
Reducing Risk and Maintaining Stability in Long-Term Benefits of Oriented
Code Refactoring

Marco Angela*

Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada

DESCRIPTION
Restructuring existing computer code without altering its
exterior behavior is known as code refactoring. It aims to
enhance the software's non-functional qualities, like readability,
maintainability and extensibility. Within the information
technology industry, where software systems are always changing,
refactoring is essential to keeping codebases stable and
manageable over time. Oriented code refactoring refers to a
systematic approach to refactoring that follows specific principles
or guidelines to achieve a desired outcome. This can include
object-oriented refactoring, functional refactoring, or other
patterns such as aspect-oriented refactoring. The key idea is to
have a clear direction and purpose behind the refactoring
efforts, ensuring that changes contribute towards a specific goal,
such as improving performance, reducing technical debt, or
enhancing code modularity. One of the primary benefits of
oriented code refactoring is the enhancement of code
readability. Clean, well-structured code is easier to understand,
which simplifies the process of maintaining and updating the
software. This is particularly important in large codebases with
multiple contributors, where code readability can significantly
impact the ease of collaboration and knowledge transfer.

Technical debt refers to the long-term costs associated with
taking shortcuts in software development. By optimizing
algorithms, data structures, and other critical parts of the code,
oriented code refactoring can lead to significant performance
improvements. This is particularly importantfor high-performance
applications where even minor enhancements can have a
substantial impact on overall system efficiency. Refactoring
efforts often focus on breaking down monolithic code into
smaller, reusable components. This modular approach not only
simplifies testing and debugging but also promotes code reuse
across different parts of the application or even in other projects.
Reusability is a key factor in accelerating development cycles and
reducing redundancy. In the fast-paced world of information
technology, requirements often change rapidly. Oriented code
refactoring makes it easier to adapt to these changes by ensuring
that the codebase is flexible and modular. This adaptability is

essential for maintaining a competitive edge and meeting evolving
user needs.

Each module or class should have a single, well-defined
responsibility. This principle helps in isolating different
functionalities, making the code easier to understand and
maintain. Refactoring towards single responsibility often
involves breaking down large classes or methods into smaller.
Repetition of code is a common source of bugs and maintenance
challenges. Avoid adding functionality that is not currently
needed. This principle helps in keeping the codebase lean and
focused on the current requirements. Refactoring should
eliminate any speculative code that adds unnecessary complexity.
Encapsulation involves bundling the data and the methods that
operate on the data within a single unit. Extract Method
technique involves extracting a block of code from a larger
method into a new method with a descriptive name. It improves
readability and allows for code reuse. If a method's body is as
clear as its name, or if it is too short, it might be better to inline
the method. This reduces the overhead of additional method
calls and simplifies the code.

Complex conditional logic can be refactored into separate
methods or variables that clearly describe the condition, making
the code easier to understand and maintain. This risk can be
mitigated by thorough testing, including unit tests, integration
tests, and regression tests. Refactoring requires time and effort,
which might be constrained by tight project deadlines. Balancing
refactoring with feature development is a common challenge.
Team members might be resistant to refactoring efforts due to a
fear of changing working code or a lack of understanding of the
benefits. Overcoming this resistance requires effective
communication and demonstration of the long-term benefits.
Refactoring legacy code can be particularly challenging due to a
lack of documentation, outdated practices, or tightly coupled
components. A gradual iterative approach is often necessary for
refactoring legacy systems. Comprehensive automated tests are
essential for ensuring that refactoring does not break existing
functionality. Tests should cover all critical paths and edge cases.
Instead of large-scale refactoring, incremental changes allow for

Journal of Information Technology &
Software Engineering Perspective

Correspondence to: Marco Angela, Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada, E-mail:
marang@CU.ca

Received: 26-Apr-2024, Manuscript No. JITSE-24-32045; Editor assigned: 30-Apr-2024, PreQC No. JITSE-24-32045 (PQ); Reviewed: 14-May-2024,
QC No. JITSE-24-32045; Revised: 21-May-2024, Manuscript No. JITSE-24-32045 (R); Published: 28-May-2024, DOI: 10.35248/2165-7866.24.14.392

Citation: Angela M (2024) Reducing Risk and Maintaining Stability in Long-Term Benefits of Oriented Code Refactoring. J Inform Tech Softw
Eng. 14:392.

Copyright: © 2024 Angela M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Inform Tech Softw Eng, Vol.14 Iss.3 No:1000392 1

continuous integration and immediate feedback. This approach
reduces risk and ensures that the codebase remains stable. Clear
documentation of refactoring changes helps in understanding
the rationale behind the changes and assists future maintenance
efforts. It also aids in onboarding new team members. Oriented
code refactoring is a critical practice in information technology

that enhances software quality, maintainability, and
performance. Despite challenges such as risk of introducing bugs
and time constraints, the long-term benefits of refactoring,
including reduced technical debt and better adaptability to
change, make it an indispensable part of the software
development lifecycle.

Angela M

J Inform Tech Softw Eng, Vol.14 Iss.3 No:1000392 2

	Contents
	Reducing Risk and Maintaining Stability in Long-Term Benefits of Oriented Code Refactoring
	DESCRIPTION

