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ABSTRACT
 In the article an entropy-based measure of dependence between two groups of random variables, the K-dependence 
coefficient or dependence coefficient is defined with entropy and conditional entropy to measure the degree of 
dependence of one group of categorical random variables on another group of categorical random variables. Also, 
the concept of the K-dependence coefficient is extended by defining the partial K-dependence coefficient and 
the semi-partial K-dependence coefficient with which the K-dependence coefficient decomposition expression is 
established mathematically. The K-dependence coefficient decomposition expression shows that K-dependence 
coefficient is of additive structure and therefore, according to measure theory, K-dependence coefficient is a 
measure of the degree of dependence of one group of categorical random variables on another group of categorical 
random variables.
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INTRODUCTION

In this mini-review, first we introduce the entropy and Information 
graphical representation to help us understand K-dependence 
coefficient. Next, we introduce the concept of measure followed 
by a briefly discussion on K-dependence coefficient additive 
structure together with several other measures, such as coefficient 
of determination, entropy and probability. Finally, we introduce 
some ideas to extend K-dependence coefficient.

UNDERSTANDING K-DEPENDENCE 
COEFFICIENT

K-dependence coefficient is defined from entropy and mutual 
information

( ) (X/ Y) ( , )( : )
( ) ( )

H X H I X YK X Y
H X H X
−

= =  ….. (1)

Where,

H(X) is the entropy of X,

H(X/Y) is the conditional entropy of X given Y, and

I(X,Y) is the mutual information across X and Y.

By the equation 1, K-dependence coefficient K(X;Y) is defined with 
the ratio of mutual information across X and Y over the entropy of 

X. Roughly, the mutual information and entropy can be graphically 
represented below:

K(X:Y) defined by the ratio of H(X) over I(X,Y) as shown in shaded 
area in Figure 1 measures the degree of X dependence on Y. Also, 
in Figure 1, it is obvious that

0 ( : ) 1K X Y≤ ≤  …. (2)

The equations 1 and 2 show that 𝐾(𝑋:𝑌) is standardized and 
therefore, it is comparable with other standardized measures such 
as multiple correlation coefficient (𝑅2) and linear correlation 

( , )X Yρ  etc. Please be noted that it is the squared root of 𝐾(𝑋:𝑌) 
, not 𝐾(𝑋:𝑌) itself, to compare with linear correlation [1]. Also, 
K-dependence coefficient is asymmetric, i.e. 𝐾(𝑋:𝑌) may or may 
not be equal to 𝐾(𝑌:𝑋) while linear correlation is symmetric, i.e. 

( , ) ( , )X Y Y Xρ ρ= . For example, parents’ dependence on children 
usually is different from the children’s dependence on parents, while 
the correlation between parents and children is always the same as 
the correlation between children and parents [2]. Mathematically, 
it can be proved that (i) the sufficient and necessary condition for 
𝐾(𝑋:𝑌)=0 is that X and Y are independent; (ii) the sufficient and 
necessary condition for 𝐾(𝑋:𝑌)=1 is that X is a function of Y, i.e.

.
( )

a s
X f Y= . Here 

.a s
= means “almost equal to” (except for a zero-

probability events). Below are the graphical representations of (i) 
and (ii):
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In the case (i), Figure 2, shows no shared information across X and 
Y, therefore, X and Y are independent, i.e. 𝐾(𝑋:𝑌)=0. On the other 
hand, in the case (ii), Figure 2, shows that X is part of Y in terms 
of their information, therefore, X is totally dependent on Y, i.e. X 
is a function of Y. In the general case as shown in Figure 1, 𝐾(𝑋:𝑌) 
is between 0 and 1.

K-DEPENDENCE IS A MEASURE WITH 
ADDITIVE STRUCTURE

The concept of measure is defined in measure theory. The key 
concept to define a measure is called additivity [3]. In this section, 
we first look into several well-defined measures with the additive 
structure and then, we also look into the additive structure in 
K-dependence coefficient. We will show that K-dependence is a 
measure to measure the degree of dependence of one group of 
categorical random variables upon another group of categorical 
random variables [4].

In statistics, the coefficient of determination, denoted by R2 or r2, 
is the proportion of the variation in the dependent variable Y that 
is predictable from the predictive variables 𝑋

1
,𝑋

2
,…,𝑋𝑚. In case that 

the predictive variables 𝑋
1
,𝑋

2
,…,𝑋𝑚 are pairwise orthogonal, then

1 1

2 2 2
~ ,..., ~R R R

m mY X X Y X Y X≈= +  …. (3)

The equation 3 is called additivity showing that coefficient of 
determination is a measure.

In the information theory, entropy 𝐻(𝑋
1
,𝑋

2
,…,𝑋𝑚) is a measure of 

uncertainty for a random system or a group of random variables. In 
case that variables 𝑋

1
,𝑋

2
,…,𝑋𝑚 are jointly independent, then

1 2 1 2( , ,..., ) ( ) ( ) ... ( )m mH X X X H X H X H X= + + +  …. (4)

The equation 4 is called additivity showing that entropy is a 
measure.

Probability is a measure of randomness. In case that the events 
𝐸

1
,𝐸

2
,…,𝐸𝑚 are pairwise exclusive, then

1 2 1 2Pr ( ... ) Pr ( ) Pr ( ) ... Pr ( )m mob E E E ob E ob E ob E∪ ∪ ∪ = + + +  …. (5)

The equation 5 is called additivity showing that probability is a 
measure.

Mathematically, it can be proved that, if all interactions among the 
combinations of three or more random variables out of {𝑋,𝑌

1
,…𝑌𝑚} 

are equal to zero, then K-dependence coefficient has its additive 
expression:

1 1( : ,... ) ( : ) ... ( : )m mK X Y Y K X Y K X Y= + +  …. (6)

The equation 6 shows that K-dependence coefficient is a measure. 
Because coefficient of determination, entropy, probability and 
K-dependence coefficient are all the measures with the additive 
structures, they do have the similar or paralleled theoretical 
structures. For example, the equations 3, 4, 5 and 6 are actually 
the special cases of their mathematical decomposition expressions. 
With the additivity, a measure can correctly or precisely measure its 
object. Otherwise, a “measure” without additivity may cause wrong 
conclusion or misleading. For example, it is well known that the 
area of a rectangle is measured by the product of its length and 
width [5]. Can we measure the same rectangle by the summation 
of its length and width? Answer is no because product of the 
length and width is additive in terms of the area of a rectangle 
while the summation of length and width is not (but summation of 
length and width is additive in terms of rectangle perimeter). Any 
“measure” without additivity is similar or equivalent to measuring 
an area of a rectangle by the summation of its length and width [6].

EXTENSION OF K-DEPENDENCE 
COEFFICIENT

K-dependence coefficient in the equation 1, which is defined with 
Entropy and Mutual Information, can be extended to include 
Multivariate Information. Here, Multivariate Information 𝐼(𝑋

1
-

,𝑋
2
) is an extension of mutual information 𝐼(𝑋

1
,𝑋

2
):

1 1( ) ( )I X H X=  …. (7)

1 2 1 1 2( ,X ) ( ) ( / X )I X I X I X= −  

1 2 3 1 2 1 2 3( ,X ,X ) ( ,X ) ( ,X / X )I X I X I X= −  

1 2 1 1 1 1( ,X ,...,X ) ( ,...,X ) ( ,...,X / X )n n n nI X I X I X− −= −  

Similar to the equation 1, K-dependence coefficient can be extended 
to measure a variable dependence on the interaction across three 
(or more) variables [5]:

1 2 3
1 2 3

1

( ,X ,X )( : )
( )

I XK X X X
H X

∧ =  …. (8)

The interpretation of 𝐾(𝑋
1
:𝑋

2
^𝑋

3
) in the equation 8 is the measure 

of degree of 𝑋
1
 dependence on the interaction associated with the 

combination of {𝑋
1
,𝑋

2
,𝑋

3
}, i.e. 𝐼(𝑋

1
,𝑋

2
,𝑋

3
). Mathematically, the 

equation below can be proved:

1 2 3 1 2 1 3 1 2 3( : , ) ( : X ) ( : X ) ( : X X )K X X X K X K X K X ∧= + −  …. (9)

Obviously, 𝐾(𝑋
1
:𝑋

2
^𝑋

3
)=0 is equivalent to 𝐼(𝑋

1
,𝑋

2
,𝑋

3
)=0, i.e. no 

interaction associated with {𝑋
1
,𝑋

2
,𝑋

3
}. Therefore, by the equation 

9, in case of no interaction associated with {𝑋
1
,𝑋

2
,𝑋

3
}, we have

1 2 3 1 2 1 3( : , ) ( : X ) ( : X )K X X X K X K X= +  …. (10)

The additivity in the equation 10 is a special case of the equation 6.

Unlike 𝐾(𝑋
1
:𝑋

2
,𝑋

3
) with the range between 0 and 1, 𝐾(𝑋

1
:𝑋

2
^𝑋

3
) 

can be negative:

Figure 1: Graphical representation of entropy and mutual information.

Figure 2: Graphical representation of K(X:Y)=0 and K(X:Y)=1.
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1 2 31 ( : X X ) 1K X ∧− ≤ ≤  …. (11)

Also, the following conclusions can be proved mathematically:

1 2 3( : X X ) 1K X ∧ =   If and only if 1 2 1 3( : ) 1 ( : ) 1K X X and K X X= =
…. (12)

1 2 3( : X X ) 1K X ∧ = −   If and only if 1 2 1 3 1 2 3( : ) 0, ( : ) 0 and ( : ,X ) 1K X X K X X K X X= = =

…. (13)

The interesting statistical structure in the equation 13 shows 
that, in case of 𝐾(𝑋

1
:𝑋

2
^𝑋

3
)=−1, the 𝑋

1
 is independent from 

each separated individual 𝑋
2
 or 𝑋

3
 respectively, while 𝑋

1
 is totally 

dependent on the interaction associated with the combination of 
𝑋

1
, 𝑋

2
 and 𝑋

3
. In pharmaceutical industry, the equation 13 could 

be used to identify the interaction across different medicines. For 
example, we have two medicines denoted by 𝑋

2
,𝑋

3
, each individual 

medicine has no any impact on a target disease denoted by 𝑋
1
, i.e. 

𝐾(𝑋
1
:𝑋

2
)=0,𝐾(𝑋

1
:𝑋

3
)=0, but with the combination of these two 

medicines, the target disease is fully cured, i.e. (𝑋
1
:𝑋

2
,𝑋

3
)=1.

Similarly, we may look into the interactions across four or more 
random variables. The properties and interpretation associated 
with these multiple variables’ interactions would be much more 
complicated and meaningful. In statistics, unlike mutual relation, 
people pay less attention on the interactions across multiple variables. 
The equation 13 shows that, in some cases, the interactions can 
fully replace the mutual relation. Generally speaking, in a multiple 
variables system, the observed mutual relations could be due to the 
combination of mutual relation and multivariate interactions. In 
real world application, how to decompose or identify these mutual 
relations and multivariate interactions from the observed mutual 
relations is a challenging topic.

So far, K-dependence coefficient in the equation 1 has been 
extended to include multivariate information or interaction. Also, 
K-dependence coefficient can be extended by so-called semi-partial 
K-dependence coefficient:

( / , ) ( / , , )(( / ) : ( / ))
( / )

H X U V H Y U VK X U Y U
H X U

−
=  …. (14)

𝐾((𝑋|𝑈):(𝑌|𝑉)) in the equation 14, which is called semi-partial 
K-dependence coefficient, is to measure the degree of (𝑋|𝑈) 
dependence on (𝑌|𝑉). Here, (𝑋|𝑈) and (𝑌|𝑉) are the random 
variables with the probabilities 𝑃𝑟(𝑥|𝑢) and 𝑃𝑟(𝑦|𝑣) respectively. 
Roughly speaking, (𝑋|𝑈) and (𝑌|𝑉) are the random variables 
associated with the information of the random variables 𝑋 and 𝑌, 
but exclusive of the information of the random variables 𝑈 and 𝑉 
respectively. In the real world business, how to apply and interpret 
𝐾((𝑋|𝑈):(𝑌|𝑉)) is an interesting topic.

CONCLUSION

In the equation 1, K-dependence coefficient is fully defined 
with the entropy and conditional entropy. Because entropy and 
conditional entropy are fully defined with their joint distribution, 

the K-dependence coefficient is essentially defined by the same joint 
distribution. Also, K-dependence coefficient is able to measure the 
random variables’ situations of full dependence which is K(X:Y)=1, 
and full independence which is K(X:Y)=0. Those facts indicate that 
K-dependence coefficient fully utilizes the mutual information (or 
mutual relations) and multivariate interactions associated with the 
multiple random variables. Therefore, in terms of information 
associated with multiple variables (i.e. the multivariate joint 
distribution), K-dependence coefficient can be thought as “the 
best” player to measure a group of random variables’ dependence 
upon another group of random variables.   

Same as the entropy, K-dependence coefficient only works for 
categorical random variables. I.e. K-dependence coefficient only 
works with categorical information, but not for interval or ordinal 
information. Although entropy can be defined for continuous 
numerical variables, unlike categorical variables’ entropy with a 
bottom line which is zero, the continuous numerical variables’ 
entropy has no bottom line, i.e. categorical variables entropy is an 
absolute measure while continuous numerical variables’ entropy 
is a relative measure. Currently, K-dependence coefficient is an 
absolute measure. For the example of relative measure, please see 
Kullback-Leibler divergence which measures continuous numerical 
variables’ distributions divergence.

Also, the readers are encouraged to explore K-dependence 
coefficient with the multivariate information, i.e. interactions 
associated with multiple variables. The probabilistic structure 
associated with multiple variables is much richer or more 
meaningful than mutual relations. The K-dependence coefficient 
with multivariate information offers a useful way to look into the 
probabilistic structure associated with multiple variables in more 
detail.
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