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ABSTRACT
The objective of phase I dose-escalation clinical trials has generally been to determine the Maximum Tolerated 
Dose (MTD). However, with the advent of molecular targeted therapies this approach has changed, as dose limiting 
toxicities are less frequently observed. For this reason, the concept of Optimal Biological Dose (OBD) has been 
developed, which considers efficacy and toxicity. Several Bayesian model-assisted designs have been proposed to 
target the MTD more accurately and/or the OBD compared to traditional rule-based approaches such as the 3+3 
design. These include the Bayesian Optimal Interval (BOIN) and the BOIN phase I/II (BOIN12) design. The BOIN 
design targets the MTD, while the BOIN12, which takes both efficacy and toxicity into account in decisions to 
escalate/de-escalate the dose, targets the OBD. In this article we use a real-life case study to compare the BOIN and 
the BOIN12 designs under different scenarios and showcase how each of the designs perform when the compound 
under investigation has a benign toxicity profile. We argue that both efficacy and toxicity should be taken into 
consideration when designing early-phase oncology studies.

Keywords: Bayesian adaptive designs; Dose escalation; Toxicity-efficacy trade-off; Optimal biologic dose; Phase I 
trials

INTRODUCTION

In oncology, dose-finding trials are essential to drug development 
as they establish recommended doses for later-phase testing. 
Numerous phase I trial designs have been proposed to identify the 
Maximum Tolerated Dose (MTD) of a new drug, which is typically 
defined as the highest dose of a drug or treatment that does not 
cause unacceptable side effects in a specified proportion of patients. 
The MTD is determined by testing increasing doses on different 
cohorts of participants until the highest dose with acceptable side 
effects is found. The “Specified proportion” in this definition is 
commonly known as the Target Toxicity Level (TTL).

Most phase I trials use rule-based approaches, such as the standard 
3+3 design because of its simplicity in implementation [1,2]. Under 
the 3+3 design, cohorts of three patients are assigned to increasing 
dose levels until one or more Dose-Limiting Toxicities (DLTs) is 
observed. If one out of three patients have a DLT, a further three 
patients are assigned to the current dose. If two or more patients 
out of three or six patients at the current dose experience a DLT, 

the trial is terminated and the dose below this level is declared the 
MTD. The 3+3 design uses only data at the current dose to choose 
the next dose and the MTD, resulting in uncertainty around the 
estimated DLT risks at each dose. Furthermore, as no TTL is 
specified by investigators when using the 3+3 design, the identified 
MTD often has a true risk of causing severe toxicity far different 
to what clinicians may deem acceptable for the treatment under 
investigation. These and other drawbacks in rule-based designs 
have been identified and reported frequently by many researchers 
in industry as well as in academia [3]. In this regard the Medical 
Research Council (MRC) Network of Hubs for Trials Methodology 
Research’s Adaptive Designs Working Group published a short 
note on why the 3+3 design, and A+B designs in general, should 
not be used for dose-finding studies [4].

Other model-based designs such as the Continual Reassessment 
Method (CRM) [5], the Bayesian logistic regression model [6], 
the Bayesian model averaging CRM [7], biased coin design [8,9] 
and the decision-theoretic approach [10], have been proposed in 
the literature. These methods assume a parametric model for the 
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dose toxicity curve and then, based on the accumulating trial data, 
continuously update the estimate of the curve to guide the dose 
assignment and MTD selection. However, the use of these methods 
has been limited due to the computational complexity, increased 
cost of a statistician to determine the dose and the need for 
sophisticated software to perform pre-trial simulation. The model-
assisted designs such as the isotonic designs [11], modified Toxicity 
Probability Interval (mTPI) design [12], the keyboard design [13], 
and the BOIN design [14], combine the superior performance 
of model-based designs with the simplicity of algorithm-based 
designs. The model-assisted designs use a statistical model for 
efficient decision-making like model-based designs, however, their 
dose-escalation and de-escalation rules can be tabulated before the 
onset of a trial, as with rule-based designs. Comprehensive reviews 
of dose-finding methods for phase I clinical trials are available 
elsewhere [15-17].

The Bayesian interval based design is a relatively new class of phase 
I trial designs, of which the Bayesian Optimal Interval (BOIN) 
design is probably the most widely used [18,19]. Dose titration is 
defined by the relative location of the observed toxicity rate (i.e., 
the number of patients who experienced toxicity divided by the 
total number of patients treated) at the current dose with respect 
to a prespecified toxicity tolerance interval. If the observed toxicity 
rate is located within the interval, the current dose is retained; if 
the observed toxicity rate is greater than the upper boundary of 
the interval, the dose is de-escalated; and if the observed toxicity 
rate is smaller than the lower boundary of the interval, the dose is 
escalated. The BOIN design only considers toxicity in dose finding 
to determine the MTD.

Most dose-finding designs available for phase I cancer clinical trials 
were initially developed in the context of cytotoxic conventional 
agents. These methods are based on the underlying assumption 
of a monotonically increasing relationship between toxicity and 
the dose of a cytotoxic drug. With the emergence of molecular 
targeted agents, immunotherapies, such as checkpoint inhibitors 
and chimeric antigen receptor T-cell therapy, this paradigm has 
changed. Severe toxicities are rare, often delayed in subsequent 
treatment cycles, preventing the MTD from being reached. Poorly 
characterized dose and schedule may lead to selection of a dose 
that provides more toxicity without additional efficacy. Noticing 
the importance of dose optimization in early phase dose finding 
studies, the FDA has launched Project Optimus with the goal of 
educating, innovating, and collaborating with companies, academia, 
professional societies, international regulatory authorities, and 
patients to move forward with a dose optimization paradigm across 
early phase oncology that emphasizes selection of a dose or doses 
that maximizes not only the efficacy of a drug but the safety and 
tolerability as well [20].

Targeted therapies, have revolutionized the treatment of many 
cancers. For these novel therapies, although toxicity may increase 
with the dose, efficacy may plateau or even decrease at high doses 
[21,22]. Therefore, the objective of dose-finding trials in this setting 
is to identify the Optimal Biological Dose (OBD) that optimizes 
patients’ risk-benefit trade-off [23]. The OBD is generally defined 
as the lowest dose providing the highest rate of efficacy while being 
safely administered [24]. Various phase I/II dose-finding designs 
have been proposed to identify the OBD. These include the rule-
based design [25], model-based Efficacy-Toxicity (EffTox) design 
[26], which assumes a statistical model to describe the dose toxicity 

and efficacy curves, as well as model-assisted designs such as the 
BOIN-ET design [27], and the U-BOIN design [28]. As toxicity and 
efficacy data accrue during the trial, the EffTox design continuously 
updates the estimates of the fitted model after each cohort and 
uses them to determine the dose for the next cohort. However, 
such designs are rarely used in practice as they are difficult to 
understand for a non-statistician and require complicated statistical 
modeling and computation as well as an expensive infrastructure 
for implementation. The BOIN phase I/II (BOIN12) design has 
been developed as an extension of the standard BOIN design to 
find the OBD that optimizes the risk-benefit trade-off [25]. In 
the BOIN12 design decisions to escalate, de-escalate or continue 
with the same dose are made by simultaneously taking account 
of efficacy and toxicity and optimizing the toxicity-efficacy trade-
off. Compared with model-based phase I/II dose-finding designs, 
such as the EffTox design [26], which requires regular complicated 
model fitting and estimation for the decision of dose escalation/de-
escalation, BOIN12 is simpler to implement. In addition, BOIN12 
enjoys the advantage of being more robust than the EffTox design 
[26], because it does not make any model assumptions on the dose 
toxicity and efficacy curves. BOIN12 differs from the model-assisted 
U-BOIN design, in that U-BOIN is a two-stage design where the 
first stage performs dose escalation on the basis of toxicity only, 
and it’s only the second stage the uses the toxicity-efficacy tradeoff 
for decision making. The BOIN12 design, in contrast, is a single 
stage design and uses the toxicity-efficacy trade-off throughout, 
thus being more efficient for finding the OBD.

The objective of this paper is to present a real-life case study 
where the performance of the BOIN design is compared and 
contrasted to the BOIN12 in various scenarios, including where 
the investigational drug has a benign toxicity profile. Section 2 
briefly summarizes the methodology underpinning the standard 
BOIN and BOIN12 designs. Sections 3, 4 and 5 present the details 
of a real-life clinical trial which is used as a motivating example for 
this paper. Section 6 concludes the paper with a brief discussion on 
the key findings and recommendation for further work.

METHODOLOGY

In the following we provide a short overview of the standard BOIN 
and BOIN12 designs.

The BOIN design

The BOIN design is described extensively in the literature [19]. Dose 
escalation and de-escalation rules are determined by comparing the 
observed DLT rate at the current dosing level with a pair of fixed 
dose escalation and de-escalation boundaries, predetermined at 
study outset. We outline the approach in the following. Let ˆ j

j
j

y
p

n
=    

represent the observed DLT rate at the current dose level j, where 
y

j
 and n

j
 are the observed number of DLT’s and the number of 

patients treated respectively. Let   represent the unknown target 
DLT rate and eλ (j,n

j
,φ ) and dλ (j,n

j
,φ ) represent the dose escalation 

and de-escalation boundaries at each dose level with eλ (j,n
j
,φ )< dλ

(j,n
j
,φ ). The BOIN approach is as follows:

•	 Patients in the first cohort are treated at the lowest or pre-
specified starting dose level.

•	 At the current dose level j

   Escalate the dose level to 1j + if ( )ˆ , ,j e jp j nλ φ≤
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 De-escalate the dose level to 1j −  if ( )ˆ , ,j d jp j nλ φ>  
   Stay at dose level j if ( ) ( )ˆ, , , ,e j j d jj n p j nλ φ λ φ< ≤

•	 This process is continued until the maximum total sample size 
is reached

The BOIN design is obtained by choosing the optimal dose 
escalation and de-escalation boundaries to minimize the 
probability of making incorrect dose escalation and de-escalation 
decisions [14]. The optimal ( ), ,e jj nλ φ  and ( ), ,d jj nλ φ  for each 
dose level are identified with regard to the three hypotheses: 

1 2 1 3 2: ; : ; :j j jH p H p H pφ φ φ= = =

Where, φ  is the target DLT rate as previously, 1φ  denotes a 
DLT probability that is substantially lower than the target MTD 
(suggesting escalation) and 2φ  denotes a DLT probability that is 
substantially higher than the target MTD such that de-escalation 
is required. The three hypotheses represent, in sequence, staying 
at the current dose level (H

1
), escalating to the next dose level (H

2
) 

and de-escalating to a lower dose level (H
3
). It has been shown 

by Liu et al. that the optimal decision boundaries that minimize 
correct decisions are given by:
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Default values of 1φ =0.6 × φ  and 2φ =1.4 × φ  has been recommended 
by Liu et al., which lead to desirable operating characteristics and 
the decision rule that fits most clinical practices. The approach 
simplifies if, a-priori, each of the three hypotheses are considered 
equally likely, i.e. π

1
=π

2
=π

3
=1/3 with the benefit that eλ  and dλ  

will be the same for each dose level resulting in a straightforward 
trial design.

The BOIN12 method

The Bayesian optimal interval phase I/II (BOIN12) trial design 
proposed by Lin et al. estimates the OBD that optimizes the 
risk-benefit trade-off and is used where late onset toxicities are 
not expected. The BOIN12 design makes the decision of dose 
escalation and de-escalation by simultaneously taking account of 
efficacy and toxicity and adaptively allocates patients to the dose 
that optimizes the toxicity- efficacy trade-off. BOIN12 uses a utility 
function to measure the toxicity-efficacy tradeoff, whose value 
should be elicited from clinicians to reflect the clinical desirability 
of each possible toxicity and efficacy outcome observed in Table 1.

The risk-benefit tradeoff of a dose is defined in terms of a simple  
2 × 2 contingency table where a utility value is ascribed to each of 
the possible toxicity-efficacy outcomes. 

In their example the most desirable outcome (No Toxicity, Efficacy) 
is assigned a score of 100 and the least desirable outcome (Toxicity, 
No Efficacy) a score of 0. Clinicians are then asked to specify scores 
u

2
 and u

3
 for the other two outcomes. Averaging over the four 

possible outcomes, the utility of a particular dose (d) is:

u(d)=p
1
u

1
+p

2
u

2
+p

3
u

3
+p

4
u

4

A higher value of u(d) indicates a more desirable risk-benefit trade-
off. The dose with the highest value of u(d) is the OBD.

The decision rule of BOIN12 design is depicted below in Figure 1, 
and the optimal boundaries used in this design is given in Table 2. 
In the BOIN12 design, the calculation of dose desirability can be 
pre-tabulated and included in the trial protocol before the initiation 
of the trial, which simplifies design implementation as compared 
to the model-based methods such as the EffTox esign [26-28]. 
The computation of the dose desirability is achieved by using the 
quasi-beta-binomial model which converts complicated desirability 
calculations involving bivariate toxicity and efficacy outcomes into 
simple beta-binomial modeling. To safeguard patients from toxic 
and/or futile doses, two dose-acceptability criteria are used in the 
BOIN12 design to decide which doses may be used to treat patients. 
These are the clinician-specified toxicity upper limit and efficacy 
lower limit, respectively. Generally, the efficacy lower limit can take 
the value of the target response rate specified for a standard phase 
II trial. The value of the clinician-specified toxicity upper limit 
should be set slightly higher than the target toxicity rate used in 
conventional toxicity-based phase I designs. During the trial, the 
desirability of a dose can be determined by counting the number of 
patients treated at that dose level along with the number of patients 
who experienced toxicity, the number of patients who experienced 
efficacy and also the number of patients who experienced efficacy 
without toxicity and then look up at the pre-tabulated Rank based 
Desirability Score (RDS) table as shown in Lin et al., to determine 
the optimal dose for the next cohort of patient.

Compared with existing phase I/II dose-finding designs, the 
BOIN12 design is simpler to implement, has higher accuracy to 
identify the OBD, and allocates more patients to the OBD. The 
fact that its adaptation rule can be pre-tabulated and included in 
the protocol, makes the design very appealing to the investigators as 
they are aware of the escalation/de-escalation pathways prior to the 
initiation of the trial. During the trial, the clinical team can allocate 
patients to a dose based on decision table from the BOIN12 design 
as suggested by Lin et al.

Toxicity

Efficacy

Yes No

No u
1
=100 u

2

Yes u
3

u
4
=0

Table 1: The decision framework is presented in BOIN12 method by Lin et al.
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CASE STUDY

The case study presented in this manuscript, which was designed 
and conducted by Numab Therapeutics AG and ICON plc, has 
been described elsewhere [29]. The primary objective was to 
estimate the MTD, based on the number of DLTs observed at a 
specific dose level. A BOIN design was used and comprised eight 
planned escalating dose levels; dose levels 1 to 8 (0.15 mg–1400 
mg).

After enrolling into dose level 1, subsequent dose levels were only 
opened if the previous dose level was deemed well tolerated. The 
first dose level was to enroll a minimum of one patient. If a Grade 
2 or higher Adverse Event (AE) was observed during the evaluation 
period or when dose level 5 was reached, a minimum of three 
patients were to be enrolled per dose level in accordance with the 
BOIN design dosing rules. Cohorts of three patients were recruited 
after the first dose level enrolling three patients. The drug was 

administered as a single Intravenous (IV) infusion approximately 
every 14 days for a total of two infusions per treatment cycle. The 
DLT observation period was therefore 28 days.

The target toxicity rate for the MTD was set as ≤ 30% (i.e,  =0.3), 
and the maximum sample size was 27 with a maximum of 12 
patients per cohort. If the observed DLT rate at the current dose 
was ≤ 0.236, the next cohort of patients would be treated at the 
next higher dose level; if it was ≥ 0.359, the next cohort of patients 
would be treated at the next lower dose level. If the DLT rate was 
>0.236 or <0.359 then the next cohort of patients would be treated 
at the current dose. A 1 patient-per-dose dose-escalation process 
was applied until the first ≥ Grade 2 toxicity was observed, or dose 
level 5 (80 mg dose level) reached.

Whilst enrolling patients into dose levels 1 to 5 it became clear 
that the drug had a benign safety profile. Further, newly available 
Pharmacodynamics (PD) data suggested that toxicity may not 

Figure 1: BOIN12 design decision rule design, where, (λ
e
,λ

d
). are the dose escalation and de-escalation boundaries adopted from the BOIN design, 

and N* is a prespecified sample size cutoff (e.g., N*=6).

Table 2: Escalation and de-escalation boundaries for BOIN12 design.

Target toxicity rate 0.20 0.25 0.30 0.35 0.40

Escalation boundaries 0.157 0.197 0.236 0.276 0.316

De-escalation boundaries 0.238 0.298 0.359 0.419 0.48
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Probabilities for the optimal dose are given in Table 5. For the 
scenario where the toxicity profile is more benign (Scenario 5), 
which is what was actually observed in the study, the highest dose 
is the most likely to be chosen [29]. However, this is only because 
the DLT rate always stays below the lower boundary and the dose 
is always escalated. So, in effect, this is the highest dose tested and 
not necessarily the most clinically active dose.

Table 5: Probability of optimal dose.

Sample 
Size/DLT 
scenario

1 2 3 4 5 6 7 8

DLT S1 0.14 0.65 0.17 0.03 <0.01 <0.001 <0.001 <0.001

DLT S2 <0.001 0.01 0.06 0.24 0.48 0.18 0.03 <0.001

DLT S3 <0.001 <0.001 0.05 0.25 0.49 0.19 <0.01 <0.001

DLT S4 <0.001 <0.001 <0.01 0.03 0.23 0.50 0.20 0.02

DLT S5 <0.001 <0.001 <0.01 <0.01 0.03 0.11 0.27 0.56

The BOIN12 method

The assumed efficacy rates are shown in Table 6. The scenarios 
were designed to evaluate the performance of the BOIN12 designs 
where the dose response curve is: (1) bell-shaped (Efficacy Scenario 
(ES1); (2) S-shaped (ES2); and (3) monotonic increasing (ES3).

Table 6: Assumed efficacy rates.

Sample size/
efficacy 
scenario

1 2 3 4 5 6 7 8

EFF S1 0.05 0.10 0.20 0.30 0.40 0.35 0.30 0.20

EFF S2 0.05 0.20 0.30 0.35 0.40 0.45 0.48 0.50

EFF S3 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

DLT scenario 1: The sample size probabilities for each efficacy 
scenario for DLT scenario 1 (Table 3), are shown in Table 7. In 
contrast to the standard BOIN design the most probable sample 
size is 27 subjects. This is the case for each of the efficacy scenarios.

Table 7: Sample size probabilities.

Sample size/
efficacy 
scenario

3 6 9 12 15 18 21 24 27

EFF S1 <0.001 <0.01 <0.01 0.02 0.02 0.03 0.04 0.04 0.85

EFF S2 <0.001 <0.001 <0.01 0.02 0.02 0.02 0.02 0.02 0.89

EFF S3 <0.001 <0.001 <0.01 0.02 0.02 0.03 0.04 0.04 0.84

Probabilities for the optimal dose for DLT scenario 1 are given in 
Table 8. Dose levels 1 or 2 are the most probable using the BOIN12 
design. In contrast, dose level 2 is by far the most probable with the 
standard BOIN.

Table 8: Probability of optimal dose.

Dose level/
efficacy 
scenario

Early 
stop

1 2 3 4 5 6 7 8

EFF S1 0.18 0.38 0.28 0.11 0.04 0.1 <0.01 <0.001 <0.001

EFF S2 0.13 0.28 0.44 0.10 0.03 0.01 <0.01 <0.001 <0.001

EFF S3 0.18 0.39 0.27 0.10 0.03 0.02 <0.01 <0.01 <0.001

BOIN 0.99 0.14 0.65 0.17 0.03 <0.01 <0.001 <0.001 0.0

increase monotonically with dose and that PD activity might plateau 
due to the affinity-balanced design of the molecule, i.e., activity 
might initially increase and then plateau over a relatively broad dose 
range before decreasing. The biological explanation for such a bell-
shaped dose-response relationship is that at high concentrations 
the target engagers for the drug may become saturated resulting in 
“insulating effects” that restrict drug activity. Based on the PD and 
emerging clinical data it was decided to amend the study design to 
remove the highest pre-specified dose level (1400 mg) from the dose 
escalation scheme [29].

We now investigate the application of BOIN12 to the same study 
setting and compare and contrast the use of the two models first 
through simulation and then analysis of the study data. The 
original design with the eight dose levels will be investigated.

Simulations

We used the same DLT profiles when evaluating the BOIN and 
BOIN12 designs. With the exception of the accelerated titration, 
which is not a feature of the BOIN12 design, the characteristics 
of the BOIN and BOIN12 were as described in the previous 
section. For the BOIN12 a target efficacy of 0.25 was used and 
the riskbenefit tradeoff was as shown above. A total of 10,000 
simulations were conducted for each scenario using the simulation 
tool for the BOIN and BOIN12 designs in the BOIN suite [30].

The assumed DLT rates are shown in Table 3. The scenarios were 
designed to evaluate the performance of the BOIN and BOIN12 
designs where the toxicity was expected to range from quickly 
escalating and plateauing (Scenario S1) to becoming increasingly 
more benign across dose levels (Scenario S5).

Table 3: Assumed DLT rates for BOIN and BOIN12.

Dose level/
scenario

1 2 3 4 5 6 7 8

S1 0.10 0.30 0.45 0.48 0.51 0.54 0.56 0.58

S2 0.04 0.06 0.11 0.16 0.29 0.47 0.55 0.60

S3 0.03 0.06 0.10 0.15 0.30 0.46 0.68 0.80

S4 0.01 0.03 0.06 0.09 0.11 0.30 0.45 0.60

S5 0.02 0.03 0.05 0.06 0.07 0.08 0.09 0.10

The BOIN design

The sample size probabilities, which represent the proportion 
of times that a particular sample size occurred in the 10,000 
simulations, are shown in Table 4. As expected, fewer subjects are 
likely to be enrolled in DLT scenario 1, where there is a higher 
probability of observing a DLT at lower doses. In all other scenarios 
the most probable sample size is 21 subjects.

Table 4: Sample size probabilities.

Sample 
size/DLT 
scenario

6 9 12 15 18 21 24 27

DLT S1 0.04 0.06 0.12 0.19 0.30 0.29 0.04 0.06

DLT S2 <0.01 <0.01 0.02 0.04 0.06 0.88 <0.001 <0.001

DLT S3 <0.001 <0.01 0.01 0.03 0.07 0.88 <0.001 <0.001

DLT S4 <0.001 <0.001 ¡0.01 ¡0.01 0.02 0.96 <0.001 <0.001

DLT S5 <0.001 <0.001 0.03 0.01 0.01 0.98 <0.001 <0.001
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The BOIN design has two “built-in early stopping rules”, i.e. study 
stops before the maximum sample size is reached:

•	 Stop the trial if the lowest dose is eliminated due to toxicity, 
and no dose should be selected as the MTD. This can only 
really happen if the first dose level is very toxic and thus this 
“early stopping” definition only applies in this context. Early 
stopping is achieved if the posterior probability that the DLT 
rate of the first dose is higher than the target DLT rate is 
greater than a pre-defined threshold.

•	 Stop the trial and select the MTD if the number of patients 
treated at the current dose reaches the maximum to be exposed 
at any dose level, which was 12 subjects in this case study.

The first stopping rule is a safety rule to protect patients from being 
exposed to doses that are all overly toxic. This corresponds to a 
scenario where all the doses have a DLT rate greater than the target 
DLT rate. The rationale for the second stopping rule is that when 
there is a large number of patients assigned to a dose, it means that 
the dose-finding algorithm has approximately converged. Thus, we 
can stop the trial early and select the MTD to save sample size and 
reduce the trial duration.

The BOIN12 design appears to have two built-in stopping rules:

•	 Stop the trial and select the OBD if the number of patients 
treated at the current dose reaches the maximum to be exposed 
at any dose level, which was 12 subjects in this case study.

•	 When the observed toxicity rate indicates that subjects should 
continue to be exposed at the current dose level, then stop 
exploring higher doses if the number of patients N*. The 
recommended range for N* is between 0 and 6.

In the case of the BOIN design it was almost certain (>99%) to stop 
early whereas with the BOIN12 design the probability was 12%-
20%. This was presumably due to how the first and the second 
stopping rules given above work together. In our simulations the 
first rule was set to 12 and the second (N*) to 6. This second rule 
essentially means that once at least 6 patients have been exposed 
to a particular dose then no further dose escalation will occur. The 
study will then continue until 12 have been exposed at any dose 
level. The second rule is essentially a safety rule to prevent subjects 
being exposed unnecessarily to higher doses.

DLT scenarios 2 to 5: The sample size probabilities for each efficacy 
scenario for DLT scenario 2 are shown in Table 9. A similar pattern 
was seen for DLT Scenarios 3-5. In contrast to the standard BOIN 
design the sample size is always 27 subjects. This is the case for each 
of the efficacy scenarios.

Table 9: Sample size probabilities.

Sample size/
efficacy 
scenario

3 6 9 12 15 18 21 24 27

EFF S1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

EFF S2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

EFF S1 0.0 0.0 0.0 0.0 0.0 <0.001 0.0 .00.0 1.0

Probabilities for the optimal dose for DLT Scenario 2 are given in 
Table 10. Here we see a difference between the efficacy scenarios. 

Dose levels 3-5 are the most probable using the BOIN12 design for 
the bell-shaped curve, dose levels 3-4 for the S-shaped curve and 
1-4 for the monotonically increasing scenario. In contrast, doses 
4-5 are the most probable doses when using the BOIN design, with 
dose level 5 having a probability of 0.4.

Table 10: Probability of optimal dose.

Dose level/
efficacy 
scenario

Early 
stop

1 2 3 4 5 6 7 8

EFF S1 <0.001 0.09 0.13 0.22 0.27 0.24 0.03 <0.01 <0.01

EFF S2 0.0 0.06 0.16 0.24 0.28 0.17 0.07 <0.01 <0.01

EFF S3 0.0 0.21 0.20 0.20 0.19 0.15 0.04 0.01 <0.001

BOIN 1.0 <0.01 0.04 0.11 0.27 0.40 0.16 0.01 <0.001

Again, there was a marked difference between the two designs in 
terms of “early stop” with the BOIN always stopping early in DLT 
scenario 2. The probabilities for the optimal dose for DLT Scenario 
3 were similar to those for DLT Scenario 2.

With respect to DLT Scenario 4, dose levels 4-5 are the most 
probable to be identified as optimal using the BOIN12 design for 
the bell-shaped curve and the S-shaped curve. For the monotonically 
increasing curve the most probable doses identified as optimal are 
2-5. In contrast, dose level 6 is clearly the most probable dose when 
using the BOIN design. Again, there was a marked difference 
between the two designs in terms of “early stop” with the BOIN 
always stopping early in DLT scenario 4.

Finally, for DLT Scenario 5, dose levels 5-6 are identified as the 
most likely to be optimal using the BOIN12 design for the bell-
shaped curve and the S-shaped curve. For the monotonically 
increasing curve the most probable doses are 7-8. In contrast, dose 
level 8 is clearly the most probable dose when using the BOIN 
design. Again, there was a marked difference between the two 
designs in terms of “early stop” with the BOIN always stopping 
early in DLT scenario 5.

RESULTS

Illustration

The clinical results of the study have been published elsewhere [29]. 
In summary, 26 patients with various primary solid tumors were 
enrolled in the study. Of the 26 enrolled, 23 were evaluable for 
efficacy. One patient experienced a DLT. In the 8 mg-800 mg dose 
range, disease control, i.e., at least stable disease at first assessment 
at 8 weeks, occurred in 13/23 patients (54%). PD activity remained 
stable at a broad dose range (24 mg-800 mg). The MTD for the 
BOIN study design and the OBD for the BOIN12 study design 
were determined using the simulation tools in the BOIN suite [30].

The BOIN design

The MTD for the BOIN design is determined by applying 
isotonic regression to the observed DLT rates so that they are 
monotonically non-decreasing, and then selecting the dose for 
which the smoothed DLT rate is closest to the target DLT rate [31]. 
The results of the analysis are given in Table 11. One patient in the 
80 mg cohort died due to rapid disease progression before the end 
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The BOIN12 design

Table 12, provides a summary of the study results. Table 13, 
provides estimates of the marginal toxicity probability, marginal 
efficacy probability, and mean utility for each dose. The OBD was 
determined to be dose level 4 (24 mg).

of the DLT observation period and was therefore not included in 
the DLT rate calculation for that dose. As can be observed in Table 
11, the toxicity profile was extremely benign so the early stopping 
rule of a maximum of 12 patients exposed at any dose level was not 
met. Instead, the study stopped when the maximum sample size 
was reached. The MTD was determined to be dose level 7 (800 mg).

Table 11: Maximum Tolerated Dose (MTD) selection smoothed DLT rate is closest to the target DLT rate.

Dose level Number of patients Patients with DLTs Posterior DLT estimate 95% credible interval Posterior toxicity>0.3

0.15 mg 1 0 0.01 ( 0.00,0.13 ) 0.03

1.5 mg 1 0 0.01 ( 0.00,0.13 ) 0.03

8 mg 3 0 0.01 ( 0.00,0.13 ) 0.03

24 mg 3 0 0.01 ( 0.00,0.13 ) 0.03

80 mg 5 1 0.01 ( 0.00,0.13 ) 0.09

240 mg 3 0 0.01 ( 0.00,0.13 ) 0.09

800 mg 9 0 0.01 ( 0.00,0.13 ) 0.09

Table 12: Summary of clinical study results.

Dose level/outcomes
DL1

0.15 mg
DL2

1.5 mg
DL3
8 mg

DL4
24 mg

DL5
80 mg

DL6
240 mg

DL7
800 mg

No. of Patients 1 1 3 3 5 3 9

No.(Toxicity=0,Efficacy=1) 0 0 1 3 2 3 4

No.(Toxicity=1,Efficacy=1) 0 0 0 0 0 0 0

No.(Toxicity=0,Efficacy=0) 1 1 2 0 2 0 5

No.(Toxicity=1,Efficacy=0) 0 0 0 0 1 0 0

No. of Toxicity 0 0 0 0 1 0 0

No. of Efficacy 0 0 1 3 2 3 4

Note: DL: Dose Level

Table 13: Summary of clinical study results. 

Dose level/probabilities
DL1

0.15 mg
DL2

1.5 mg
DL3
8 mg

DL4
24 mg

DL5
80 mg

DL6
240 mg

DL7
800 mg

No.(Toxicity=0,Efficacy=1) 0 0 0.33 1 0.4 1 0.44

No.(Toxicity=1,Efficacy=1) 0 0 0 0 0 0 0

No.(Toxicity=0,Efficacy=0) 1 1 0.67 0 0.4 0 0.56

No.(Toxicity=1,Efficacy=0) 0 0 0 0 0.2 0 0

Pr(Toxicity) 0 0 0 0 0.01 0.01 0.01

Pr(Efficacy) 0 0 0.33 1 0.4 1 0.44

Mean Utility 46.67 46.67 56 80 54.29 80 63.64

Note: DL: Dose Level
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Targeted therapies with different dose-response relationships and 
other designs such as EffTox [26] or the Probability Intervals of 
Toxicity and Efficacy (PRINTE) method could be compared to the 
BOIN and BOIN12 [32]. This will enable us to better understand 
these methodologies and make more informed dose selection 
decisions in clinical development.

CONCLUSION

The case study presented in this article suggests that model-assisted 
designs may select different optimal doses depending on whether 
only toxicity or both toxicity and efficacy data are considered. We 
would therefore encourage investigators to utilize methods that 
take account of both efficacy and toxicity when designing early-
phase oncology studies.
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DISCUSSION

We present a real-life case study where a standard BOIN design 
was used to estimate the MTD [29]. As the investigational drug 
was found to have a benign toxicity profile, we decided to compare 
the performance of the BOIN design, as originally conceived, and 
the BOIN12 design, which uses both efficacy and toxicity data 
to estimate the OBD, first in a simulation study and then in a 
comparative analysis of the actual study results.

The simulation study indicates that the BOIN12 design generally 
leads to a larger sample size compared to the standard BOIN 
design. This is presumably because the dose-escalation decisions 
under the BOIN12 design, in contrast to the BOIN design, are 
based on the efficacy-toxicity trade-off [25]. The simulation study 
showed that in the majority of runs the BOIN design needed no 
more than 21 patients to estimate the MTD, whereas the BOIN12 
needed the maximum sample size of 27 patients to estimate the 
OBD. However, the disadvantage of the BOIN design is that dose 
selection is based on toxicity alone.

When the toxicity profile of a compound is benign (DLTS5), as 
was seen in the case study, the BOIN design most frequently selects 
the highest dose as the MTD, whereas the selection of the OBD 
depends on the shape of the dose-response curve. In the simulation 
study, under DLTS5, dose levels 5-6 were the most probable using 
the BOIN12 design for the bell-shaped (ES1) and the S-shaped (ES2) 
dose-response curves. For the monotonically increasing (ES3) dose-
response curve, dose levels 7-8 were the most likely to be selected. 
In contrast dose levels 8 was the most likely MTD using the BOIN 
design. This is due to the fact that the dose escalation/de-escalation 
rules in the BOIN design only take account of observed DLTs and 
if the rate always stays below the lower boundary, then the dose will 
always be escalated irrespective of any efficacy signal. Hence, for a 
compound with a benign toxicity profile, the BOIN12 design may 
be more suitable.

The selection of the OBD using the BOIN12 design is dependent 
on the shape of the dose-response curve irrespective of the toxicity 
profile of the compound. Even when the toxicity profile was not 
benign, the OBD is dependent on the dose-response relationship 
and usually lower than the MTD. This makes the BOIN12 design 
an attractive option to implement in early-phase oncology trials, as 
it selects the lowest dose providing the highest rate of efficacy while 
being safely administered. The BOIN design can be a useful option 
for cytotoxic chemotherapies where the dose-response relationship 
is steeply increasing monotonically. However, dose-finding trials 
that select the phase 2 dose based on dose- and exposure- response, 
represent a more informed approach to identify the optimal 
dosages [20].

The actual study results tend to support the BOIN12 as the more 
attractive option. As predicted, the maximum sample size of 27 
subjects was enrolled as the early stopping rule was not met at any 
dose level. The BOIN design determined dose level 7 (800 mg) to 
be the MTD, although this was in effect just the maximum dose 
tested, whereas the BOIN12 determined dose level 4 (24 mg) to be 
the OBD when taking efficacy and safety into account.

The limitation of our study is that we consider only one trial. 
We hope that this article will encourage other investigators to 
publish case studies comparing early-phase oncology designs, so 
we can better understand how these perform in real-life situations. 
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