
Journal of Proteomics & Bioinformatics

1J Proteomics Bioinform, Vol.17 Iss.2 No:1000664

OPEN ACCESS Freely available online

Review Article

Correspondence to: J C Phillips, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, USA, Telephone: 9082738218; 
E-mail: jcphillips.physics@gmail.com, jcphillips8@comcast.net

Received: 03-May-2024, Manuscript No. JPB-24-30834; Editor assigned: 06-May-2024, PreQC No. JPB-24-30834 (PQ); Reviewed: 20-May-2024, QC 
No. JPB-24-30834; Revised: 27-May-2024, Manuscript No. JPB-24-30834 (R); Published: 03-Jun-2024, DOI: 10.35248/0974-276X.24.17.664

Citation: Phillips JC (2024) How Life Works: Darwinian Evolution of Proteins. J Proteomics Bioinform. 17:664

Copyright: © 2024 Phillips JC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

How Life Works: Darwinian Evolution of Proteins 
J C Phillips* 

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, USA

ABSTRACT

Here we discuss the development of protein scaling theory, starting from backgrounds in mathematics and statistical 
mechanics and leading to biomedical applications. Evolution has organized each protein family in different 
ways, but scaling theory is both simple and effective in providing readily transferable dynamical insights, which 
are complementary for many proteins represented in the 60 thousand static structures contained in the online 
Protein Data Base (PDB). Scaling theory is a simplifying magic wand that enables one to search the hundreds of 
millions of protein articles in the Web of Science and identify those proteins that present new cost-effective methods 
for early detection and/or treatment of disease through individual protein sequences (personalized medicine). It 
complements and extends the most popular methods for studying protein evolution, based on amino acid sequence 
alignments. Applications include evolution of Covid and the abrupt end of the pandemic.

Critical point theory is general and recently it has proved to be the most effective way of describing protein networks 
that have evolved towards nearly perfect functionality in given environments (self-organized criticality). Evolutionary 
patterns are governed by common scaling principles, which can be quantified using scales that have been developed 
bioinformatically by studying thousands of PDB structures. The most effective scale involves hydropathic globular 
sculpting interactions averaged over length scales centered on membrane domain dimensions. 

A central feature of scaling theory is the characteristic length scale associated with a given protein’s functionality. 
To gain experience with such length scales one should analyze a variety of protein families, as each may have 
several different critical length scales. Evolution has functioned in such a way that the minimal critical length scale 
established so far is about nine amino acids, but in some cases it is much larger. Some ingenuity is needed to find 
this primary length scale, as shown by the examples discussed here. Often a survey of the evolution of the protein 
suggests a means of determining the critical length scale. 
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INTRODUCTION

Before we discuss the mathematical and statistical basis for protein 
scaling, we should first consider the complexity of the problem; 
protein molecular complexity. A typical protein chain may contain 
300 sites, each potentially occupied by one of 20 amino acids. The 
resulting number of possible amino acid sequences is 30020~1046, a 
number far larger than is normally encountered in physics, even in 
astrophysics. We shall later see bio-medically important examples 
where a single site amino acid mutation is enough to change 
success into failure. Is it possible to explain such sensitivity using 
fundamental principles? Perhaps it is, although every protein family 
is different.

Several ambitious statistical studies of protein sequences are 
available. A broad evolutionary (2001) study of 29 proteomes for 
representatives from all three kingdoms; eukaryotes, prokaryotes 

and archaebacterial, showed that proteins have evolved to be longer 
in eukaryotes, with more signaling heptad transmembrane helices 
in eukaryotes [1]. These are the signaling proteins which are the 
basis for about half of modern drugs. This very well-studied field 
is now classical (the Merck 106 sq. ft. Whitehouse Statn Research 
Lab specialized in these drugs and closed in 2014), while research 
on most other proteins has just begun. A sophisticated group 
wish list (>30 authors) of evolutionary problems associated with 
sequence evolution reported in (2012) that “current efforts in 
interdisciplinary protein modeling are in their infancy” [2].

Newtonian all-atom models are often unable to connect structural 
dynamics to function [3,4]. Evolutionary improvements are not 
easily recognized, as structures are seldom available for most species 
and backbone structural differences are often too small to explain 
evolutionary progression. For example, the chicken and human 
peptide backbone coordinates of lysozyme c, Hen Egg White 
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(HEW) are indistinguishable, even at highest attainable X-radiation 
(X-ray) resolution in hundreds of PDB structures [5].

Science has grown rapidly in the last 60 years and the science 
curriculum has struggled to keep pace. Here we often use the word 
“classical” to indicate topics that are old enough to have gained 
wide acceptance and “modern” to describe the revolutionary 
changes that have taken place, often since ~2000. This review 
includes many modern ideas, which have enabled simple, powerful 
tools to organize molecular biology in new directions. The power of 
these tools will be illustrated by a few examples, especially involving 

evolution of protein functions.

LITERATURE REVIEW

Mathematical tools

Mathematical and scientific literature, as measured by numbers 
of papers published each year, is growing super-linearly, with the 
number of specialized journals proliferating in the 21st century. 
Citations are widely used as a measure of the impact of research 
efforts, if not the absolute importance of their content. This growth 
has stimulated more than 700 papers analyzing the literature 
scientometrically. The most spectacular scientometric study so far 

million papers and 600 million citations, with 106-107 more entries 
than typical data bases and unique in the history of epistemology 
[6]. This study identified a citation transition, which occurred 
around (1960) and which is the earliest example of the cultural 
effects of globalization [7].

We can compare the development of different mathematical tools 
by using carefully chosen key words to search the Web of Science 
[8]. For example, although analysis is also a branch of mathematics, 
“analysis” is used in far too many non-mathematical contexts to be 
useful in a key word search. Useful mathematical words are algebra, 
geometry and topology; these yield surprising phase transitions 
over the last 30 years (Figure 1). It is plausible that the glasnost 
emigration of Russian computer scientists around (1990) facilitated 
development of many biological data bases and contributed to the 
success of the human genome project. Note not only the abrupt 
increase around 1990 associated with glasnost, but also the rapid 
increase in topology, which crosses over algebra with the advent 
of the internet in 2000. The fastest growing field, topology, is well 
suited to discussing protein network structure and evolution. One 
might have supposed that geometry, the oldest of the mathematical 
disciplines, would have stagnated by now, but modern geometry 
has evolved into differential geometry, a tool whose concepts again 
are well suited to discussing the functions of sculpted globular 

proteins. The two-year (1989-1991) jump of special functions, a 
subclass of analysis, by a factor of >20, is far larger than any of the 
general jumps in Figure 1. Other subclasses also show large 1989-
1991 jumps, for instance, “differential geometry”, a factor of 9 and 
“network topology”, a factor >20.

Statistical mechanics

In his enormously popular Dublin (1943) lectures and book, “What 
Is Life?”, Erwin Schrodinger proposed that we could progress in 
answering this question by using statistical mechanics and partition 
functions, but not quantum mechanics and his wave equation. He 
described an “aperiodic crystal” (today we would call it a glass) which 
could carry genetic information, a description credited by Francis 
Crick and James D. Watson with having inspired their discovery 
of the double helical structure of Deoxyribonucleic Acid (DNA) 
[9,10]. Schrodinger arrived at this picture from thermodynamic 
theories concerning protein stability and information content. He 
observed that proteins are not only exponentially complex, but 
also must be near thermodynamic equilibrium, as they function 
nearly reversibly. Thus one can say that Schrodinger may have been 
the first theorist to conjecture that protein functionality could be 
usefully described thermodynamically.

Given what we know today, Schrodinger might have started more 
simply with the isothermal curves of the van der Waals equation of 
state, from R L Rowley, Web Module; Van der Waals Equation of 
State, with author's permission. The equation was invented by van 
der Waals in 1881 (Figure 2). Apart from providing a quantitative 
description of the liquid-gas transition of many molecular liquids, 
this equation exhibits spinodal phase separation topped by a 
critical point on the critical temperature isothermal. The critical 
features of this model are common to many systems at or very 
near thermodynamic equilibrium. Specifically, one can imagine 
that protein functionality can involve transitions between two 
end states, called “open” and “closed” by Karplus in his protein 
example [3]. Also the two phases are either more stable or have 
faster kinetics. Optimization of both properties defines a functional 
critical point. Then if one knows from general considerations some 
quantitative properties of any protein sequence, one may be able to 
recognize extrema and critical points and quantify behavior in their 
neighborhood, without using elaborate Newtonian simulations. 
The comparative advantages of this more abstract method are 
its simplicity and universality, which makes it transferable. Such 
a method can easily treat evolutionary protein sequences by 
following their nearly critical properties and may also facilitate 
identifying essential features in any protein and relating them to 
its functionality. 

Figure 1: The annual numbers of papers on each of three mathematical disciplines, with the geometry number divided by 2.  The entire geometry 
profile covers 330,000 papers. Note: N: Variable; ( ): Geom/2; ( ): Topol; ( ): Algebra.

surveyed nearly all the 20th  century literature, consisting of 25 



3

Phillips JC OPEN ACCESS Freely available online

J Proteomics Bioinform, Vol.17 Iss.2 No:1000664

interface). Moreover, the leading physicochemical properties 
determining protein mutations are hydrophobicity, secondary 
structure propensity and charge [19].

To quantify these effects in the classic period of biophysics (before 
2000), no less than 127 hydropathicity scales were proposed. 
Each scale had its merits and was based on at most only a few 
dozen measurements. Few attempts were made to compare their 
accuracies or applicability to properties other than those used in 
their definitions [20]. Interscale correlations were typically only 
~70%. Meanwhile, the number and accuracy of PDB structures 
had grown enormously, creating the opportunity to re-examine 
the early geometrical definitions based on average neighboring 
hydropathicity volumes or average surface areas in Voronoi 
partitions of proteins into amino-acid centered units with van der 
Waals radii [21-23]. Note that the combination of Stokes’ theorem 
and modern differential geometry suggests that there should be 
a close connection between the volume and surface definitions. 
The surface one in particular emphasizes hydrogen bonding to 
the weaker water films which have shaped globular proteins in 
evolution, much as rocky coastlines are shaped by the pressures of 
tidal water waves [13,24]. 

With the stage set, in (2007) Brazilian bioinformaticists Moret 
and Zebende (MZ) built the interdisciplinary bridge connecting 
proteins to statistical mechanics and critical points [25]. They 
evaluated Solvent-exposed Surface Areas (SASA) of amino acids in 
>5000 high-resolution (<2A) protein segments, a data base about 
100 times larger than the data bases used for the classical scales. MZ 
fixed their attention on the central amino acid in each segment. 
The Length (L) of their small segments L=2N+1, variable (N), 
varied from 3 to 45, but the interesting range turned out to be 9 
≤ L ≤ 35. Across this range they found linear behavior on a log-log 
plot for each of the 20 Amino Acids (AA),

( ) ( ) ( ) ( )     ~          9    35                          1       logSASA L const aa logL L−Ψ ≤ ≤

Here Ψ (aa) is recognizable as a Mandelbrot fractal. It arises because 
the longer segments fold back on themselves, occluding the SASA 
of the central aa. The most surprising aspect of this folded occlusion 
is that it is nearly universal on average and almost independent 
of the individual protein fold. Thus this striking universal result 
transcends and compresses thousands of individual protein folding 
simulations.

The importance of critical points in statistical mechanics has 
led to many studies of their properties in toy models, especially 
Ising models, which are lattice models with only nearest neighbor 
interactions. Ising himself showed (1924) that his models for 
dimensionality d=1 do not contain a phase transition (a general 
property of all d=1 models) and was unable to persuade himself 
that a transition existed for d=2. L. Onsager studied critical point 
neighborhoods for a two-dimensional Ising model (1944), which he 
had solved exactly [11]. For d>4 the critical exponents of correlation 
properties are integers or half-integers (mean-field theory, used by 
L. Landau in his book on statistical mechanics). K Wilson solved 
the most difficult case, d=3, using the renormalization group 
methods of particle theory. The critical exponents of the d=2 and 
3, Ising models are irrational sums of power series [12]. The Wiki 
discussion of Ising models emphasizes random walks, but evolution 
has converged to make proteins far from random, as we shall see 
quantitatively. 

The existence of irrational exponents for d=2 and 3 toy model phase 
transitions is suggestive, because empirical power law fits (which 
appear to be linear on log-log plots) are common in engineering 
discussions of nearly optimized systems. Power laws describe self-
similarity (a power of a power is a power) and self-similarity is an 
appealing way of fitting together proteins over a wide range of 
length scales. Mandelbrot discussed geometrical self-similarity in 
terms of fractal exponents and power-law iterations (Mandelbrot 
sets) [13]. Per Bak connected self-organized criticality to science and 
to evolution [14,15].

Scaling 

The  general  ideas  discussed  in 2012  and  similar  subsequent 
discussions of evolutionary dynamics and function were unable to 
make contact with statistical mechanics and critical points [2,16,17]. 
General ideas are suggestive, but can they produce tangible 
biophysical and bio medically relevant results [18]? The positive 
answer to this challenge came from an unexpected direction, 
bioinformatic thermodynamic scales. The Kelvin temperature scale 
is central to entropy and general statistical mechanics and T=0 
on the Kelvin scale corresponds to -273.16 °C. Protein globular 
shapes are determined by competing hydrophobic forces (pushing 
segments inwards towards the globular cores) and hydrophilic 
forces (pushing segments outwards towards the globular water 

Figure 2: Cubic isothermal curves for the van der Waals equation of state.  For T>Tc, the curves are monotonic and contain no extrema.  For T<Tc, 
there are two extrema and phase separation occurs, with the liquid and vapour phases connected by the purple tie lines.  The two extrema merge at 
Tc. Note: T: Temperature; Tc: Critical Temperature; P: Pressure; V: Volume.
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referred to as β Hot Spot (βHS). 

At first it may seem complex to have two hydropathicity scales Ψ 
and two β strand scales. Still, by comparing not only the scales with 
each other (through their Pearson correlation functions r), but also 
their performances on protein regions known to be structurally 
important, we will gain thermodynamic insights into molecular 
binding otherwise unobtainable. The best part is that comparative 
calculations with these scales are transparent and extremely easy 
and can be implemented using only Excel spreadsheets and their 
included software subprograms.

Critical length scales

In normal liquids critical opalescence couples long wave length 
light waves to long wave length density fluctuations. Near a critical 
point could long wave length ice-like film waves (sometimes called 
“soft modes”) couple to long wave length solvent-exposed protein 
area fluctuations, thus explaining the origin of the MZ fractals? 
This is a difficult question. In the apparently simpler system 
of quenched (non-equilibrium) glasses there has been much 
theoretical discussion of the possibility of a diverging length scale 
at the glass transition, especially connected with long-range stress 
fields [32,33]. To discuss self-organization, phase diagrams and 
physical properties of network glasses, one must start from specifics 
of their chemical bonds, as well as both the local and extensive 
topological properties, which include stress percolation [34-36]. 

Here we argue that biomedically important results are obtainable 
by judiciously combining specific length scales W=2M+1 with 
one or more of the Φ={hydropathic Ψ/β strand scales}, denoted 
generically by Φ. Given Φ (aa), we calculate the modular average;

( ) ( ) ( ) ( ) ,     ,                           ( )                      4  aa W average aa M aa MΦ = Φ − Φ +  
which is a rectangular window from aa -M to aa +M. It is possible 
to iterate this process, for instance one can easily see that gives a 
triangular window extending from aa -2M to aa +2M. In practice 
for most cases rectangularly smoothed Φ (aa, W) appear to give 
best results. By using Φ scales we “dress” modular building blocks 
and enable protein interactions to appear to be short range with 
cutoffs.

( ) ( ) ( )( ) ( ), ,    –  , ,    ,                                5aa W W average aa M W aa M WΦ = Φ Φ +  

Given that Φ (aa, W) is a good variable, how do we determine W? 
Experience with many examples suggests that all protein families are 
different, because their functions differ. We reflect some of these 
differences by choosing an optimized W and others appear through 
comparisons between different components Φ. Because all four Φ 
scales have general meanings, comparison of Φ (aa, W) profiles 
often produces easily interpreted results. Far from being complex, 
the multiple tools associated with Φ (aa, W) are powerful aides 
for exploring protein complexity. They automatically incorporate 
universal aspects of globular evolution.

Hinges and pivots

Given a protein profile Φ (aa, W), one notices immediately that it 
has two kinds of extrema, hydrophobic maxima and hydrophilic 
minima. It is natural to suppose that the maxima act as pivots or 
pinning points for the conformational motion that is functionally 
significant, while the minima act as hinges. This language does 
not specify the conformational motion in Euclidean space that 
is functionally significant, as it jumps directly from the universal 

It is plausible that the MZ fractals exist because protein evolution 
has brought average protein SASA near critical points in each 
of the 20 AA subspaces. Remarkably, these subspaces span the 
same length frame 9 ≤ L ≤ 35, independently of whether the aa 
is hydrophilic (near the globular surface) or hydrophobic (buried 
in the globular interior). One cannot “prove” with mathematical 
rigor these connections, but one can test (prove) them in the 
context of the evolution and functionality of many protein families. 
Comparing the results with those obtained with the classical scales 
enables us to estimate the relative merits of various scales. 

When an {X (aa)} scale is available, it can be shifted linearly to a 
new {Xʹ (aa)} scale

( ) ( ){ } ( )'                                                                  { }           2X aa a X aa b= +  
Given the two constants a and b, one can arrange all scales to have 
the same average value and difference of largest and smallest values.

( ) ( ){ } ( ) ( ) ( ){ } ( ){ } ( )' ' '} { } { }{ ,                            3X aa X aa X aal X aas X aal X aas< >=< > − = −

fractals based on short segment log-log plots may be more significant 
and not just because of critical points in configuration space. Both 
protein dynamics (on a scale of ms) and protein evolution (on 
scales as short as thousands of years) are difficult to understand in 
the context of their ~1046 configurational complexity (Levinthal’s 
paradox) [26]. 

The MZ bioinformatics success could not have occurred in the 
classical period before 2000, because the classical structural 
data base was too small. The significance of protein sequence 
comparisons (alignments) was summarized at the end of this period 
by Rost, where he saw hints of what was to come [27]. At first, it was 
not obvious why the MZ success occurred, but retrospectively we can 
see how fractal segmental character implicitly includes evolutionary 
optimization through exchange of modular building blocks. Amino 
acid hydromodularity is apparently the best-documented example 
of effective parameter space compression [28].

Although  is closest  to MZ, it is  convenient to  compare  results 
obtained from the MZ scale (which implicitly describes second-
order phase transitions), with those obtained from first-order 
protein unfolding measured by enthalpy changes from water to air 
(1982 Kyte-Doolittle (KD) Ψ scale; this is also the most popular 
Ψ scale, which we call the standard scale) [22,29]. The differences 
between results obtained by the two hydropathicity scales should 
reflect improvements in accuracy, which could be bio-medically 
important. Complex protein interactions can even be dominated 
by first-order interactions for smaller sliding window length W and 
by second-order interactions at longer lengths (following section).

In a few cases hydropathic (inside/outside) Ψ shaping may not be 
the most important factor, in which case we can turn to secondary 
structure (inside/outside) propensities of α helices and β strands 
[30]. Hydrogen bonding is longitudinal for α helices and transverse 
for β strands, so we are not surprised to find that the (inside/
outside) differences are small for α helices and larger for β strands 
which can bind outside. Protein binding can involve the β strand 
exposed propensities for some cases. Another β strand scale was 
constructed from the core sequence of amyloid β and we will return 
to this later [31]. It is designed to emphasize aggregative “Hot Spot” 
propensities for binding on a length scale of 7 aa and it will be 

Moret and Zebende compared their fractal scale hierarchically to 
seven classical scales, the closest of course being, which utilized only 
the SASA of a single aa, averaged over a few entire protein structures 
available in (1985) [22]. Paradoxically, the MZ Mandelbrot fractals 
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the KD Ψ and MZ Ψ scales, for example.

Evolution and mutated aggregation, HEW

Lysozyme c, aka HEW was for some time the most studied protein; 
the PDB contains more than 200 humans and 400 chicken HEW 
structures. HEW is also present in many other species, not only 
in the chicken sequence (domesticated from jungle fowl dating 
back 400 million years), but in most other vertebrates, almost 
unchanged in its peptide backbone structure. The backbone 
structure is exceptionally stable, with human and chicken C α 
positions superposable to 1.5A°, while the aa sequence mutates 
from chicken to human with 60% aa conservation, well above the 
40% minimum usually necessary for fold conservation [10,49]. 
Comparison of Kappa caseins from mountain and domesticated 
goats suggests that chicken domestication of lysozyme c may have 
changed its aa sequence by ~2%. 

HEW is a comparatively small 148 aa proteins, which has a nearly 
centrosymmetric tripartite α helices (1-56 and 104-148) and β 
strands (57-103) secondary structure. During its long career, HEW 
has performed at least three functions, as an enzyme, an antibiotic 
and an amyloidosis suppressor. The relative importance of these 
functions has changed from species to species and it seems likely 
that these changes are reflected in the amino acid mutations that 
have maintained the centrosymmetric structure. 

Because we are most interested in the evolution of the properties 
of HEW from chickens to humans, we plot the Roughness (R) or 
variance (W) as RS (W)/R

Human 
(W) in Figure 3, using the fractal 

MZ Ψ scale, for a range of Species (S). There is a broad peak, 
together with a narrow peak, both centered on W=69, roughly half 
the protein length. The peak also occurs at W=69 with the KD Ψ 
scale, but its amplitude is only ~60% as large, so the roughness 
evolution is better described as thermodynamically second order. 
Similar narrow-broad peak structures have been observed in 
critical opalescence spectra, where the broad peak, associated 
with phonons, is called the Mountain peak [50]. Note that this 
“universal” peak applies to the terrestrial vertebrates, but not to 
zebrafish (Figure 3).

Figure 3: The roughness R
S
(W)/R

Human
(W) ratios for hen egg white 

are shown for six terrestrial species.  These ratios exhibit both a 
broad and narrow peak, both centered on W=69, suggesting that the 
evolution of Hen Egg White (HEW) from chicken to human has been 
directed towards improving a specific function, avoiding aggregation 
(amyloidosis). Note: R: Roughness factor; W: Variance; MZ: Moret and 
Zebende; ( ): MZ chick/hum; ( ): MZ phea/hum; ( ): MZ turk/
hum; ( ): MZ rat/hum; ( ): MZ pig/hum; ( ): MZ rab/hum;  
( ): MZ Z fish/hum.

sequence geometries of Φ to function. What happens if we attempt 
to go elastometrically only between sequence and structure, by 
using the isotropic vibrational amplitudes of individual amino 
acids measured in structural studies?

The picture of differential aqueous sculpting of globular protein 
surfaces near a critical point can be compared to elastometric 
treatments of hinge-bending conformational transition pathways 
[15,37-39]. For some enzymes there are similarities in shape that 
correlate with functionality through correlations of flexible α 
helices [40]. This example is complementary to hydropathic 
shaping supplemented by exposed/buried β strand interactions. 
Although muscle contraction is mediated by a myosin cross-bridge 
which exists in two (open/closed) conformations, these were not 
explained by known conformers of myosin [41]. Instead there is an 
iterated hand-over hand motion of myosin along actin filaments [42].

Variance, correlations and level sets

One of Excel’s convenient software tools is variance, which can 
be used to quantify trends in extremal (phobic-philic) widths as 
functions of both the choice of Φ (for instance, Ψ KD verses Ψ MZ) 
and W. Informally variance is known as "mean of square minus 
square of mean" or,  

( ) ( ) ( )( ) ( ) ( )( ) ( )2 22 , , ,  , – ,( )         6Var aa W aa W aa W aa W n aa WΦ = Σ Φ − < Φ > = Σ Φ < Φ >

where the sum is taken over n consecutive amino acid sites. In the 
context of the MZ Ψ scale, the variance measures the hydropathic 
roughness of the globular surface of the n sites of the protein 
chain segment. The local or global roughness can affect dynamical 
functions, which should occur neither too fast nor too slowly, in 
order to synchronize with other protein motions [43]. Mixtures of 
rougher granules have lower packing densities and the granular 
knobs can jam kinetics [44].

Variance is a useful quantity in studying protein evolution and 
dynamics because it combines extremal hydropathic pivots and 
hydrophilic hinges on an equal footing. One might suppose that 
such a simple function would have been used for long times in 
biology. In fact, its bioinformatic importance was first realized 
only in (1911) by R. Fisher (then a student), while its publication 
centenary was 2018. Fisher used it to describe “the correlation 
between relatives on the supposition of mendelian inheritance”. It 
conveniently represents the random combinations of parent genes.

Pearson correlations themselves are normalized cross variances 
between two functions, for instance two sequences of the same 
protein from different species or strains X and Y (-1 ≤ r ≤ 1).  

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )1/2 1/22 22 2  ( /      )  7r X aa X aa Y aa Y aa X aa X aa Y aa Y aa=< − < > − < >> < > − < > > < > − < >

Level sets were developed to track the motions of continuum 
interfaces-applied here to protein globular surfaces [45]. 
Mathematically oriented readers will find “simple” explanations 
of their background and comparative computer science 
advantages online, for instance, under “Level set methods: An 
initial value formulation”. Practical applications of level sets have 
emphasized image analysis and have gradually evolved to include 
Voronoi partitioning, just as has been used for deriving protein 
hydropathicity scales since 1978 [46-48]. We expect, of course, that 
hydrophobic pivots move most slowly, while hydrophilic hinges 
move fastest. When there are two or more level pivots or hinges, it 
is likely that this is not accidental (nothing in proteins is) and we 
can test this assumption by comparing profiles with different scales, 
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three other (unknown) proteins. One can assume that mutations 
of the human sequence tend to “undo” evolutionary improvements 
and cause mutated human profiles to regress towards chicken 
profiles. The three profile difference patches then agree well with 
the patterns of mutated aggregation rates [49].

The aggregation of globular proteins, such as well-studied lysozyme 
c (HEW), may involve unfolding and is thus more complex than 
that of Aβ, a known product of A4 fragmentation. The smallest 
lysozyme amyloid nucleus is 55-63 (9 aa) GIFQINSRY, called K 
peptide [51,52]. K peptide is the strongest amyloid former of nine 
related small (<9 aa) peptides over a pH range from 2 to 9. Profiles 
for entire human lysozyme in Figure 4 show that the 9 aa K peptide 
nucleus is located at the center of centrosymmetric α-β-α lysozyme. 
The 69 aa wide central β region 57-103 is hydropathically level, so 
its β strands are nonamphiphilic [49].

Level set synchronization, the case of HPV vaccine

Synchronized motions of actin cell skeleton proteins guide cell 
surface and interface deformations, a protein realization of 
Stokes’ theorem that also involves criticality [53,54]. Most proteins 
have>300 aa and their functionality at the molecular level also 
involves large-scale conformational motions which are optimized 
by synchronization. The first example of molecular level set 
criticality is likely to come as a surprise, as it concerns a single 
amino acid mutation of a 505 amino acid protein, which alters the 
self-assembly rate of protein complexes of Human Papilloma Virus 
(HPV) cervical cancer vaccine by a factor of 103 [55].

The long road that led to cervical cancer vaccines began in 1976 
when Harald zur Hausen published the Nobel hypothesis that 
HPV plays an important role in the cause of cervical cancer. HPV 
is a large capsid protein, but it was found that only the 505 aa L1 
part was needed to make a good vaccine that conformationally self-
assembled into morphologically correct Virus-like Particles (VLPs). 
L1 from HPV 16, taken from lesions that had not progressed to 
cancer, self-assembled 103 times faster than the HPV 16 L1P that 
researchers everywhere had been using; the old strain L1P had 
been isolated from a cancer, which differed from L1 by only a 
single amino acid mutation D202H [56]. The huge increase in self-
assembly rate could well be due to conformational synchronization, 
but this is not easily quantified using Newtonian methods.

Given the lower bound of L=9 in and the remarkable properties of 
L1, its profile Ψ (aa,9) with the fractal scale was examined near the 
202 mutation site [53]. The striking feature is the presence of two 
almost level L1 hydrophobic peaks in the region between 191 and 
231, shown enlarged in Figure 5. The narrow peak α is centered 
near 202, the mutated site distinguishing L1 from L1P. The level 
condition is satisfied to within 1% by L1, but by only 5% by L1P 
and by two other singly mutated strains recently added to the 
PDB. Note that no mutations were found in the stabilizing broad 
peak. Note also the deep hydrophilic minimum near 215, which 
functions as a plastic hinge accelerating self-assembly.

This example also brings out the advantages of scaling with Φ (aa, 
W). The excellent agreement shown in Figure 5 disappears when 
W is reduced to 7, below the cutoff in. It also disappears when 
Ψ MZ is replaced by Ψ KD. In other words, the pre-2000 efforts 
involved in constructing 127 different Ψ scales were exploring 
a good direction, but proteins are so complex that success with 
the MZ scale was possible only bioinformatically after the PDB 
structures became numerous and more accurate [56].

The structure-function relations giving rise to these peaks can 
now be profiled with W=69, as shown in Figure 4 for the extreme 
terrestrial cases of chicken and human. Note that normalizing RS 
(W) by R

Human
 (W) in Figure 3 is natural, because human structures 

have evolved to be closest to critical and smoother. This means that 
in most cases the critical limiting behavior of ideal functionality 
is nearly reached with the human sequence, described partly by 
R

Human
 (W). It is obvious from Figure 4 that on the W=69 length 

scale, which is approximately half the HEW length, the largest 
effect of evolution has been to stiffen the flexible central β strands 
by making them less hydrophilic. 

Figure 4: Hydropathic profiles of human and chicken HEW, using the 
fractal Moret and Zebende (MZ) scale, as suggested earlier. Note the large 
stabilization by the human strain in the β strand region, compared to 
the small differences in the α helical regions.  Here increasing ordinate 
corresponds to increasing hydrophobicity and increasing rigidity.  The 
four numbered sites near the centre show large mutated aggregation 
rate changes. Note: ( ): Lyso hum MZ 69; ( ): Lyso chick MZ 69.

While the results shown in Figure 4 dramatically confirm the 
previously hidden content of HEW amino acid sequences, what is 
it? The characteristic length scale for amyloidosis is W=40, because 
this is the length of the Aβ fragment responsible for forming 
amyloid fibrils. On this length scale one can examine the effects of 
mutations on HEW aggregation rates and a detailed discussion 
shows consistent shifts [49]. Presumably amyloid suppression is a 
key function for advanced species with larger neuronal networks 
which must be stable for longer lifetimes.

One can also discuss mutated aggregation rates in a similarly 
centrosymmetric protein, measured and analyzed there using 
W=5 only (no other values of W were considered). The 98 aa α/β 
protein Acylphosphatase (AcP) resembles HEW (αβα) in that its 
sequence is still nearly Ψ centrosymmetric, but it is more complex 
with five regions instead of three (β<1-19>, α<20-32>, β<33-54>, 
α<55-70>, β<71-98>). A parameterized W=5 method for studying 
HEW mutations was applied to AcP, with disappointing results: 
increases in mutated aggregation rates were expected only in the 
central region and found only in the N- and C-terminal wings [19]. 

When the S/human roughness ratios are plotted for Acyl-1, the 
results are much more complex than in Figure 3 for HEW. The 
difference is attributed to its richer α/β structure [49]. The overall 
scale, as measured by chick/human, is about 30% enhancement, 
which is about 10 times smaller than that shown for HEW in 
Figure 3. Nevertheless, three features were easily identified. Chick/
human gave peaks at W=43 and W=25, as well as a human peak at 
W=13. These three values of W probably reflect interactions with 
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domain, while the S2 subunit forms the stem which anchors the 
spike in the viral envelope. There are two natural questions, why 
has the coronavirus 2019 been so successful and what is its source? 
These questions can be discussed by comparing coronavirus 2019 
to coronavirus 2003, which has been much studied.

There are ~300 mutations in the 1200 amino acid sequences 
of CoV19 from Cov03. According to BLAST site-by site (W=1) 
sequence comparisons, the largest and most striking difference 
between CoV19 (human) and CoV03, as well as coronaviruses of 
many species, is the insertion of a 4 amino acid PRRA sequence 
near the S1/S2 cleavage site, Figure 1 of [56]. Experiments showed 
that this insertion facilitates spike trigenic reassembly after cleavage 
and is presumably the main factor responsible for the high severity 
of CoV19 infections. What is the cause of the asymptomatic 
incubation phase? Can only a few of these 300 mutations, far from 
the two cleavage sites, also be contributing to the extremely strong 
viral interaction of CoV-2? The extreme effectiveness of CoV19 
suggests self-organized criticality, but how do we identify these 
possibly critical distal and so far unidentified sites [57]?

In Figure 7, the four hydrophilic minima of CoV-2, labelled 1-3 and 
S2’, are nearly equal at 140, whereas the similar minima of CoV-1 
range from 131 to 147, especially the very deep minimum of CoV-1 
at 559. The new sequence PRRA in CoV-2, inserted at 681 in CoV-
1, the cleavage interface (S1/S2), has an average MZ hydropathicity 
108.5. This lowers Ψ(aa,35) to 140.9 at the 3 minimum, aligning it 
with ~140 minima 1 and 2. The three minima span ~250 amino 
acids sites far from the S1/S2 cleavage, which makes their water-
driven synchronization for CoV-2, but not CoV-1, outside the 
range of most simulation or modeling methods. It turned out later 
that it is this range that is responsible for the abrupt end to the 
pandemic. The spikes are long and stick out into water, so they 
appear to be ideally suited to hydropathic thermodynamic scaling 
[58]. As usual, we choose W=35 to maximize the hydropathic shape 
differences between CoV-1 and CoV-2, as measured by a maximum 
in their variance ratio. The two cleavage sites S1/S2 and S2’ of 
CoV-1 have moved lower (hydrophilically, further outside) in CoV-
2 (Figure 7), consistent with the very accurate MZ scale [2]. When a 
cleavage segment is further outside, there is more space for cleavage 
and reassembly, which will occur more rapidly. The insertion Pre-
Removal Risk Assessment (PRRA) in CoV-2 was identified with 
BLAST (W=1) as unique to CoV-2, but with BLAST alone one 
cannot show that this change also made CoV-2 more contagious, 
resulting in the deadly pandemic [56].

Figure 5: Hydroprofile of L1 and several single amino acid mutants, 
using the fractal scale Moret and Zebende (MZ). Note: ( ): L1; ( ) 
: L1P; ( ): L1M; ( ): L1Q.

In addition to the types of HPV that cause cancer, there are 
“milder” types that cause only warts (self-limited growth). It might 
appear that the differences between these two types, which occur 
on a cellular level, could not be analyzed on a molecular level. 
However, there are many self-similar aspects to proteins and cells, 
so one should look at the differences between the HPV 16 (cancer) 
and HPV 6 (warts) profiles (Figure 6). There are large differences 
in the amide (N)-terminal region, far from the plasticity hinge 
(which is almost unchanged) seen in Figure 5. Thus the main 
self-assembly function is unchanged, but the N-terminal region 
changes can account for the sometimes serious side effects. These 
small differences are much reduced with the classic KD scale, 
which is suited to some large open-closed transitions, but not small 
conformational changes [56]. 

Figure 6: By aligning the extrema, the Moret and Zebende 9 (MZ 9) 
hydropathic profile reveals strong similarities (correlation coefficient 
(r) = 0.82) between L1 HPV16 (cervical cancer) and HPV6 (warts).  The 
two large differences around 135 and 160 could be the major factor in 
the functional differences. Note: HPV: Human Papilloma Virus; ( ) 
: HPV16L1; ( ): HPV6L1. 

Level set synchronization, Coronavirus Darwinian 
evolution 

Coronavirus 2019 has evolved to be much more dangerous than 
CoV2003. It differs greatly from other airborne viruses (like flu) 
because its infections are much more likely to be fatal. It is also much 
more contagious, with a median 5-day asymptomatic incubation 
phase that can extend to 14 days. Coronaviruses are large, roughly 
spherical particles with unique surface projections called Spikes 
(S). The S protein is composed of S1 and S2 subunits; the S1 
subunit forms the head of the spike and has the receptor binding 

Figure 7: The hydropathic profiles of CoV-1 and CoV-2 reveal a 
hidden symmetry when plotted using the Moret and Zebende (MZ) 
scale (second-order phase transitions). Note: W: Variance; ( ): CoV-
1; ( ): CoV-2. 
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been reviewed (574 references) [66]. Nuclear Magnetic Resonance 
(NMR) experiments have shown that conformational dynamics 
in the catalytically relevant microsecond to millisecond timescale 
is optimized along a favored evolutionary trajectory in a bacterial 
protein [67]. Statistical methods alone applied to genome intron/
extron analysis failed to identify ordering of protein sequences [68]. 
This illustrates why the combination of topological, geometrical 
and structural data in scaling theory is needed to connect protein 
sequences to function and biomedical applications. An early 
example is the study of optimal folding [69].

The present methods, based on self-similarity near thermodynamic 
critical points, are accurate and rigorous modern realizations 
of multi-scale (also called coarse-grained) theory. In many cases 
coarse-graining occurs on a scale corresponding to W~3. It has 
become fashionable as a means of interpreting Newtonian all-atom 
molecular dynamics simulations [70]. Students will find a concise, 
self-contained introduction to many of the classical tools used here 
in [71]. A toy network model exhibiting self-organized criticality 
has been analyzed with Markov chains focused on self-stabilizing 
nodes, while similar results can be obtained simply from linear 
preferential attachment models. These models are analogous to the 
intermediate phase of rigidity percolation in network glasses [34,72-
74]. Criticality occurs in enzymatic networks through adaptive 
queueing [75]. There are many discussions of hydrodynamic flow 
of vortices between rotating cylinders, which are a simple liquid 
analogue of globular protein deformations, including hydropathic 
inside/outside effects with and without waves, for instance and a 
Wiki on Taylor-Couette flow (1923) [76,77].

Further historical notes: the classical discussion of short-range 
hydrophobic interactions is [78]. A “glassy” analysis of protein 
functionality shows solvent interactions [79]. Phase transitions 
may be used to organize spatially and biochemically regulate 
information throughout biology [80]. Young’s (1803) two-slit 
diffraction experiment proved the existence of light waves and is 
a standard part of introductory physics courses. Less well known, 
but also interesting, are Faraday’s (1831) standing waves [81-83]. 
These waves are classical and can be observed in a pail of water. 
Critical fluctuations have been analyzed by NMR, which presents 
conclusive proof that evolution is driving proteins toward critcically 
effective functionality [84]. Apart from potential biomedical 
applications, these thermodynamic results are consistent with 
activity-based enzyme profiling [85,86]. Many more examples of the 
methods discussed here can be found at arXiv [87].

CONCLUSION

In his enormously popular Dublin (1943) lectures and book, “What 
Is Life?”, Erwin Schrodinger proposed that we could progress in 
answering this question by using thermodynamics. A few years 
later, high energy physicists gave us hydrogen bombs, while solid 
state physicists gave us transistors and the structure of DNA. Over 
the next 50 years high energy physicists produced nuclear power 
and the LHC, while solid state physicists gave us solar power, the 
Internet and billions of fantastic gadgets. Molecular biologists joined 
molecular solid state physicists to generate an enormous data base 
of protein structures and functions, which have been recognized 
by >17 Nobel Prizes and formed a platform for miraculous medical 
treatments. 

The historical protein path from Schrodinger’s classical discussion 
to modern thermodynamic scaling involves many modern technical 

The hydropathic results shown in Figure 8 again exhibit level sets 
(synchronized extrema) for CoV-2 but not CoV-1, just as in many 
other protein profiles in this review (Figure 7). Viruses must act 
rapidly before being destroyed by antibodies and they could do 
this through synchronized motion by leveling their hydrophilic 
(outside) extrema. As shown in Figure 8, such a leveling of minima 
1-3 occurs in CoV-2, while it is absent from CoV-1. The change 
in minimum 2 is especially striking; it is caused by a cluster of 
four critical mutations from CoV-1 to CoV-2. These synchronized 
minima provide a natural explanation for the occurrence of the 
asymptomatic incubation phase that has made CoV-2 so dangerous.

Figure 8: With the Moret and Zebende (MZ) scale panoramic spike 
profiles of CoV-1 and CoV-2 reveal a set of four central hydrophilic 
level extrema in CoV-2, but not in CoV-1.  The new level set was 
identified with a cluster of four single mutations in 546-568. Note: W: 
Variance; ( ): CoV-1; ( ): CoV-2.

The abstract  predicted  that, because critical  synchronization is so
easily disrupted, a “very successful” vaccine  based on spikes was
possible [59,60]. At  this writing, this prediction appears to have 
been confirmed, by the report of spike-based vaccines that have 
been more than 90% successful in large scale trials. By comparison, 
flu vaccines usually achieve 30-50% success. 

After CoV-2, natural selection of spike mutations was expected 
and these indeed occurred. Moreover, for several years (up to 
and beyond Omicron) only a few mutations made the level sets 
identified in CoV-2 steadily more level, confirming the validity of 
the level set mechanism [58,59]. Then the evolution of the spike 
changed directions; it made dynamics both more stable and more 
flexible topologically. This has not only increased contagiousness, 
but it also made the virus much less dangerous by suppressing 
trigenic fusion. This new direction continued for several very 
specific individual mutations closely tied to hydropathic extrema 
identified in CoV-2. The overall result was an abrupt end to the 
CoV pandemic [60-61].

DISCUSSION

Simple laboratory toy models of sub-critical self-organized in/
out globular shaping exhibit a variety of long-range interactions 
between surface droplets, analogous to protein amino acid 
very long-range interactions [62]. There is much interest in 
Hub proteins, which reside on the cytoplasmic side of the cell 

protein  interactions  in  the  interfacial  frontier space [63,64]. 
Profiles of some of these 8 proteins (lengths range from 304 aa 
to 976 aa) are interesting [65]. The connection between intrinsic 
disorder, conformational dynamics and Newtonian simulations has 

membrane, also described as a catalytic substrate supporting protein-
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27. Rost B. Twilight zone of protein sequence alignments. Protein Eng. 
1999;12(2):85-94.    

28. Machta BB, Chachra R, Transtrum MK, Sethna JP. Parameter space 
compression underlies emergent theories and predictive models. 
Science. 2013;342(6158):604-607.    
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30. Fujiwara K, Toda H, Ikeguchi M. Dependence of α-helical and β-sheet 
amino acid propensities on the overall protein fold type. BMC Struct 
Biol. 2012;12:18.    

31. de Groot NS, Pallarés I, Avilés FX, Vendrell J, Ventura S. Prediction 
of” hot spots” of aggregation in disease-linked polypeptides. BMC 
Struct Biol. 2005;5:18.    

32. Karmakar S, Dasgupta C, Sastry S. Length scales in glass-forming 
liquids and related systems: a review. Rep Prog Phys. 2015;79(1):016601.    

33. Lemaître A. Structural relaxation is a scale-free process. Phys Rev Lett. 
2014;113(24):245702.    

34. Brière MA, Chubynsky MV, Mousseau N. Self-organized criticality 
in the intermediate phase of rigidity percolation. Phys Rev E. 
2007;75(5):056108.    

35. Micoulaut M. Relaxation and physical aging in network glasses: a 
review. Rep Prog Phys. 2016;79(6):066504.    

36. Mauro JC, Tandia A, Vargheese KD, Mauro YZ, Smedskjaer MM. 
Accelerating the design of functional glasses through modeling. 
Chem Mater. 2016;28(12):4267-4277.  

37. Sinha N, Kumar S, Nussinov R. Interdomain interactions in hinge-
bending transitions. Structure. 2001;9(12):1165-1181.    

38. Yang L, Song G, Jernigan RL. How well can we understand large-
scale protein motions using normal modes of elastic network models? 
Biophys J. 2007;93(3):920-929.    

39. Cardamone L, Laio A, Torre V, Shahapure R, de Simone A. 
Cytoskeletal actin networks in motile cells are critically self-organized 
systems synchronized by mechanical interactions. Proc Natl Acad Sci 
USA. 2011;108(34):13978-13983.    

tools from mathematics and theories of phase transitions. It also 
benefitted from intuitive insights and here special mention should 
be made of Walter Kauzmann’s work in the 1950’s. Kauzmann 
emphasized that proteins function reversibly on long time scales 
(ms) and behave like a deeply super cooled liquid with very high 
viscosity. Evolution has achieved Kauzmann’s network qualities 
by going beyond classical glassy “funnels” and approaching fractal 
critical points. Kauzmann anticipated the modern viewpoint 
through his emphasis on the key role played by hydropathic forces 
in shaping protein globules. Thermodynamic scaling may enable us 
to realize Schrodinger’s dream and advance new medical platforms 
where earlier work has stalled. Specifically, it exploits the modern 
protein database to describe the connections between amino acid 
sequences and protein functions with the accuracy of Schrodinger’s 
dream and the intuitive insights of Kauzmann. Proteins are the 
ultimate example of complexity, yet at the same time their evolution 
has been guided by the principles described here.
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