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ABSTRACT
Identifying Autism Spectrum Disorder (ASD) is challenging due to its complex and varied nature, making early

detection important for effective intervention. Recently, there has been considerable discussion about using deep

learning algorithms to improve ASD diagnosis through neuroimaging data analysis. To address the limitations of

current techniques, this research introduces an innovative approach called the Multi-View United Transformer Block

of Graph Convolution Network (MVUT_GCN). MVUT_GCN leverages the benefits of multi-view learning and

convolution processes to extract subtle patterns from structural and functional Magnetic Resonance Imaging (MRI)

data. A comprehensive analysis using the Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrates that

MVUT_GCN outperforms the existing Multi View Site Graph Convolution Network (MVS_GCN), achieving a

+3.44% improvement in accuracy. This enhancement highlights the effectiveness of our proposed model in

identifying ASD. Improved accuracy and consistency in ASD diagnosis through MVUT_GCN can facilitate early

intervention and support for ASD patients. Additionally, MVUT_GCN's interpretability bridges the gap between

deep learning models and clinical insights by aiding in the identification of biomarkers associated with ASD.

Ultimately, this work advances our understanding of ASD and its practical management, with the potential to

improve outcomes and quality of life for those affected. Understanding of ASD and its practical management, with

the potential to improve outcomes and quality of life for those affected.
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INTRODUCTION

Autism Spectrum Disorder (ASD) exemplifies the complexity of 
the human mind, with its wide range of symptoms and 
behavior’s making diagnosis a nuanced and challenging task. 
This article explores the intricacies and obstacles associated with 
identifying ASD, highlighting the necessity of understanding its 
diverse manifestations. One of the primary challenges in 
diagnosing autism stems from its spectrum nature. The term 
"spectrum" signifies the vast variability in symptom type and 
severity among individuals with ASD. While some may display 
repetitive behaviors and social interaction difficulties, others

might possess exceptional talents alongside social challenges.
This variability often delays diagnosis, as individuals may not
conform to predefined criteria. Gender differences in ASD
presentation present another significant challenge. Historically,
diagnostic criteria and research have been predominantly based
on male-centric observations, potentially missing the subtleties
of how autism manifests in females. Consequently, females with
ASD may be underdiagnosed or diagnosed later due to a lack of
awareness regarding gender-specific nuances. SD frequently co-
occurs with other developmental, psychiatric, or neurological
conditions, creating overlapping symptoms that complicate
diagnosis. Differentiating between the core features of autism
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neurotypical individuals, which can enhance diagnostic
accuracy. Task-based fMRI studies examine brain activation
during specific tasks, highlighting differences in social
interaction, communication, and sensory processing. Resting-
state fMRI, examining brain activity at rest, reveals intrinsic
connectivity alterations in autism. fMRI provides objective,
quantitative brain activity measurements, reducing reliance on
subjective behavioral assessments. This objectivity is important
for individuals with subtle behavioral manifestations or
communication difficulties. fMRI studies also help identify
subtypes within the autism spectrum by revealing distinct neural
signatures, aiding personalized interventions. Advances in data
analysis, including machine learning, enhance the extraction of
meaningful information from fMRI data, contributing to more
accurate diagnostic models. fMRI holds potential for early
autism detection, potentially identifying abnormalities before
behavioral symptoms appear, important for early intervention.
Combining fMRI findings with behavioral assessments offers a
comprehensive understanding of autism, improving diagnostic
accuracy and intervention strategies. Machine learning
algorithms applied to fMRI data are uncovering complex neural
biomarkers for autism. These data-driven approaches identify
alterations in resting-state and task-based functional
connectivity, enhancing diagnostic accuracy. Combining fMRI
with other imaging modalities and focusing on specific brain
regions provides objective, quantifiable measures, reducing
diagnostic delays and variability.

Functional Brain Networks (FBN) have garnered significant
attention for diagnosing neurological disorders such as Autism
Spectrum Disorders (ASD). Accurate classification is challenging
due to noisy correlations in brain networks and significant
subject heterogeneity. The MVS-GCN model combines graph
neural networks to achieve efficient end-to-end representations
for brain networks. By integrating multi-view graph
convolutional neural networks with prior knowledge of brain
anatomy, this approach aims to enhance classification
performance and identify potential functional subnetworks. The
authors [1], evaluated the MVS-GCN model using the
Alzheimer's Disease Neuroimaging Initiative (ADNI) and
Autism Brain Imaging Data Exchange (ABIDE) datasets,
demonstrating its superiority over existing methods. Inspired by
this concept, a new Multi-View United Transformer Block
(MVUTB) was introduced to integrate views in a unified form.
The proposed model also enhances class discrimination
performance using a graph convolution network.

Related work

The study by Wen, et al. [1], presents the MVS-GCN, a multi-
view graph convolution network aimed at improving Autism
Spectrum Disorder (ASD) diagnosis. By incorporating prior
knowledge of brain anatomy, the model leverages multi-view
graph convolutional neural networks to enhance the
representation and classification of brain networks. The MVS-
GCN [1] is designed to tackle noisy correlations and subject
heterogeneity, common challenges in neurological disorder
diagnosis. Using datasets from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) and Autism Brain Imaging
Data Exchange (ABIDE), the model demonstrated superior
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and those of comorbid conditions requires meticulous 
evaluation. The presence of overlapping symptoms often 
demands that clinicians navigate a complex web of potential 
contributing factors. The dynamic nature of human 
development adds further complexity to the diagnostic process. 
ASD symptoms can evolve over time, and some individuals may 
develop compensatory mechanisms that obscure early signs. This 
developmental variability necessitates a longitudinal diagnostic 
approach, considering the evolving nature of behavior, 
communication, and social interactions. Cultural and 
socioeconomic factors also influence ASD diagnosis. Variations 
in cultural norms, expectations, and access to healthcare services 
can affect both the recognition of symptoms and the likelihood 
of seeking a diagnosis. This underscores the importance of a 
culturally sensitive diagnostic approach that respects diverse 
perspectives and experiences. In diagnosing autism spectrum 
disorder, it becomes clear that a one-size-fits-all approach is 
insufficient. The spectrum nature of ASD, gender disparities, 
overlapping symptomatology, developmental variability, and 
cultural factors all emphasize the need for a comprehensive and 
individualized diagnostic process. As we unravel the 
complexities of autism, it is important to continually refine 
diagnostic methodologies to ensure early and accurate 
identification, prepare for timely interventions and support. 
Early and accurate diagnosis of Autism Spectrum Disorder 
(ASD) is important for effective intervention and support, 
shaping the developmental trajectory of individuals with ASD. 
Identifying ASD early harnesses the critical stages of neural 
plasticity, enabling targeted interventions that optimize 
cognitive, social, and communicative development. Personalized 
strategies modified to each individual's unique profile maximize 
intervention effectiveness, providing a customized roadmap for 
growth. In educational settings, early diagnosis empowers 
educators to implement specialized methodologies and 
individualized support plans, transforming classrooms into 
supportive environments. For families, early identification 
provides a clear understanding of their child's needs, access to 
essential resources, and the ability to foster a nurturing and 
proactive environment. Addressing coexisting conditions and 
behavioural challenges early on mitigates their impact, 
promoting emotional well-being for individuals with ASD and 
their families. Economically, early intervention reduces the need 
for more intensive and costly treatments later, alleviating long-
term economic burdens and fostering a more inclusive society. 
In the narrative of autism, early diagnosis is a catalyst for 
positive change, dismantling barriers and revealing the untapped 
potential within each person on the spectrum. It is the basis of 
effective intervention and unwavering support, guiding 
individuals with ASD toward a future of limitless potential.

Functional Magnetic Resonance Imaging (fMRI) is increasingly 
important in autism diagnosis due to its ability to reveal neural 
activity and connectivity. Unlike structural imaging, fMRI 
captures blood flow changes linked to neural activity, allowing 
visualization of how brain regions communicate during tasks or 
at rest. This aids in mapping functional brain networks and 
identifying atypical connectivity patterns in autism. Researchers 
are identifying neural biomarkers through fMRI, seeking 
patterns that distinguish individuals with autism from
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for ASD identification. It consists of a spatial graph convolution 
layer extracting local connectivity patterns, followed by a 
temporal convolution layer capturing dynamic information. 
Brain GCN is end-to-end trainable, jointly learning the graph 
embedding and performing ASD/normal classification. On the 
ABIDE dataset, it achieves 70.63% accuracy for ASD diagnosis, 
outperforming baselines using hand-crafted connectivity 
features. Brain GCN visualizes learned graph filters, highlighting 
discriminative functional connections and regions like the 
default mode network associated with ASD, providing 
interpretability into disrupted brain connectivity.

GCN-ASD is a GCN framework [6], which takes functional 
connectivity matrices from rs-fMRI data as input and learns a 
graph embedding capturing discriminative connectivity patterns 
for ASD identification. It consists of a spatial graph convolution 
layer extracting local connectivity patterns, followed by a global 
pooling layer aggregating these into a graph-level representation. 
GCN-ASD is end-to-end trainable, jointly learning the graph 
embedding and performing ASD/normal classification. On the 
ABIDE dataset, it achieves 70.37% accuracy for ASD diagnosis, 
outperforming baselines using hand-crafted connectivity 
features. GCN-ASD visualizes learned graph filters, highlighting 
discriminative functional connections and regions like the 
default mode network associated with ASD, providing 
interpretability into disrupted brain connectivity. Dynamic 
Graph Convolution Network (DynGCN) [7], is a GCN 
framework that captures static and dynamic functional 
connectivity patterns from rs-fMRI data for ASD classification. 
It incorporates a temporal graph convolution layer to model 
dynamic connectivity changes over time, in addition to a spatial 
layer capturing topological brain network structure. DynGCN is 
end-to-end trainable, jointly learning spatial and temporal graph 
embedding’s. On the ABIDE dataset, it achieves 72.22%
accuracy for ASD diagnosis, outperforming baselines using static 
connectivity features. DynGCN visualizes learned graph filters, 
highlighting discriminative functional connections and regions 
like the default mode network associated with ASD, providing 
interpretability into disrupted dynamic brain connectivity 
patterns.

Important points of GCN based ASD identification:

Graph Convolutional Networks (GCN): Uses GCNs, a form of 
neural network built for graph-structured data, to capture 
complicated interactions within brain connectivity networks 
generated by neuroimaging data.

Autism Spectrum Disorder (ASD) recognition: The use of 
GCNs to the recognition and classification of Autism Spectrum 
Disorder (ASD) using characteristics collected from 
neuroimaging datasets.

Position-aware model (PLSNet): PLSNet [8], is a position-aware 
GCN-based model that was developed to address issues in 
modeling brain neuronal connections, node configuration 
changes, and dimensionality explosion in fMRI data.

Feature learning: Uses context-rich feature extraction 
approaches, such as time-series encoding and function 
connectivity creation, to capture detailed patterns associated 
with autism in brain function connection.
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performance over existing methods, highlighting its potential for 
more accurate and interpretable ASD diagnosis. The key 
insights are the novel MVS-GCN architecture combining graph 
structure learning, multi-view embedding, and prior knowledge 
incorporation to improve ASD diagnosis from functional brain 
networks while providing interpretable subnetwork biomarkers. 
The graph structure learning constructs cleaner and more 
consistent brain networks across subjects. The multi-view 
embedding captures correlations among different sparse 
network levels through a shared layer and view consistency 
regularization. The prior subnetwork regularization enhances 
representation of critical ASD-related subnetworks like salience 
and default mode networks. Experiments on ABIDE show MVS-
GCN outperforms state-of-the-art, and identified subnetworks 
align with previous ASD neuroimaging findings. The 
experimental results on the ABIDE dataset show that MVS-
GCN achieves an average accuracy of 69.38% The authors 
propose Autism Connect [2], a GCN model that combines local 
and global GCNs to identify ASD from resting-state fMRI data. 
The local GCN captures local functional connectivity patterns, 
while the global GCN captures global brain network topology. 
Autism Connect achieves 71.76% accuracy on the ABIDE 
dataset, outperforming traditional machine learning methods. It 
identifies discriminative brain regions (superior frontal gyrus, 
middle temporal gyrus, fusiform gyrus) and connections 
associated with ASD, providing insights into the disorder's 
neurobiological basis. The authors demonstrate Autism 
Connect's interpretability by visualizing learned graph filters 
highlighting local connectivity patterns distinguishing ASD from 
controls. The paper proposes GCN-ASD [3], a GCN model that 
combines node-wise and graph-wise convolutions to capture 
local and global topological information from resting-state fMRI 
data for ASD diagnosis. GCN-ASD is trained end-to-end to 
jointly learn functional connectivity representations and 
perform ASD/normal classification. It achieves 72.22% accuracy 
on the ABIDE dataset, outperforming traditional methods using 
hand-crafted features. GCN-ASD identifies discriminative 
connectivity patterns, implicating regions like the superior 
frontal gyrus, middle temporal gyrus, and fusiform gyrus. It 
reveals hypoconnectivity within the default mode network and 
hyperconnectivity between default mode and attention networks 
in ASD, consistent with prior findings. Brain Graph Neural 
Network Autism Spectrum Disorder (Brain GNNASD) [4], is a 
GCN framework that jointly learns Regions of Interest (ROI) 
clustering and performs ASD/normal classification from rs-
fMRI data. It uses graph convolutions to capture local 
functional connectivity patterns around ROIs, followed by 
grouping ROIs into meta-nodes. The learned meta-node 
embedding’s are fed into a fully connected layer for 
classification. On the ABIDE dataset, Brain GNNASD achieves 
70.37% accuracy for ASD diagnosis, outperforming baselines 
using connectivity features. It identifies discriminative 
functional networks like the default mode network associated 
with ASD by visualizing the learned ROI clusters. Brain 
GNNASD provides interpretability by highlighting important 
ROIs and connections contributing to ASD classification. Brain 
GCN [5], is a GCN framework that takes functional 
connectivity matrices from rs-fMRI data as input and learns a 
graph embedding capturing discriminative connectivity patterns
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Position embedding: Uses position embedding techniques [9],
to distinguish brain nodes depending on their location,
improving the model's capacity to discriminate differences across
brain regions.

Dimensionality reduction: Uses a rarefying mechanism during
message diffusion to sieve salient nodes, successfully decreasing
dimensionality complexity caused by too many voxels in each
fMRI sample.

Performance evaluation: Shows cutting-edge performance in
ASD detection, with excellent accuracy and specificity on
benchmark datasets such as the Autism Brain Imaging Data
Exchange and the CC200 Atlas [10].

Interpretability: Prioritizes interpretability by identifying key
brain areas, which provide insights into possible biomarkers for
ASD clinical diagnosis.

Cross-attention mechanism: Uses a transformer-based cross-
attention mechanism [11], to combine characteristics gathered
from several levels, which improves the model's capacity to
forecast brain age and identify age-related brain illnesses.

Multi-level information fusion: A unique method for predicting
brain age by combining information collected from original 3D
MRI images, chosen 2D slices, and volume ratios of distinct
brain areas using neural networks and a transformer-based
mechanism.

MATERIALS AND METHODS
The multi-view united transformer block with GCN is a novel
architecture proposed for multi-view learning tasks, such as node
classification or graph classification. It aims to effectively
integrate information from multiple views (modalities or feature
sets) while leveraging the power of both transformer and graph
convolutional networks.

Key components of this architecture

Multi-view attribute graph convolution encoders: These
encoders map the multi-view node attribute matrices and graph
structures into a graph embedding space. Each view has its own
encoder pathway that applies graph convolutions to capture the
local neighborhood information.

Attention mechanism: An attention mechanism is employed to
reduce noise and redundancy in the multi-view graph data by
assigning appropriate weights to different views.

Consistent embedding encoders: These encoders extract
consistency information among the multiple views by exploring
the geometric relationships and probability distribution
consistency across different views.

Multi-view united transformer block: This is the core
component that integrates the multi-view information using a
transformer-based architecture. It consists of multi-head self-
attention layers and feed-forward layers, allowing for effective
information exchange and fusion across different views.

Reconstruction: The architecture includes reconstruction
components to reconstruct the node attributes and graph

structure, improving the toughness of the learned
representations (Figure 1).

The multi-view data (e.g., node attributes, graph structures) from 
different views are first processed by the respective multi-view 
attribute GCN Encoders. The encoded representations are then 
passed through the consistent embedding encoders to extract 
cross-view consistency information. Finally, the multi-view 
united transformer block integrates and fuses the multi-view 
representations using self-attention and feed-forward layers, 
allowing for effective information exchange and learning of a 
unified representation.

Algorithm for detecting ASD using MVUT_GCN

Step 1: GCT-1 process

GCT_1_Output=GCT_1 (+V)

Step 2: Addition of Residual

Residual_Addition=GCT_1_Output + (+V)

Step 3: GCT-2 process

GCT_2_Output=GCT_2 (Residual_Addition)

Step 4: GCT-2 layer concatenation

GCT_2_Output_(+V), GCT_2_Output_(-V)=Concatenate
(GCT_2_Output(+V), GCT_2_Output(-V))

Step 5: Linear layer application

View1_Intermediate=Linear (GCT_2_Output__(+V), 128, 16)

View1_Output=Linear (View1_Intermediate, 16, 2)

This architecture combines the strengths of graph convolutional
networks for capturing local neighborhood information and
transformers for global information integration across multiple
views. The attention mechanism and reconstruction
components further enhance the toughness and quality of the
learned representations. Figure 1, represents the workflow for
detecting ASD. Each view starts with a positive (+) and negative
(-) input, represented by pink circles at the top. The green
dumbbell-shaped icons represent Graph Convolutional Network
(GCN) layers. Each view has two GCN layers in sequence. The
outputs from the positive and negative branches within each
view are concatenated, represented by a circle with an "X" inside.
After concatenation, each view passes through a transformer
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Figure 1: Workflow of detecting Autism Spectrum Disorder 
(ASD). Note: (    ) GCN; (   ) Tranformer block; (   ) 
Concatenate.



block, depicted by a blue cylindrical shape. A linear layer
(128,16) is applied after the transformer block in each view. Each
view produces two output tensors, labelled as ± V1TE, ± V2TE,
and ± V3TE for Views 1, 2, and 3 respectively. The last step in
each view is another linear layer (16, 2). The final outputs for
each view are labelled as View1 output, View2 output, and
View3 output.

Algorithm for MVUT based detection:

Input:

+ViTE out, +Vi+1TE out, +Vi+2TE out (positive temporal
encodings)

-ViTE out, -Vi+1TE out, -Vi+2TE out (negative temporal
encodings)

1. Positive path processing:

a. X1=MVUTB (+ViTE out, +Vi+1TE out)

b. X2=MVUTB (X1, +Vi+2TE out)

c. FlattenPos=Flatten (X2)

2. Negative path processing:

a. Y1=MVUTB (-ViTE out, -Vi+1TE out)

b. Y2=MVUTB (Y1, -Vi+2TE out)

c. FlattenNeg=Flatten (Y2)

3. Concatenation:

ConcatOutput=Concatenate (FlattenPos, FlattenNeg)

4. Linear transformations:

a. Z1=Linear (ConcatOutput, 384, 32)

b. Z2=Linear (Z1, 32, 16)

c. Output=Linear (Z2, 16, 2)

begins with Multi-View Unified Transformer Blocks (MVUTB) 
applied to both positive and negative paths, followed by 
flattening the outputs. The flattened results are then 
concatenated and passed through three linear transformations, 
progressively reducing dimensionality. The algorithm uses 
custom functions for MVUTB processing, flattening, 
concatenation, and linear transformations. This process 
transforms complex multi-dimensional inputs into a final 2-
dimensional output, effectively combining and distilling 
information from both positive and negative temporal 
encodings for detection purposes.

RESULTS AND DISCUSSION
The experimental findings demonstrate the effectiveness of the 
Multi-View United Transformer Block of Graph Convolution 
Network (MVUT_GCN) in detecting Autism Spectrum 
Disorder (ASD). Utilizing neuroimaging data from the ABIDE 
dataset, including both structural and functional MRI, the 
model shows superior performance in identifying subtle patterns 
associated with ASD. MVUT_GCT outperforms previous 
methods, such as MVS-GCN [1], with a notable accuracy 
improvement of +3.44% which is depicted in Figure 2. The 
incorporation of convolution mechanisms and multi-view 
learning enhances the model's ability to capture complex 
relationships within brain networks. Furthermore, the model's 
interpretability is improved through node-selection pooling 
layers, which help identify important Regions of Interest (ROIs) 
in the brain, aligning with previous neuroimaging studies. These 
advancements underscore the potential of MVUT_GCT to 
revolutionize ASD early detection and diagnosis, potentially 
leading to more timely interventions and improved outcomes 
for individuals with ASD.

The impact of varying the number of views (V) on model 
performance was investigated by testing values from 1 to 6. As 
illustrated in Figure 3, classification accuracy improved as the 
number of views increased, reaching its peak at 3 views. This 
suggests that different views capture complementary topological 
information, enhancing the model's ability to distinguish 
between classes. However, the performance plateaued and 
slightly declined beyond 3 views, indicating that additional views 
may introduce redundant information or noise to the model. 
This observation implies there is an optimal number of views 
that balances the trade-off between capturing diverse topological
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Return: Output

Function MVUTB (input1, input2):

// Multi-view unified transformer block

// Implement the MVUTB operations here

return processed_output

Function Flatten(input):

// Flatten the input tensor

return flattened_output

Function Concatenate (input1, input2):

// Concatenate two input tensors

return concatenated_output

Function Linear (input, input_size,

output_size): // Apply linear transformation

return linear_output

5

The MVUT-based detection algorithm processes positive and 
negative temporal encodings through a series of operations. It 

Figure 2: Performance for different number of super nodes of 
coarsened graphs. Note: (     ) MVS-GCN; (     ) MUVT_GCN.
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CONCLUSION
The identification of Autism Spectrum Disorder (ASD) is 
poised to advance with the incorporation of deep learning 
models, such as the multi-view united transformer block of 
graph convolution network. These algorithms' ability to 
automatically detect subtle abnormalities in multimodal 
neuroimaging data enhances diagnostic precision and facilitates 
early identification of ASD. By including convolution 
mechanisms, interpretability is improved, bridging the gap 
between clinically applicable findings and complex models. 
Continued research should focus on refining architectures, 
optimizing models, and exploring hybrid approaches to enhance 
the robustness and generalizability of ASD diagnostic models as 
deep learning evolves. Future studies may also investigate 
integrating other data sources, such as genetic markers and 
behavioral assessments, to deepen our understanding of ASD's 
neurological foundations. These advancements could 
revolutionize early diagnosis and intervention strategies, leading 
to better outcomes for individuals with ASD worldwide.
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