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Positioning System (GPS), Geographic Information System (GIS) 
and remote sensing has contributed to hazard assessment, risk 
identification and disaster management [10]. GPS is a satellite-
based navigation system that provides geolocation information 
and time anywhere in the world [11,12]. Several studies have 
demonstrated the use of GPS technologies in mapping landslides 
[11-16]. GIS technology is designed to collect, store, process, 
analyse, manage and present geographic or spatial data. It has 
been widely applied in the study of landslides in recent decades 
[17-20]. Remote sensing is the science and art of acquiring 
information about an object on the earth's surface without being 
in physical contact with it. Remote sensing has been applied in 
several studies for landslide hazard zonation [21-24].

Different methods and techniques have been employed in 
determining landslide susceptibility zones these include; 
deterministic, heuristic, statistical and multi-criteria decision 
analysis [9,25-32]. They can be grouped under two broad 
headings; qualitative and quantitative methods. Qualitative 
methods are subjective and present the landslide susceptibility 
maps in descriptive terms whereas quantitative methods give rise 
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INTRODUCTION

On annual basis, over 1000 lives and property damage worth 
over $4 billion are lost as a result of landslides. Of all the natural 
hazards in 2019, about 11% (44) were landslides leading to over 
1,293 deaths [1]. Studies show that most lives lost as well as 
property damage could be prevented if sufficient information 
and preventive measures were in place before a landslide event 
[2-4]. In many developing countries like Cameroon (Figure 1), 
several challenges are faced ranging from basic needs such as 
food, shelter, water and sanitation, health care, quality education, 
increased population growth, the prevalence of diseases, conflicts 
and climate change [5,6]. As a result of an increase in urban 
population and inadequate infrastructures, more unplanned 
development is taking place in unstable terrains increasing the 
likelihood of susceptibility to slides [7]. For better land use, 
urban planning and mitigation of the impact of landslides, it is 
imperative to understand the causes, spatial distribution and to 
map areas liable to future landslides [8,9].

The advancement in geospatial technology such as Global 
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Decision Analysis (MCDA) outperformed logistic regression in 
determining landslide susceptibility zones. Vojtekova and Vojtek 
[9] used the MCDA technique in mapping landslides in Slovakia, 
they obtained a satisfactory result.

The physical and tectonic setting of Cameroon coupled with 
changing climatic conditions exposes the western part of the 
country to both natural and anthropogenic hazards [8,49-56]. 
Several natural and anthropogenic hazards have been recorded in 
Cameroon including; flooding, volcanic eruption, earthquakes, 
landslides and volcanic gas emission [51,52,57,58]. The western 
part of Cameroon has been hit by small but recurrent landslides 
leading to over 146 deaths, thousands of persons displaced and 
millions of dollars in property loss in the past three decades 
[50,53,59-62]. Most studies of landslides in this region have 
focused on mapping their occurrences and distribution as well as 
damages caused [49,53]. While Che et al. [8] produced a landslide 
susceptibility map for Limbe (a section of the tectonically active 
Cameroon Volcanic Line), the recent landslide in Gouache 
neighbourhood in Bafoussam (Figures 2a-2d), an area with no 
historical landslide record sheds light on the necessity to map 
the entire region. This study is therefore aimed at producing a 
landslide hazard zonation map that will be used by local and 
national authorities for land use planning and policy to minimize 
loss. The objectives of this work are; to identify areas more likely 
to be affected by landslides in the future using satellite images 
and the analytical hierarchy process, to understand the factors 
leading to slope instability in the region from the multicriteria 
decision analysis, to identify settlements and land uses in the 
high-risk zone for possible relocation or preventive measures, 
to increase awareness and add to the already growing data on 
hazards in Cameroon.

to numerical estimation in terms of the probability of occurrence 
of a landslide in a given zone [33]. The heuristic method relies on 
the investigator's knowledge of past landslide occurrences, causes 
and factors that contribute to slope instability. It is, therefore, a 
qualitative method that involves the ranking and weighting of 
causative factors according to their importance in contributing 
to slope failure [34-36]. A statistical method is a quantitative 
approach which deals with the analysis of the relationship between 
causative factors and prior landslide distribution. Statistical 
techniques commonly used in landslide hazard mapping include 
bivariate, multivariate, logistic regression and artificial neural 
networks [37-43]. Deterministic models are based on the analysis 
of existing slope failure mechanisms through physical models 
calibrated using onsite and laboratory tests [33,44].

Several factors are taken into consideration in landslide 
susceptibility mapping. Determining the contribution of each 
parameter to landslide susceptibility mapping is a complex 
problem. The Analytical Hierarchy Process (AHP) is a multi-
criteria technique for landslide hazard mapping that makes use 
of pairwise comparison of causative factors and expert knowledge 
of the investigator in assigning weights or priority scale to the 
factors [33,45-48]. The AHP method operates under four facets; 
formulation of the problem, determination of intended goal 
and alternatives, construction of pairwise comparison matrix, 
determining factor weights and deriving landslide susceptibility 
index using an aggregation method. Park et al. [33] investigated 
landslide susceptibility in Inje area in Korea using frequency 
ratio, AHP, logistic regression and artificial neural network 
and revealed that AHP performed well compared to the other 
methods. A similar outcome was obtained by Kavzoglu et 
al. [4] in Trabzon Province in Turkey where Multicriteria 

Figure 1: Location of study, (a) Inset of African map indicating the location of Cameroon (dark polygon). (b) Inset map of Cameroon showing 
the West Region (gold polygon). (c) Study area, the Divisions (Departments) in the West Region of Cameroon and landslide inventory. Note: ( ) 
Inventory, ( ) Roads, ( ) Division Boundary, Elevation: ( -2744 m), ( -224 m)
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Study area
The study area is situated in the geopolitical West Region of 
Cameroon within longitude 10° 30’ 00” and latitude 5° 30’ 00” 
(Figure 1). It is the smallest of the ten regions of Cameroon with 
a surface area of approximately 13892 km2, a total population 
of 1,921,590 as of 2015 and a high population density of 140/
km2 [63]. Bafoussam, the political capital of the West Region 
is located about 336 km from the national capital, Yaounde. 
The area has a moderate Equatorial climate resulting from high 
elevation and high humidity. Temperatures vary between 15°C to 
28°C. This region experiences high rainfall averaging 1000-2000 
mm/year [63].

The topography of the West Region is generally mountainous 
with elevations ranging from 224 to 2744 metres above sea level. 
As a result of the mountainous terrain, fast-flowing rivers are 
ubiquitous. Several crater lakes have developed from collapsed 
volcanoes. The area has a variable soil type comprising of ferralitic 
soils and alluvial soils derived from the weathering of plutonic 
and volcanic rocks.

The original forest vegetation has been cleared for agriculture 
giving rise to grassland vegetation. Patches of Woodland Savannah 
of the Sahel type are found distributed within the area. Plantation 
farming is practised on a small scale, with coffee, cocoa, tea and 
tobacco as the main cash crops. Livestock farming includes; 
cattle, sheep and goat rearing. Poultry and piggery farming is also 
increasingly practised in recent years. The region is well known 
for artistic and craftsmanship which involves the production of 
high-quality ceramics from clay, woodworks, brass and bronze 
casting and cotton textiles [63]. It is the most accessible region in 
Cameroon comprising of several paved roads linking Yaounde, 
Douala and Bamenda.

The geology of Cameroon is comprised of Precambrian basement 

rocks, sedimentary rocks of Cretaceous Period and Cenozoic 
Era and volcanic rocks of Cenozoic Era [64]. The Precambrian 
basement is subdivided into the Congo Craton (Archaean and 
Paleoproterozoic terranes) and the Central African Fold Belt 
(CAFB). The CAFB is a Neoproterozoic Orogen associated 
with Trans-Saharan Belt of West Africa which is linked to the 
Brasiliano Orogen of NE Brazil [65]. Three tectonic units have 
been identified in this belt; North Cameroon Domain, Central 
Cameroon Domain and South Cameroon Domain. The study 
area lies within the central domain comprised of intrusions 
of Pan-African granitoids emplaced through the control of 
zones of weaknesses along the Cameroon Volcanic Line [66]. 
The Cameroon Volcanic Line (CVL) is a chain of oceanic and 
continental volcanoes extending from the Pagalu Island to Lake 
Chad. It is oriented NE-SW extending over a length of 1600 km 
and a width of ~100 km [67,68]. The geology of the study area is 
made up of three main units; 

•	 Garnet-bearing gneiss, migmatites and amphibolite

•	 Granitoids 

•	 Basaltic rocks comprised of basaltic lava and dolerite dykes 
[66,69].

MATERIALS AND METHODS

Data sources for landslide conditioning factors
Various factors have been selected to investigate landslide 
susceptibility in the study area. Table 1 details the type and 
source of data used in the assessment of landslides susceptibility. 
Thematic maps were generated from these data in a GIS 
environment. Given the paucity of literature in the study area, 
the selection of factors was based on a review of literature that 
conducted comparable assessments of landslide susceptibility in 
areas with similar characteristics [8,49,51,53,70,71]

Figure 2: Recent landslides in the West Region of Cameroon, (a) Landslide scar. (b) demolished house along landslide path. (c) constructed 
houses along unstable slope. (d) recovery of materials and human remains from landslide debris.
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Landsat 8 Operational Land Imager (OLI) images were 
downloaded from the United States Geological Survey website 
(Table 1). These images were layer stacked in ERDAS Imagine 
2018 employing contrast enhancement and feathering techniques 
[72].
Table 1: Input data set, format, generated layers and data source used 
in the study

Input data Format
Map layer 
generated

Data source

SRTM DEM 
(30 m)

 
 Raster

 Aspect  
USGS website 

(https://
earthexplorer.usgs.

gov/)

 Slope 

 Elevation

Landsat 8 OLI Raster Land use map

Image (30 m) NDVI

USGS website 
(https://

earthexplorer.usgs.
gov/)

Geology (1: 1,
000, 000 scale)

 Raster  Lithology map  

Shapefile Distance to fault
 Van Schmus et al. 

[65]

Soils Shapefile Soil map
Africa Groundwater 

Atlas, 2019

Rainfall Raster
Average monthly 

rainfall

NASA Earth Science 
Data (https://

giovanni.gsfc.nasa.
gov/)

Roads Shapefile Distance to road

Rivers Shapefile Distance to river
OpenStreet Map 

(openstreetmap.org)

Multicriteria decision analysis
Multicriteria Decision Analysis (MCDA) is a GIS-based method 
for decision making through the integration of geographic data 
and subjective judgements [73].

Analytical hierarchy process
An Analytic Hierarchy Process (AHP) is a form of MCDA 
quantitative method for decision making using factor weights 
through pairwise comparison [74]. This method measures both 
tangible and intangible variables through relative M weights 
given to each variable based on the preference of the researcher. 
It has been widely applied in MCDA, planning, natural and man-
made resource allocation, and conflict resolution [75-79].

The AHP method has three distinct facets; decomposition, 
comparative judgment and synthesis of priorities. A complex 
problem is broken down into a hierarchy of variables or factors 
using a pairwise comparison matrix, factors are assigned weights 
on a nine-point scale (Table 2) [80]. The factors are arranged in 
a matrix form with the same number of rows and columns with 
scores assigned to each factor in comparison to other factors [81]. 
The scale of comparison of paired factors was determined from 
a careful literature review of landslide occurrences along the 
Cameroon Volcanic Line [52,54,55,61,62,82]. After generating 
the pairwise comparison matrix, weights of each factor were 
determined by calculating the principal Eigenvector of a square 
reciprocal of the metrics making sure they sum up to unity [31,73]. 
The pairwise comparison is based on two intrinsic questions to 
determine criterion or factor more important than the others 
and the extent based on a ratio scale of 1/9 to 9 (Table 2). The 
AHP calculation was undertaken using Microsoft excel.

Table 2: Proposed scale for factor weighting in MCDA [74]

Intensity of importance
The verbal judgement of 

preference

1 Equal importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance

               2,4,6,8
Intermediate values between 

adjacent scale values

To validate the results of the pairwise comparison metrics and 
factor weights, the Consistency Index (CI) and the Consistency 
Ratio (CR) was determined [80]. The consistency index is given 
by

max
1

CI
n

λ −
=

− …………… (1)

Where CI = Consistency Index

λmax = normalized highest Eigenvalue of the pairwise matrix

n = number of factors (11 factors in this study)

The consistency ratio shows how random the matrix ratings were 
selected as given by Saaty [81].

CICR
RI

=
………………. (2)

Where CR = Consistency Ratio RI = Random Index

Random Index (RI) has been proposed by Saaty [73] and 
presented in Table 3

A consistency ratio of 0 implies perfect ratings of factors, CR of 
>0.1 implies inconsistency of the ratings. Saaty [81] suggested a 
re-evaluation of factor ratings for CR >0.1.

The result of a pairwise comparison matrix gives rise to factor 
weight which is then aggregated to generate a landslide 
susceptibility map [83-85]. Several methods have been employed 
to aggregate factor weights in generating susceptibility maps. 
These include; weighted linear combination, weighted sum, 
weighted overlay and ordered weighted average [9,31,72,84,86].

Table 3: Random consistency index for deriving consistency ratio [74]

Factors (n) 1 2 3 4 5 6 7 8 9 10

Random 
Index (RI)

0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Data preparation
Landslide inventory: The first step involved in producing a 
landslide susceptibility map is to generate an inventory of past 
landslides [87]. Following the law of uniformitarianism, landslides 
are likely to occur in areas where past slope failures have been 
recorded [88,89]. Landslide inventory map can be used as a means 
for assigning weights to landslide triggering factors [90]. These 
maps can be generated from aerial photographs, field surveys, 
satellite images and existing landslides. Fourteen landslides were 
determined in the study area from the review of literature (Table 
4) and the classification of satellite images (Figure 1).
Table 4: Landslide inventory derived from review of literature and 
satellite image analysis

Location of slide Date
Casualties/

Damage
Source

Fossong-Wentcheng
(Dschang)

Aug-1978
6 deaths, damage 

to plantation
Tchoua, 1989
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Mbankomo/Akok
Bikanda

1986 No casualty
Ayonghe et al. 

1999 [49]

Bakombo Jun-1988
8 deaths, property 

damage
Ayonghe et al. 

1999 [49]

Pinyin 1991
Destruction of 

farm land

Cameroon civil
protection 

report 2008

Santa Sep-1992 12 deaths
Cameroon 

civil protection 
report 2008

Gouata Sep-1997
1 dead, damage to 

farmland
Ayonghe et al. 

1999 [49]

Baingoh Jun-1998
5 deaths, damaget 
to properties and 

farmland

Ayonghe et al. 
1999 [49]

Nwa 2000
Destruction of 

plantation

Cameroon 
civil protection 

report 2008

Bana 2002
Destruction of 

plantation
Aboubakar et al. 

2013 [91]

Bamboutos Jul-2003

23 deaths, 700 
livestock killed, 
1000 persons 

displaced

Santa

Ayonghe 
and Ntasin, 
2008 [51]

Santa Santa

Maga Jul-2003 20 deaths
Kagou 

Ndongmo, 2006

Bapi Unknown Unknown
Deduced from 
satellite images

Ngwenfon Unknown Unknown
Deduced from 
satellite images

Bassinte Unknown Unknown
Deduced from 
satellite images

Makpa Unknown Unknown
Deduced from 
satellite images

Yantou (Fomepea) Unknown
3 deaths, property 

damage
Zangmene, 2020 

[92]]

Kekem Oct-2007
1 death, damage 

to farm land
Aboubakar et al. 

2013 [91]

Koutaba Oct-2011 2 deaths
Aboubakar et al. 

2013 [91]

Gouache Oct-2019 42 Deaths
Cameroon News 

Agency

Echiock Aug-2020
1 death, damage 

to farm lands
Ndonbou, 2018 

[93]

Land use and normalized difference vegetation index: Land 
use map was generated from the Landsat 8 OLI satellite image 
through supervised classification using maximum likelihood 
[94]. False-colour composite images and Google Earth were used 
to obtain training data through the polygon method. Five land 
cover classes were identified; water body, agricultural land, built-
up area, vegetation and bare soil (Figure 3a).

Due to the influence of vegetation coverage on slope stability, 
Normalized Difference Vegetation Index (NDVI) was carried out 
to characterize vegetation extent in the study area equation 3

IR RNDVI
IR R

−
=

+ …………….. (3)

Where NDVI = Normalized Difference Vegetation Index 

IR = Infrared (band 5)

R = Red (band 4)

NDVI analysis results in an output of values ranging from -1 to 1 
where the negative values represent clouds, water and snow [95]. 
NDVI values of 0–0.1 represent barren land, rocks and soils while 
values of 0.6–1 represent dense vegetation (Figure 3b).

Elevation: A 30 m resolution Shuttle Radar Topography Mission 
(SRTM) Digital Elevation Model (DEM) was downloaded from 
the USGS website. The average elevation of the study area is 
155 m, the lowest point is 224 m and the highest point is 2744 
m (Figure 3c). Generally, areas with higher elevations are more 
susceptible to landslides. The elevation generated was reclassified 
into five classes to determine the level of contribution of each 
category to landslides.

Slope: The Digital Elevation Model (DEM) was used to generate a 
slope map, the slope in the study area ranges from 3.64° to 77.33° 
with an average of 40.49° (Figure 3d). Areas with steep slopes are 
often more prone to landslides [4]. The Slope was reclassified 
into five classes following the recommendation of Kumar et al. 
[90]. The categories are; flat to gentle, moderate, fairly moderate, 
steep and very steep slopes (Figure 3d).

Aspect: Aspect refers to the orientation of a slope from 0° to 360°. 
Sunlight exposure, drying winds, rainfall and discontinuities are 
factors associated with slope aspect which influences the degree 
of susceptibility to landslides [96]. Nine slope directions were 
generated and reclassified according to their contribution to 
landslide susceptibility (Figure 3e).

Geology: A scanned geologic map of Cameroon was 
georeferenced, the geology of the study area was digitized into 
polygons that were converted to raster format. Four lithologies 
were identified; pre-syn tectonic granitoids, syn-post tectonic 
granitoids, orthogneiss, and volcanic rocks (Figure 3f). The area 
has highly weathered volcanic rocks which have been identified 
in some studies as landslide-prone lithologies [53].

Soils: The stability of slopes depends on the soils they contain 
[97,98]. The soil map was digitized from the African groundwater 
Atlas map. The soil atlas was converted from shapefile to a 30 
m raster file in Arcmap. Five soil types of varying permeability 
and susceptibility to landslides were derived; andosols, loxisols, 
luvisols, stagnosols, and vertisols (Figure 3g). Luvisols are the 
dominant soil type in the study area. Soils capable of holding 
water have a higher level of susceptibility [99].

Rainfall: The average monthly rainfall data of the study area from 
the year 2000 to 2020 were downloaded from the NASA Earth 
Data website, this data was interpolated to generate the rainfall 
map (Figure 3h). The average monthly rainfall ranges from 97 
to 171 mm/month. The rainfall data were reclassified into five 
classes representing susceptibility levels.

Distance to road and river: Road cut and drainage density 
have been shown to influence slope stability [38,100]. Road and 
river network data was downloaded from the Open Street Map 
data repository as shapefiles. The shapefiles were converted to 
raster data with a resolution of 30 m. The Euclidean distance 
function in ArcMap was used to derive the distance to roads and 
rivers. Five classes were generated for both distances to road and 
distance to rivers (Figures 3i and j).
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Figure 3: Thematic maps (a) Landcover over 50% of the study area is covered with vegetation (b) NDVI Normalized Difference Vegetation Index 
map representing vegetation cover in the study area, light colour represent vegetation while dark colour indicates non-vegetated areas (c) Elevation 
of the study area reclassified into five classes (d) Slope angle the slope ranges from 3° to 77°  with an average of 40°  (e) Aspect (f) Lithology of 
the study area, metamorphic and volcanic rocks make up a bulk of the lithology [64,65] (g) Soils (h) Average monthly rainfall data (mm/month) 
from 2000-2020 (i) Euclidean distance of roads ( j) Euclidean distance of rivers (k) multiple ring buffer for distance to faults. Note:  (a): Landcover 
class ( ) Water body, ( ) Agricultural land, ( ) Built up area, ( ) Vegetation, ( ) Bare soil; (b): NDVI ( ) -0.12-0.06, ( ) 0.07-0.17, 
( ) 0.18-0.23, ( ) 0.24-0.29, ( ) 0.3-0.58; (c): Elevation ( ) 224-853 m, ( ) 853.01 m-1,078 m, ( ) 1,078.01 m-1,338 m, ( ) 
1,338.01 m-1,706 m, ( ) 1,706.01 m-2,744 m; (d): Slope ( ) 0°-4.86°, ( ) 4.87°-10.29°, ( ) 10.3°-17.15°, ( ) 17.16°-
26.01°, ( ) 26.02°-72.89°; (e): Aspect ( ) Flat (-1), ( ) North (0-22.5), ( ) Northeast(22.5-67.5), ( ) East(67.5-112.5),  
( ) Southeast(112.5-157.5), ( ) South(157.5-202.5), ( ) Southwest(202.5-247.5), ( ) West(247.5-292.5), ( ) 
Northwest(292.5-337.5), ( ) North(337.5-360); (f): Lithology ( ) Orthogneiss, ( ) Syn-post tectonic grantoids, ( ) Volconics, 
( ) pre-syn tectonic grantoids; (g): Soils ( ) Andosols, ( ) Loxisols, ( ) Luvisols, ( ) Stagnosols, ( ) 
Vertisols; (h): Rainfall ( ) 96.7-108.65 mm/month, ( ) 108.66-123.22 mm/month, ( )123.23-135.16 mm/month, ( ) 
135.17-147.69 mm/month, ( )147.7-171.01 mm/month; (i-j): Distance ( ) 1-5 Km, ( ) 6-10 Km, ( ) 11-15 Km, ( ) 16-20 Km,  
( ) 21-25 Km; (k): Multiple Ring Buffer ( ) Faults, Distance ( ) 5 Km, ( ) 10 Km, ( ) 15 Km, ( ) 20 Km,  
( ) 25Km
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Figure 4: Flow chart of input data and processes used in generating the landslide susceptibility map

Figure 5: Landslide susceptibility map derived from the weighted linear combination of 11 conditioning factors Note: Landslide class ( ) Very 
low, ( ) Low, ( ) Moderate, ( ) High, ( ) Very high

Construction of roads along steep slopes leads to slope instability 
which is exacerbated by vehicle movement and high- water 
retention capacity in cracks that result [38,101].

Distance to fault: From the georeferenced geologic map of 
Cameroon, faults were digitized into line features (Figure 3k). The 
multiple ring buffer function was used to generate a distance to 
faults. Five classes were derived with intervals of 5 km.

Aggregation of factor weights: In this study, the Weighted 
Linear Combination (WLC) method was used (Figure 4). This 
method is customized in many GIS platforms and it is flexible 
in combining thematic maps of conditioning factors to generate 
landslide susceptibility map [46]. It requires the standardization 
of classes within each factor to a common numeric scale. The 

factor classes are multiplied by the weights obtained from the 
comparison matrix and their results summed to obtain the 
landslide susceptibility index (equation 4).

1

n

j
LSI Wj Zij

=

= ×∑
……………….. (4)

Where LSI = Landslide Susceptibility Index 

Wj = Weight value of causative factor j

Zij = Weight value of class i of causative factor j

The landslide susceptibility indices generated was reclassified to 
derive the landslide susceptibility map using the Jenk classification 
method. The map was reclassified into five classes; very high, 
high, moderate, low and very low susceptibilities (Figure 5).
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RESULTS 

Landslide susceptibility map
Landslide susceptibility map was generated through the weighted 
linear combination method using 11 landslide conditioning 
factors (Figure 5 and Supplementary Table 1). The landslide 
susceptibility map was classified into five classes using the natural 
break (Jenk) method; very low, low, moderate, high and very high 
susceptibility. The Jenk method is a data clustering technique 
used to determine the best grouping of values into different 
classes by minimizing the deviation of each class from the class 
mean while maximizing the class deviation from the means of 
other groups [2].

To create a landslide susceptibility map using the AHP technique, 
a pairwise comparison matrix is constructed. The matrix is used 
in assigning factor ratings and for calculating factor weights 
(Supplementary Table 1 and Table 5). The consistency ratio 
determines the degree of consistency in assigning the factor 
weights. In this study, the Consistency Ratio (CR) is <0.1.

The area and percentage coverage of five landslide classes is 
presented in Table 6. From Table 6, the medium landslide 
category has the highest area coverage of 6512 km2 (47%) followed 
by the low category 3149 km2 (23%). The very low landslide 
category occupies 2051 km2 (15%). The lowest area coverage is 
occupied by the high landslide category 230 km2 (2%). The very 
high landslide category covers 1950 km2 (14%) of the study area. 
Therefore, about 16% (2180 km2) of the study area falls within 
the high and very high landslide category (Table 6).

Landslide model validation
To determine how successful the model is in predicting landslide 
susceptible zones, the landslide inventory was superimposed on 
the landslide susceptibility map see Table 6. From Table 6 43% of 
landslide inventory falls within the high to very high susceptibility 
class. About 36% of landslide falls within the medium class while 
21% falls within the low susceptibility class. The result shows 
that no landslide has been recorded in the very low landslide 
susceptibility class.

DISCUSSION

Selection and weighting of conditioning factors
The reliability of the landslide susceptibility map generated 
depends on the selection of appropriate conditioning factors, the 
objective weighting of factors and the suitability of the model 
used [27,102]. The spatial scale of analysis has been identified 
as a determinant for choosing conditioning factors. For local 
spatial scale (1-30 km2), it is recommended that more accurate 
input data be used [9,103]. At regional, national or global scale, 
it is usually difficult to use site-specific data due to the variability 
of terrain features over large scales, therefore, more generalized 
conditioning factors are adopted [102-109]. The selection of 
conditioning factors was based on the review of literature which 
revealed similar slope failures along the Cameroon volcanic line 
[50,51,53,55].

A major challenge commonly encountered in landslide 
susceptibility analysis is the subjectivity involved in assigning 
weights to conditioning factors [110]. To objectively assign 
weights to these factors, some authors have suggested the use of 
landslide frequency ratio and weight of evidence [18,111]. Donati 
and Turrini [27], superimposed thematic maps of conditioning 
factors on landslide inventory map to determine factors most 

relevant to landslide susceptibility in Valnerina, Italy. This 
approach was adopted in the study.

Several GIS techniques have been employed to assess landslide 
susceptibility. Kavzoglu et al. [4] compared Multi- Criteria 
Decision Analysis (MCDA), Support Vector Machine (SVM) and 
Logistic Regression (LR) to determine landslide susceptibility 
in Northeast Turkey. It was found that MCDA using the 
Analytical Hierarchy Process (AHP) technique was far superior 
to logistic regression. Furthermore, Ahmed [31] examined three 
different MCDA methods in the Chittagong area in Bangladesh 
and obtained favourable results, though the weighted linear 
combination out-performed both AHP and Ordered Weighted 
Average (OWA). In a similar study, Feizizadeh and Blaschke [46] 
noted that the AHP method out-performed both WLC and OWA 
in a landslide study in the Urmia lake basin, Iran. As a result of 
the successes in the application of MCDA methods [9,75,76,112-
114], coupled with its ability to integrate different data layers 
with varying uncertainties, the MCDA technique was chosen for 
this study. The result obtained is representative of the study area 
when compared to the landslide inventory.

Causes of sliding in the area
Several factors interplay in making an area liable to sliding, both 
natural and anthropogenic influences on slope stabilities can be 
distinguished. Steep slopes (35-77°) and high elevation (700-2700 
m) are responsible for most of the sliding in the study area this 
is in accord with the results obtained from areas with similar 
characteristic [101,115,116]. Weathered volcanic rocks and thick 
soil cover on steep slopes also contribute to slope instability in 
the study. This result is similar to that reported by Che et al. 
[8] and Buh [52] in the Limbe Municipality. Earthquakes have 
been identified as a landslide triggering factor [117-124]. Seismic 
induced landslides have been reported along the Cameroon 
Volcanic Line [49]. Buh [52] noted that earthquakes along 
the CVL are of low intensity and have no major association 
with landslides. An indirect link may be associated with the 
development of tension cracks leading to high infiltration of 
water and eventual slope failure. This is the scenario in the study 
area as evidence from the strike slip faults cutting through the 
high-risk zones [66,69]. As the case may be with several tropical 
terrains, studies point to a high intensity rainfall (100 mm/
day) over a short duration as the main trigger of landslides in 
Cameroon [52,55,61,62]. 

Rivers and roads appear to have less influence on landslide 
susceptibility in the study area. This is in contrast to the result of 
Che et al. [8] in Limbe where road cuts and slope erosion by rivers 
contributed to landslides. This could be explained by the fact 
that considerable preventive measures; retaining walls and slope 
terrace have been constructed along major high ways. Land use 
change is one of the anthropogenic factors leading to slope failure 
[125,126]. This is confirmed by the work of Alcantara-Ayala et al. 
[127] in Sierra Norte, Mexico where 72% of landslides occurred 
in areas with low vegetation cover resulting from deforestation. As 
a result of population growth and the construction of buildings 
along steep slopes with no engineering considerations, land use 
change will continue to have an impact on landslide susceptibility 
in the study area.

Uncertainties in landslide model assessment
In the MCDA using the AHP technique, errors may result from 
assigning incorrect factor weights. For example, Ahmed [31] noted 
that high susceptibility class was found at low elevation which is 
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Earth Data website was interpolated using the kriging technique 
[134]. An averaging algorithm was used to fill in the missing time 
gap data [135]. Data acquired from Open Street Map (OSM) 
may be inaccurate resulting from the contribution of data from 
volunteers with little to no geospatial knowledge. However, the 
availability of high-resolution aerial and satellite images enables 
efficient data collection and validation of digitized features.

Risk assessment
The ultimate aim for undertaking a landslide susceptibility 
assessment is to determine land-use types that might be affected 
in an event of a landslide in order to implement mitigation 
measures [101,136]. A qualitative approach was used to determine 
the risk associated with landslide categories in agricultural land, 
urban area and road infrastructures. Some roads in the study 
area are found within high-risk zone, for example, about 42 km 
of the Bafoussam-Foumban highway lies within the very high 
susceptibility class while 22 km passes along the high susceptibility 
class (Figure 6). Similarly, the national road (N4) running from 
Douala-Bafoussam cuts across the moderate susceptibility class 
for over 58 km and the high category for about 6 km (Figure 6). 
Furthermore, the Mbouda-Bamenda highway passes through the 
moderate susceptibility class for over 48 km [137-139].

Results show that about 10% of the urban area comprising of 
parts of Foumban, Foumbot, Bafoussam, Santchou, and Mbouda 
falls within the very high class (Figure 6). About 7% of the urban 
area including parts of Bafoussam, Bangante, Santchou lies 
within the high category. Over 30% of the urban area is located 
in the moderate susceptibility class. Residential houses built 
along unstable slopes have been identified as the most vulnerable 
to sliding. Another important land use which might be affected 
by landslides is agricultural land. Over 50% of agricultural land 
is found within the moderate susceptibility category. This has 
been identified in some studies as a landslide inducing factor as 
it involves the cutting down of trees and tilling of soils [77]. A 
small portion of the agricultural land (4%) is found within the 
high to very high susceptibility class [140].

not normally associated with landslides. This resulted from the 
assignment of weight to some factors which occurred both in 
high as well as low elevations. Therefore, results obtained using 
MCDA may have inherent errors. As a result of the subjectivity 
in assigning factor weights, an incorrect weight assignment affects 
the accuracy of the susceptibility map generated [128]. Another 
source of error is the incorrect pairwise comparison of factors. 
Ahmed [31] suggested that different combination of factors be 
taken into consideration in order to derive the most appropriate 
factor weights. To ensure appropriate rating and weighting of 
factors, Saaty [75] and Eastman [80] developed the consistency 
index and consistency ratio for determining the randomness 
in assigning factor weights which in turn affects the quality of 
the susceptibility map generated. The consistency ratio for both 
factors and sub-factors is less than 0.1 (Tables 5 and 6) which is the 
cut-off set by Saaty [75] for revising factor weighting. Therefore, 
the susceptibility map created in this study is of good quality.

The quality of the data set used may also introduce errors in the 
map generated. The spatial resolution of satellite images and 
SRTM DEM constraints its effectiveness in studying landslides 
which also affects the thematic maps derived [19,129,130]. Petley 
et al. [105] were successful in identifying just 25% of landslides 
in Nepal’s highlands using Landsat 7 ETM+ images with a 30 m 
spatial resolution pan sharpened to 15 m. Nichol and Wong [131] 
showed that at a 1 m spatial resolution, satellite images may not 
be suitable for identifying small scale landslides (<10 m wide). 
Therefore, a 30 m spatial resolution satellite image and DEM is 
not suitable for this study given that most of the landslides along 
the CVL are of small scale [58,60,61,132]. However, this is the 
data set freely available for the study.

When georeferencing and digitizing raster data, errors are usually 
introduced [133]. To reduce the error margins, ground control 
points were carefully selected and a first order polynomial 
was used to georeference the geologic, faults and soil maps. 
Topological rules (no overlapping, no dangle lines and no pseudo 
lines) were used to ensure accurate digitizing of faults, geology 
and soil maps [133]. The rainfall data obtained from the NASA 

Table 5: Normalised pairwise comparison matrix, consistency ratio and factor weights

 a b c d e f g h i j k Weight

(a) Slope 1 2 3 3 1 7 8 8 5 9 2 0.23

(b) Geology 0.5 1 2 2 0.33 5 7 7 4 7 1 0.14

(c) Soils 0.5 0.33 1 1 0.33 5 6 6 3 5 0.33 0.09

(d) Aspect 0.5 0.33 1 1 0.33 4 2 2 0.5 3 0.33 0.05

(e) Elevation 1 3 3 3 1 6 7 7 5 7 3 0.23

(f) Rainfall 0.14 0.2 0.2 0.25 0.17 1 2 2 0.33 3 0.2 0.03

(g) Road 0.13 0.14 0.17 0.5 0.14 0.5 1 1 0.33 2 0.14 0.02

(h) Rivers 0.13 0.14 0.17 0.5 0.14 0.2 1 1 0.33 2 0.14 0.02
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Table 6: Area, percentage coverage and validation of landslide classes

Landslide class Area (km2) Area (%) % of inventory

Very Low 2051 15 0

Low 3149 23 21

Medium 6512 47 36

High 230 2 14

Very High 1950 14 29

Total 13892 100  

(i) Landuse 0.2 0.25 0.33 2 0.2 3 3 3 1 4 0.25 0.05

(j) NDVI 0.11 0.14 0.2 0.33 0.14 0.33 0.5 0.5 0.25 1 0.14 0.01

(k) Fault 0.5 1 2 2 0.33 5 7 7 4 7 1 0.14

CI 0.07            

CR 0.04            

Figure 6: Roads and urban areas in high to very high landslide susceptibility zones Note: Landslide class ( ) Very low, ( ) Low, ) Moderate, 
( ) High, ( ) Very high
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CONCLUSION

Several small but destructive landslides have hit the western part 
of Cameroon along the Cameroon Volcanic Line in the past 
three decades. With increase in urbanization and construction 
of houses on steep slopes without engineering considerations 
landslides in the West Region of Cameroon are inevitable. This 
is exacerbated by changing climatic conditions leading to increase 
in rainfall regime. This study therefore aimed at undertaking a 
landslide susceptibility assessment to aid local and national 
authorities in land use and policy planning to minimize the 
destructive effects of landslides. Eleven landslide conditioning 
factors were selected to investigate slope stability in the study 
area. Steep slopes, high elevations, weathered volcanic rocks and 
thick soil cover along steep slopes are identified as the major 
landslide causative factors. High intensity rainfall (110 mm/day) 
for over a period of 2-4 days is the main landslide triggering factor 
in the area. The landslide susceptibility map generated from the 
multicriteria decision analysis was subdivided into five classes; 
very low, low, moderate, high and very high susceptibility class. 
Roads and residential houses built along steep slopes are the 
most vulnerable infrastructures to slides. Agricultural land is less 
vulnerable to sliding as over 50% is found within the moderate 
susceptibility class. To curb the effect of landslides, some 
mitigation mechanism such as; tree planting, slope terracing, 
draining pipes, construction of retaining walls is proposed. 
In order to implement appropriate mitigation measures, it is 
recommended that site specific assessments be conducted to 
identify triggering factors in high to very susceptibility zones.
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