
Int J Adv Technol, Vol.15 Iss.6 No:1000313

OPEN ACCESS Freely available online

International Journal of Advancements in
Technology

Research Article

Correspondence to: Mahantesh Salimath, Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA, E-mail:
mahantesh.salimath130@gmail.com

Received: 21-Nov-2024, Manuscript No. IJOAT-24-35328; Editor assigned: 25-Nov-2024, PreQC No. IJOAT-24-35328 (PQ); Reviewed: 09-Dec-2024,
QC No. IJOAT-24-35328; Revised: 16-Dec-2024, Manuscript No. IJOAT-24-35328 (R); Published: 23-Dec-2024, DOI:10.35841/0976-4860.24.15.313

Citation: Salimath M, Sharma R (2024). Zero-Trust Based Ad Hoc Surveillance Robot. Int J Adv Technol.15:313.

Copyright: © 2024 Salimath M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1

INTRODUCTION

We are living in a world where smart devices co-exist along
with human beings, they assist us in several ways and function
autonomously without needing help or human intervention.
These smart devices can talk to each other and be able to decide on
possible courses of action with the advent of Artificial Intelligence
(AI). It is common that these devices talk to each other wirelessly
and directly peer-to-peer (ad hoc) without the need of a router or
access point. These types of devices are especially useful in remote
areas without internet access or where a private network of smart
devices is created for security purposes, but this type of security
is barely enough. AI can also be adversely used to disadvantage.
AI can create or predict several things; they can create a picture
or predict the next word in a sentence. Internally, AI engines use
Large Language Models (LLM) which are trained with an immense
number of data points to support in prediction/creation. For
example: If given a history of old passwords, AI can predict future
passwords.

The ways in which AI can be employed to use vulnerabilities to
hackers’ advantage are innumerable. Hence, with the growing
concern of security, it becomes very vital to use strategies like zero-
trust. Zero-trust means no user, device, or component is trustworthy

and requires strict identity verification and authorization for
access. It is also important to use security protocols or algorithms
which are proven and well tested.

Because often a new protocol which seems very strong at surface
level might have vulnerabilities under which are not discovered yet
and in this era of technology, vulnerabilities won’t stay hidden for
long. Hence, it becomes important to address the security concerns
in ad hoc wireless communication mediums by employing zero-
trust model using proven and well tested protocols.

MATERIALS AND METHODS

An overview of model

To demonstrate zero-trust model in ad hoc wireless
communication, we built a robot with wheels and camera
using Raspberry Pi 2 model B, we implemented a web server
on the Raspberry Pi using flask python module to gain remote
access [1,2]. To connect to the robot, we installed a Wi-Fi
module in ad hoc mode for peer-to-peer communication. We
then employed mTLS protocol to achieve zero-trust [3]. Steps
are explained in detail over the upcoming sections. Figure 1,
shows the overview block diagram with different components
involved.

ABSTRACT
In an era of growing security concerns, with the context of ad hoc wireless communication which is common in the
domain of Internet of Things (IoT) or remote areas where Internet is not a viable option, establishing trust between
two entities is challenging. Not only the protocol should be difficult to deny connection for untrusted structures
but also cost-effective and practically viable. This paper demonstrates how zero-trust framework can be employed
in ad hoc wireless communications through a surveillance robot with remote control and live video stream. We
achieve zero-trust connection using mutual-Transport Layer Security (mTLS) protocol between the endpoints. This
secure connection is then used to exchange control messages for robot movement and for the live video stream.
The endpoints communicate over ad hoc Wi-Fi and hence there is no need for router or Wi-Fi access points or
internet. Since Wi-Fi has limited range, this work can be further extended over long-distance communication
where a network of ad hoc peers employs a routing protocol for transfer of packets between two endpoints within
their network.

Keywords: Ad hoc wireless communication; mTLS; Surveillance robot; Zero-trust

Zero-Trust Based Ad Hoc Surveillance Robot
Mahantesh Salimath*, Rahul Sharma

Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA

2

Salimath M, et al. OPEN ACCESS Freely available online

Int J Adv Technol, Vol.15 Iss.6 No:1000313

Figure 1: Overview of block diagram.

Zero-trust using mTLS

To achieve zero-trust, we are employing mTLS protocol. TLS
protocol is commonly used in HyperText Transfer Protocol
Secure (HTTPS) connections on the internet. Note that HTTPS
connections are not necessarily qualified as zero-trust since
mutual verification need not necessarily be done [4]. Partial
verification such as verification of server by client or client
verification by server are also accepted in HTTPS connections.
HTTPS connection over the web make use of several registered
Certificate Authorities (CA’s) who sign the certificates that are
already inserted in our browsers (client) and partial verification
(verification of server by client and not vice versa) is done to allow
access to different websites [5]. Web servers don’t verify the client
in most of the cases to allow any client to connect to the web server
and access the website. From a security and privacy perspective of
our network, we decided to create our own self-signed root CA
private key and certificate, server root key, server certificate, client
root key and client certificate. We used Open Secure Sockets Layer
3.0 (OpenSSL 3.0) which is the latest version of OpenSSL, a software
library for applications that provide secure communications over
computer networks, to create different root keys, certificates and
to support in mutual verification and authentication on server
and client [6]. We then used root CA to sign the server certificate
and client certificate [7]. Figure 2, shows the different keys,
certificates involved along with their association. The root CA
certificate will then be installed on server and client which will be
used during TLS handshake process for mutual verification and
authentication of server and client.

Figure 2: Root CA private key signs the server and client certificates.

Morgan et al., explains the mTLS mechanism in detail during
TLS handshake, but briefly, during TLS handshake server
provides its certificate and public key to client, client verifies
the server certificate using root CA certificate [3]. Client then

sends its certificate and public key to the server so that server
can verify and authenticate the client certificate using root CA
certificate. Once this mutual authentication is done, both server
and client will possess each other’s public key which is then used
to exchange session token/keys. If the authentication fails, then
the connection will be terminated immediately. Since, a client
needs to be in possession of client certificate that is signed by
the root CA, not any client can connect to the server. And since
server also needs to be in possession of the server certificate that
is signed by the root CA, a hacker can’t spoof and pretend to be
a server and vice versa. This establishes the zero-trust framework
upon which the client and server connection is based upon.
Further communication and message exchange uses the secure
connection thus established.

Webserver using flask

We used Python 3 programming language for implementing the
software components involved since it has modules handy to be
used in the development [8]. One such module is flask which
provides easy and quick development of web server. We used SSL
module for configuration of root CA certificate, server key and
certificate created [9]. The configured certificates and keys, using
SSL module, can be linked and used in flask web server. This
will enable web server to use the keys and certificates during TLS
handshake process and hence in secure communication. As part
of the webserver a control page as shown in Figure 3. is provided
to the client on successful connection. User can control the
robot by clicking on the different control buttons available on
the control web page. User actions are sent to the server using
HTTP POST requests and are then serviced accordingly by server
based on the button clicked.

Figure 3: Control page on successful connection.

Motor controller module

Robot movement controlled by actuating the servo motors is
implemented as a different python module, but the web server
module invokes the respective action interface based on the
input received from the client. Servo motors are connected to the
General-Purpose Input Output (GPIO) ports of the Raspberry Pi.
The safe way to connect servo motors to raspberry pi is to power
the motors through a 6V battery or a regulated power supply of
6V. In this project, we are using 4 double-A batteries to power
the motors and a 5V portable rechargeable battery for Raspberry
Pi. The motors should not be connected to an unregulated
power supply as the varying voltage can damage them. A generic
connection diagram is as shown in Figure 4. In this project,

3

Salimath M, et al. OPEN ACCESS Freely available online

Int J Adv Technol, Vol.15 Iss.6 No:1000313

direction and we get,

Frequency=1/(1.7+20)=46.082 Hz

Duty cycle=1.7/(1.7+20)=7.83%

Raspberry Pi (Pi) camera

Python module Pi camera 2 was used to generate stream from Pi
camera and the stream was hosted on a web server running on
a different ad hoc Internet Protocol (IP) address than the one
used for accessing the control page [10]. This was done to simplify
the implementation and avoid dwelling into complications of
developing a web page to host control and video stream on a
single Uniform Resource Locator (URL). Again, flask module
was used to implement the web server and employed the same
root CA, server key and server certificates to be used during TLS
handshake for establishing a secure connection. Figure 6, shows
a snapshot from the live video stream hosted.

Figure 6: Live video stream from Pi camera.

Ad hoc Wi-Fi configuration

To provide wireless capabilities to the bot, we used the Edimax
Wi-Fi module. The main advantage of ad hoc is that it does not
require any Wi-Fi access point or router to connect from the
client. The client can simply connect and access bot controls.
The configuration of an ad hoc network on Raspberry Pi can be
done by editing the network interfaces file as show in Figure 7(a)
[11]. On Raspberry Pi running a Linux based operating system,
the network interfaces file is located at/etc/network/interfaces.
Once done, re-enable the interface as shown in Figure 7(b). to
activate the configuration. The ad hoc host also needs to host a
Dynamic Host Configuration Protocol (DHCP) server to allow
client connection [12]. We also set up a DHCP server on the
Raspberry Pi to allow client connections. We used the standard
dhcpd utility provided in Raspbian (Linux), a Debian Linux
distribution.

(a)				 (b)

Figure 7: (a) Ad hoc network configuration and (b) Re-enable Wi-Fi
interface.

we used two servos that are connected to the General Purpose
Input/Output (GPIO) pins 19 and 26.

Figure 4: Servo motor interface with Raspberry Pi.

A regular servo motor is designed for 180 degrees swing i.e.,
90 degrees to left of neutral position and 90 degrees to right.
Continuous Rotation (CR) servos are a modified version in
which the shaft can rotate continuously by essentially removing
the physical hard stops. CR servos behave like compact Direct
Current (DC) gear motor with built in H-Bridge driver and can be
controlled through a pulsed signal like Pulse Width Modulation
(PWM).

For calibration, we send the servo a 1.5 ms pulse refreshed every
20 ms. Python Raspberry Pi modules have GPIO interfaces with
PWM functionality which are used to send the actuating signal.
The GPIO interface in Raspberry Pi module takes frequency and
duty cycle as an input. The values for frequency and duty cycle
are given below.

Frequency=1/(1.5+20)=46.511 Hz

Duty cycle=1.5/(1.5+20)=6.97%

As the length of the pulse decreases from 1.5 ms to 1.3 ms, the
servo will gradually rotate faster in the clockwise direction, pulse
width modulation is as shown in Figure 5. To express full speed
clockwise rotation in terms of Raspberry Pi GPIO module, we
define our duty cycle as below.

Figure 5: Actuating signal for CR servo motor.

Frequency=1/(1.3+20)=46.948 Hz

Duty cycle=1.3/(1.3+20)=6.10%

Similarly, as we increase the pulse width from 1.5 ms to 1.7 ms,
the servo attains it maximum speed in the counter clockwise

4

Salimath M, et al. OPEN ACCESS Freely available online

Int J Adv Technol, Vol.15 Iss.6 No:1000313

Figure 10: Client and root CA certificate, client key enrolled in
browser.

Once the connection was established, we were able to click
different buttons on the web page and the robot moved
accordingly. On a different tab and URL, we were also able
to get a live video stream from the Pi camera. Thus, allowing
surveillance of the robot location remotely. With ad hoc mode
we tested that the Wi-Fi connection was intact for around 100
m in an open space, and it was limited to around 15 m in the
presence of obstructions (walls).

CONCLUSION

Using mTLS we demonstrated the zero-trust framework in action
for ad hoc wireless communication channel. Ad hoc wireless
communication is particularly helpful in remote areas where this
is no internet or any area outside of the Wi-Fi or wired connectivity
zone. We focused on ad hoc wireless communication channel as
it poses the most challenges. Once proven to work in this mode,
our findings could be applied to other less challenging mediums
as well. Since Wi-Fi is used as the wireless communication
channel, like every other channel it has its limitations. The main
limitation is the range/distance over which the message can
transmitted successfully.

To overcome this limitation, we usually locate a network
consisting of routers or access points. The mTLS approach used
in this paper can be extended to such a network and hence
zero-trust can be used in long distance communication as well.
Irrespective of the medium, mTLS can be used if the application
layer protocol (HTTP in this case) is capable of or depends on
transport layer security protocol.

We employed a simple strategy to have a single layer of complexity
when signing the server and client certificate by signing them
directly with root CA. This can be enhanced to several layers
by introducing a chain of intermediate CA’s. The root CA will
sign an intermediate CA certificate which in turn signs another
intermediate CA and so on. The last intermediate CA signs the
server and client certificate.

During TLS handshake, the server and client are required to
provide all the intermediate CA certificates up to the one that
was signed by root CA for verification and authorization. This
boosts the security framework significantly and in fact is what’s
recommended for usage in a finished product.

RESULTS

The robot built is as shown in the Figure 8. It is functional and
capable of movement using CR servo motors and the wheels
attached. It also holds a camera and batteries to power the
raspberry pi and servo motors. At the center of the chassis is a
pseudo wheel which helps in balance and movement.

Figure 8: Surveillance robot with remote control.

To test the mutual verification done as part of the mTLS
protocol, we attempted to connect to the server using Mozilla
Firefox (version 52.7.0) without any root CA certificate, client
certificate and client key enrolled. The secure connection failed.
In the next step, we enrolled the root CA certificate but didn’t
enroll the client certificate and client key, in this case as well
the secure connection failed as shown in Figure 9. Finally, we
enrolled the root CA certificate, client key and certificate and
this time the secure connection was established as shown in
Figure 10, and we could access the control page to manage the
robot. In a final verification test, we removed the server certificate
and root CA certificate from the web server and as expected the
secure connection couldn’t be established by client as the server
couldn’t be verified. These tests verified the mTLS protocol
functionality and thus mTLS established zero- trust.

Figure 9: Client certificate and key missing in browser.

5

Salimath M, et al. OPEN ACCESS Freely available online

Int J Adv Technol, Vol.15 Iss.6 No:1000313

Discover the best techniques to enhance your network security with
OpenSSL 3.0. Part 4. 2022.

7.	 Khlebnikov A. Demystifying cryptography with OpenSSL 3.0:
Discover the best techniques to enhance your network security with
OpenSSL 3.0. Part 5. 2022.

8.	 Monk S. Programming the Raspberry Pi, second edition: Getting
started with python 2nd edition. 2015.

9.	 Ortega JM, Sarker MF, Washington S. Learning python networking:
A complete guide to build and deploy strong networking capabilities
using Python 3.7 and Ansible. Packt Publishing Ltd. 2019.

10.	 Norbom H. Raspberry Pi camera controls using python 3.2. 3: For
Windows and Debian-Linux. CreateSpace. 2013.

11.	 Liu A, Chen H. Configuration of WLAN and ad hoc network
access point and research on internet topology control. Int J Futur
Gener Commun Netw. 2016;9(9):313-320.

12.	 Perkins CE. Ad hoc networking. Pearson Education India; 2008.

REFERENCES

1.	 Scott R. Beginners guide to Raspberry Pi 2. 2015.

2.	 Miguel G. Flask web development. Sebastopol: Meghan Blanchette
and Rachel Roumeliotis. 2014.

3.	 Morgan J, Flynn. Linkerd: Up and running: A guide to
operationalizing a Kubernetes-native service mesh. 2024.

4.	 Brinkmann M, Dresen C, Merget R, Poddebniak D, Muller
J, Somorovsky J, et al. ALPACA: Application layer protocol
confusion-analyzing and mitigating cracks in TLS authentication.
In 30th USENIX Security Symposium. 2021:4293-4310.

5.	 Kim D, Cho H, Kwon Y, Doupe A, Son S, Ahn GJ, et al. Security
analysis on practices of certificate authorities in the HTTPS
phishing ecosystem. In Proceedings of the 2021 ACM Asia
CCS.2021:407-420.

6.	 Khlebnikov A. Demystifying cryptography with OpenSSL 3.0:

https://www.accessengineeringlibrary.com/content/book/9781259587405
https://www.accessengineeringlibrary.com/content/book/9781259587405
https://www.google.co.in/books/edition/Learning_Python_Networking/tc6PDwAAQBAJ?hl=en&gbpv=1&pg=PP1&printsec=frontcover
https://www.google.co.in/books/edition/Learning_Python_Networking/tc6PDwAAQBAJ?hl=en&gbpv=1&pg=PP1&printsec=frontcover
https://www.google.co.in/books/edition/Learning_Python_Networking/tc6PDwAAQBAJ?hl=en&gbpv=1&pg=PP1&printsec=frontcover
https://www.earticle.net/Article/A284386
https://www.earticle.net/Article/A284386
https://www.hb.fh-muenster.de/opus4/frontdoor/index/index/docId/13831
https://www.hb.fh-muenster.de/opus4/frontdoor/index/index/docId/13831
https://dl.acm.org/doi/abs/10.1145/3433210.3453100
https://dl.acm.org/doi/abs/10.1145/3433210.3453100
https://dl.acm.org/doi/abs/10.1145/3433210.3453100

