 6: Calibration data for the four amulet portable potentiostats using three Hb levels (0, 5 and 10 μM) and carbon black/m-CPBA sensors. a 
shows the mean catalytic currents fitted with the linear regression and displaying the equations and b shows the calibrated response. Three repeats 
were tested for each Hb level and plots include 95% confidence intervals. Note: Hb: Haemoglobin; m-CPBA: meta-Chloroperoxybenzioc Acid.

Figure 7: Urinary cfHb concentration measured with carbon black/m-CPBA sensors and amulet potentiostats for the four rowers during the 
Talisker Whiskey Atlantic Challenge; a) The individual measurements for each participant; b) The trendlines from start to finish for each 
participant. Note: cfHb: cell free Haemoglobin; m-CPBA: meta-Chloroperoxybenzioc Acid.
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(mesoporous carbon) modified electrode has several defect sites, 
which makes the surface area very large compared to the bare 
carbon (graphite) electrode which is relatively uniform. The large 
surface area of carbon black is well studied and confirms the 
SEM experiment’s findings, with some studies suggesting it can 
be as high as 1270 m2/g [41]. The large surface area of the carbon 
black electrode is apt for the adsorption of Hb and as such, these 
results confirm the material’s suitability as a working electrode 
material for the haemolysis sensor. The silver/silver chloride 
reference electrode was also inspected by SEM Figure 5b. The 
image captured shows that it consists of two components, which 
are flakes (silver) and bulbed mounds (silver chloride), which is 
consistent with other silver/silver chloride microscopy studies 
[42].

The interference study in Figure 5c shows that the signal 
generated in response to a large concentration of the potential 
interferant MPO (1 mg/mL) is not significantly larger than the 
baseline signal. This is highly encouraging as it is unlikely that 
the concentration of MPO in urine would ever be high enough 
to interfere with the cfHb response.

It is also worth noting that although we report here the 
characterisation of sensors produced by pipetting m-CPBA onto 
the surface of the working electrode, alternative manufacturing 
methods were also evaluated. These included a screen-printing 
method of printing an ink consisting of m-CPBA and carbon black 
with PEI directly onto the graphite working electrode to assess the 
viability of a potentially more scalable manufacturing method. 
We also evaluated the use of magnesium Monoperoxyphthalate 
(MMPP) as the solid oxidant as it is considered less hazardous to 
handle than m-CPBA. These different sensor types performed 
similar to each other in the laboratory, but only the m-CPBA 
sensor is reported here as it was the only one used for the rowing 
study.

It is clear from Figure 7a that the four rowers experienced quite 
different urinary cfHb concentration/time profiles from each 
other-which is not surprising as they all had different rowing 
schedules (i.e. they rowed in shifts). The mean urinary cfHb 
concentration values of the four rowers were 2.40 (SD=2.98) 
μM, 1.56 (SD=1.53) μM, 2.29 (SD=3.54) μM and 3.69 (SD=3.36) 
μM, respectively Table 2 which suggests that haemolysis was 
certainly experienced during the row. Three of the four rowers 
also experienced ‘spikes’ of high cfHb concentrations (i.e. 11.94 
μM, 3.77 μM, 16.73 μM and 11.91 μM, respectively). These 
data suggest that the severity of haemolysis experienced during 
the Atlantic crossing was quite varied with rowers 1, 3 and 4 
having the worst incidences. The minimum cfHb concentrations 
measured for all four rowers are within error 0 μM (i.e. -0.88 μM 

DISCUSSION

Sensor development

The pseudo-peroxidase activity of cfHb was successfully utilized 
as a method of generating a signal in the sensor. This was 
initially demonstrated in PBS before characterizing in urine 
and comparing the hydrogen peroxide and the solid dried-on 
oxidant m-CPBA based sensors. The intercepts for the hydrogen 
peroxide and m-CPBA sensors were -0.96 ± 0.03 μA and -0.28 ± 
0.1 μA respectively Table 1. These intercepts are slightly larger 
than zero which suggests that direct reduction of the oxidants is 
occurring at the electrode surface, albeit to a smaller extent than 
reduction caused by Hb. The dried-on m-CPBA sensor intercept 
is also closer to zero which suggests that hydrogen peroxide is 
reduced at the electrode surface to a greater extent. The slope for 
the hydrogen peroxide and m-CPBA sensors were -0.071 ± 0.006 
μA and -0.28 ± 0.1 μA μM-1 and -0.18 ± 0.02 μA μM-1 respectively 
Table 1. The slope is more negative for the m-CPBA sensor which 
suggests it has greater sensitivity than the hydrogen peroxide 
based sensor. The 5 μM recovery value for the hydrogen peroxide 
and m-CPBA based sensors were 96% and 110% respectively 
Table 1. While the hydrogen peroxide based sensor has a slightly 
superior recovery value, the 5 μM recovery value for the m-CPBA 
based sensors is also suitable.

The LoD for the hydrogen peroxide and m-CPBA sensors were 
2.7 μM and 2.2 μM respectively Table 1. This suggests that the 
m-CPBA based sensor is slightly more sensitive. The LoD is also 
similar to those of other methods used for Hb detection. For 
example, the optical sensors developed by Pollard et al., and by 
Zhao et al., displayed LoDs of 2.56 μM and 1.55 μM respectively 
[26,40]. The RMSE for the hydrogen peroxide and m-CPBA 
sensors were 0.90 μM and 1.25 μM respectively Table 1. This 
is likely because the dried-on m-CPBA pipetting method is less 
precise than the mixed-in hydrogen peroxide method. Although 
the two sensor types are compared within this study, it is clear 
that the dried-on m-CPBA sensor is superior as it has a scalable 
manufacturing method and eliminates the requirement for a pre-
analytical mixing step.

The stability profile in Figure 5a shows that the m-CPBA based 
sensors deteriorate by 15% after 20 days. Although this is a 
relatively minor deterioration, it highlights the requirement for 
the sensors to be individually foiled to prevent the deterioration. 
This was conducted for the rowing study and it is clear from the 
results in Figure 5a that the foiling of the sensors prevents their 
deterioration.

The SEM images in Figure 5b show that the carbon black 

Table 2: Intercept and slope obtained from the amulet calibrations and summary of the Talisker Whiskey Atlantic Challenge urinary cfHb 
measurements including mean cfHb concentration, SD and minimum/maximum cfHb concentration.

 Rower 1 Rower 2 Rower 3 Rower 4

Intercept ± SE (μA) 41.69 ± 0.04 40.15 ± 0.04 42.28 ± 0.05 39.46 ± 0.05

Slope ± SE (μA μM-1) -0.053 ± 0.006 -0.046 ± 0.006 -0.077 ± 0.008 -0.047 ± 0.008

Mean cfHb concentration (μM) 2.4 1.56 2.29 3.69

SD (μM) 2.98 1.53 3.54 3.36

Max cfHb concentration (μM) 11.94 3.77 16.73 11.91

Min cfHb concentration (μM) -0.88 -1.4 -0.5 -1.03

Note: SD: Standard Deviation; SE: Standard Error; cfHb: cell free Haemoglobin.
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studies. It is also recommended that the sensor be additionally 
evaluated with athletes in other sports, such as ultra-marathon 
runners, as this may make it easier to recruit participants. Ultra-
marathon running is also traditionally associated with very 
high levels of foot-strike haemolysis and may be an interesting 
application of the developed sensor given the high number of 
such athletes worldwide.
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