Journal of Nutrition & Food Sciences

Journal of Nutrition & Food Sciences
Open Access

ISSN: 2155-9600

+32 25889658

Research Article - (2013) Volume 3, Issue 4

Diabetes-Induced Damages in Rat Kidney and Brain and Protective Effects of Natural Antioxidants

Najla Hfaiedh1*, Jean Claude Murat2 and Abdelfattah Elfeki1
1Laboratory of Animal Ecophysiology, Faculty of Sciences, 3018 Sfax, Tunisia, E-mail: claude.murat@nancy.inra.fr
2Laboratory of Cell Biology, Faculty of Medicine, 31073 Toulouse, France, E-mail: claude.murat@nancy.inra.fr
*Corresponding Author: Najla Hfaiedh, Département de Biologie, Faculté des Sciences, Cité Zarroug, 2112 Gafsa, Tunisie, Tel: 00 216 76 223118, Fax: 00 216 76 211 026

Abstract

Introduction: In case of diabetes, persistent and chronic hyperglycaemia may generate free radicals and reactive oxygen species (ROS), which trigger an oxidative stress. Garlic (Allium sativum) is a rich source of bioactive compounds and is used in folk medicine for the treatment of various diseases, including diabetes. Besides, α-tocopherol and magnesium have been shown to possess antioxidative properties. Objective: Protective effects of either a garlic aqueous extract or an association of α-tocopherol and magnesium association upon oxidative stress and dysfunctions in kidney and brain of alloxan-diabetic rats were investigated. Results: Both garlic extract and the combination of α-tocopherol and magnesium were found to normalize many parameters which were shifted to pathological values as a consequence of the alloxan-induced diabetes: plasma creatinine and urea levels were decreased, protein leakage in urine was reduced and cortisol level was brought back to control value. In addition, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities, which were lowered in kidney and brain of diabetic animals, were restored by both treatments and, consequently, level of lipids peroxidation was reduced in these organs, as compared to diabetic animals. Conclusion: Both garlic extract and α-tocopherol+magnesium association display beneficial effects upon nephropathy and oxidative stress in alloxan-diabetic rats. The protective effect of garlic is mainly attributed to antioxidant properties and the presence of phenolic acids and flavonoids.

Keywords: Oxidative stress; Antioxidants; Hyperglycemia; Rat

Introduction

Diabetes mellitus is a chronic disease which cannot be completely cured and may develop complications if not properly regulated. Diabetes is primarily characterized by a hyperglycaemia which results from lack of insulin or a weak response of tissues to this hormone. It is associated with long-term complications affecting the eyes, kidneys, cardiovascular system and nervous system [1-5]. The persistent and chronic hyperglycaemia generates free radicals and reactive oxygen species (ROS) which trigger an oxidative stress. The overproduction of free radicals and ROS results in 1) enhanced lipid peroxidation, 2) damages to DNA and protein degradation [6] and 3) exhaustion of the antioxidative defense systems [7]. Many functional and structural disorders, related to diabetes, were observed in the central and peripheral nervous systems [8]. Baydas et al. [9] reported that diabetes produces oxidative damage in many regions of rat brain including the hippocampus. Besides, the increased level of plasma cortisol frequently observed in diabetic patients or animals led to the suggestion that the control of diabetes is influenced by the adrenocortical function [10], and that there might be a correlation between stress, plasma cortisol level and diabetes.

Some substances are known to exert some anti-diabetic effect by stimulating pancreatic beta-cells to release insulin or by restoring peripheral sensitivity to insulin [11]. It is reported that about 800 plants may possess such anti-diabetic potential [12].

Garlic is well known for its characteristic resistance to biotic and abiotic environmental stresses. In addition, garlic is stated to possess many therapeutic benefits. Garlic’s strong odor is largely due to sulphur-containing compounds (e.g., S-allylcysteine sulfoxide), which are believed to account for most of its medicinal properties [13]. Active compounds in garlic were shown to exhibit anticoagulant (antithrombotic) [14-16], antioxidant [17,18], hypocholesterolemic [19], hypoglycaemic [5,18,20], antibacterial, antifungal [21], anticarcinogenic [22] as well as hypotensive properties [23].

Raw garlic was found to alleviate renal damages caused by streptozotocin-induced diabetes in rats [5]. A garlic aqueous extract was reported to prevent atrophic changes in the frontal brain and to improve learning abilities and memory retention in senescenceaccelerated mouse [24]. The same author reported that allixin, a component of garlic was found to promote the survival of neurons derived from various regions of the brain and to increase the number of branching points per axon in hippocampus [25]. The antioxidant actions of garlic and its constituents were confirmed by their ability to scavenge reactive oxygen species (ROS), to inhibit lipid peroxidation and lipoproteins oxidation and to enhance efficiency of endogenous antioxidant systems [26].

α-Tocopherol (also known as vitamin E), located in cell organelles such as mitochondria, microsomes and chloroplasts, is known to neutralize free radicals, to remove the superoxide anions generated by the reducing enzymes and to prevent the chain reactions which cause oxidative damages [27,28]. One prospective epidemiological study indicated that high a-tocopherol levels in serum were associated to decreased risks of diabetes mellitus [29]. Consequently, a-tocopherol is widely used as adjuvant in the treatment of diabetic patients. Other studies have demonstrated beneficial effects of oral Mg supplementation to maintain glucose homeostasis and to enhance insulin action [30,31].

Hypomagnesemia, commonly due to insufficient magnesium intake/or increased magnesium loss [32], has been associated with the development of type 2 diabetes [33], high blood pressure, [34] atherogenic alterations [35] and micro and macrovascular diabetic complications [36].

The present study was designed to assess the protective effects of 1) a garlic extract and 2) a combination of a-tocopherol and Mg on kidney and brain damages due to an alloxan-induced diabetes in rats. Measured biological parameters were: plasma creatinine, urea, uric acid and cortisol levels, proteinuria and urinary volume. Lipids peroxidation level and antioxidant enzymes (SOD, GPX, CAT) activities were determined in kidney and brain. A phytochemical study of the garlic extract was carried out to identify some antioxidative substances.

Materials and Methods

Preparation of the garlic extract

Aqueous garlic extract was prepared by using a protocol published by Thomson et al. [5] and slightly modified in our laboratory. Briefly, 30 g of peeled garlic was cut into small pieces and homogenized in 70 ml of ice-cold saline (300 mM NaCl). The homogenization was carried out for 15 min in a blender at high speed using 30 sec bursts spaced by cooling intervals to avoid excessive heating of the mixture. The homogenate was filtered 3 times through cheesecloth and the filtrate was centrifuged at (2000×g) for 10 min. The resulting clear supernatant was diluted to 100 ml with saline. The aqueous extract of garlic was stored in small aliquots at -20°C until use.

Experimental induction of diabetes

Rats were i.p. injected with a freshly prepared solution of alloxan monohydrate in saline (300 mM NaCl) at a dose of 120 mg/kg body weight as proposed by Al-Shamaony et al. [37]. Since alloxan injection can provoke fatal hypoglycaemia as a result of reactive massive release of insulin, rats were also given orally 5-10 ml of a 20% glucose solution after 6 h. Rats were then kept for the next 24 h on a 5% glucose solution as beverage to prevent too severe hypoglycaemia [38]. After 2 weeks, rats displaying glycosuria and hyperglycaemia (over 2 g/l) were chosen for the experiments.

Experimental design

3-months-old Wistar male rats, about 160 g body weight, fed on 15% proteins food pellets (SICO, Sfax, Tunisia), were kept in a breeding farm, at 22°C, with a stable hygrometry, under constant photoperiod.

The rats were divided into 4 batches: (C) was control group, (D) was alloxan-diabetic rats, (D+G) was a group of alloxan-diabetic rats injected with garlic extract (1 ml of the extract corresponding to 300 mg fresh garlic/kg), and (D+EMg) was a group of alloxan-diabetic rats injected with a-tocopherol together with MgCl2 (100 and 200mg/ kg body weight, respectively) as proposed by Farvid et al. [39] and Aksoy et al. [40]. After 4 weeks, animals from each group were rapidly sacrificed by decapitation in order to minimize the handling stress. The blood serum was obtained by centrifugation (1500×g, 15 min, 4°C) and the kidney and brain were removed, cleaned of fat and weighed. All these samples were stored at -80°C until use.

Biochemical assays

Level of lipid peroxidation was measured as thiobarbituric acid reactive substances (TBARS), according to Yagi [41]. For the assay, 125 µl of supernatant (S1 of kidney and brain) were mixed with 175 µl of 20% trichloroacetic acid containing 1% butyl-hydroxytoluene and centrifuged (1000×g, 10 min, 4°C). Then, 200 µl of supernatant (S2) was mixed with 40 µl of HCl (0.6 M) and 160 µl of thiobarbituric acid (0.72 mM) and the mixture was heated at 80°C for 10 min. The absorbance was measured at 530 nm. The amount of TBARS was calculated using an extinction coefficient of 156 mM-1 cm-1 and expressed in nmoles/ mg protein.

Catalase (CAT) activity was measured according to Aebi [42]. The reaction mixture (1ml) contained 100 mM phosphate buffer (pH=7), 100 mM H2O2 and 20 µl (about 1-1.5mg of protein) of kidney or brain homogenate. H2O2 decomposition was followed at 25°C by measuring the decrease in absorbance at 240 nm for 1 min. Enzyme activity was calculated using an extinction coefficient of 0.043 mM-1 cm-1 and expressed in international units (I.U.), i.e., in µM H2O2 destroyed /min/ mg protein.

The total (Cu-Zn and Mn) superoxide-dismutase (SOD) activity was determined by measuring its ability to inhibit the photoreduction of nitroblue tetrazolium (NBT) [43,44]. One unit of SOD represents the amount inhibiting the photoreduction of NBT by 50%. The activity was expressed as units/mg protein, at 25°C.

Glutathione-peroxidase (GPX) activity was assayed according to the method of Flohe and Gunzler [45]. The activity at 25°C was expressed as µmoles of GSH oxidized/min/g protein.

Protein content in tissue extracts was determined according to the Lowry’s method [46], using bovine serum albumin as standard.

The level of creatinine, urea, acid uric and cortisol in serum were determined by kit method (Spinreact).

Assay of free radical-scavenging activity on DPPH

The free radical-scavenging activity of garlic was evaluated using the stable radical DPPH, according to the method of Grzegorczyk et al. [47]. An aqueous solution of garlic (1 ml) at various concentrations (50-400 µg/ml) was added to 1 ml of a 0.1mM methanolic solution of DPPH and allowed to stand for 30 min at 27°C. The absorbance was then measured at 517 nm.

DPPH radical-scavenging activity (RSA), expressed as percent was calculated using the following formula: RSA%=ADPPH-(Asample- Acontrol)×100/ADPPH.

Extraction of garlic phenolic acids and flavonoids

1g of garlic was mixed with 10 ml of extraction solution (methanol 80%) agitated for 10 min and then centrifuged at 1200×g for 5 min. An aliquot of supernatant (0.5ml) was added to 0.5 ml of acetone and agitated. The homogenate was then centrifuged (12000×g for 5 min). A Speed Vac device was used to dry the homogenate which was then used for HPLC analysis of phenolic acids and flavonoids.

HPLC analysis conditions

Analyses by liquid chromatography were performed using a Varian Prostar HPL equipped with a ternary pump (model Prostar 230) and a Prostar 330 diode array detector. The HPLC separation of the active compounds was carried out on C-18 reverse phase HPLC column (Varian, 150 mm×4.6 mm, particle size 5 µm) on an elution gradient at 25°C. Eluent A was pure methanol and eluent B was 0.05% acetic acid aqueous solution. Gradient conditions was initial=35% A and 65% B; 30min=50%A and 50%B; 40min=90% A and 10% B. The flow rate was 1 ml/min and the injection volume was 20 µl. The identifications were performed at 230nm for phenolic acids and at 365 nm for flavonoids.

Statistical analysis

Two independent experiments, each carried out on 24 rats, were performed. Data were expressed as mean ± standard deviation (SD). Statistical significance was assessed by Student’s t-test. p<0.05 was considered statistically significant.

Results

Body weight, urinary volume and proteinuria level

As seen in figure 1, body weight of diabetic rats was reduced whereas it increased throughout the 4-weeks experimental period in control animals. Treatments of diabetic rats with garlic extract or a-tocopherol+Mg were somewhat beneficial since they elicited some weight gain.

nutrition-food-sciences-body-weight

Figure 1: Comparison of body weight after 4 weeks of treatment in control, diabetic and treated diabetic rats. The mean weight of all animals was 160 g when starting the experiments

Both urine output rate and proteinuria were significantly increased (by +116 and +317% respectively) in alloxan-diabetics rats as compared to controls. In diabetic animals treated with garlic extract or a-tocopherol+Mg, these parameters were brought back to almost normal values after 4 weeks (Figures 2 and 3).

nutrition-food-sciences-Serum-creatinine

Figure 2: Serum creatinine (μmol/l) and urea (mmol/l) levels after 4 weeks in control, diabetic and treated diabetic rats.

nutrition-food-sciences-Urine-protein

Figure 3: Urine protein (mg/24h) and urine output (ml/day) levels after 4 weeks in control, diabetic and treated diabetic rats.

Serum markers of kidney damages and cortisol level

Plasma creatinine, urea and cortisol levels were significantly increased by (+69, +90 and +43%, respectively) and plasma uric acid level was decreased (-24%) in diabetics rats as compared to controls. When diabetic rats were treated with garlic extract or with a-tocopherol+Mg, a significant normalization of these parameters was observed, as compared to untreated diabetic rats (Figures 2-5).

nutrition-food-sciences-Uric-acid

Figure 4: Uric acid (μmol/l) level after 4 weeks in control, diabetic and treated diabetic rats.

nutrition-food-sciences-diabetic-rats

Figure 5: Cortisol (μg/dl) level after 4 weeks in control, diabetic and treated diabetic rats.

Oxidative damages

As shown in tables 1 and 2, TBARS levels, markers of lipids peroxidation, were increased in kidney and brain of diabetic rats as compared to controls (by +90 and +87%, respectively). Administration of garlic extract or a-tocopherol+Mg significantly reduced TBARS levels in kidney and brain of the diabetic rats (Figures 6-8).

nutrition-food-sciences-garlic-extract

Figure 6: Scavenging activity of garlic extract (at final concentration ranging from 10 to 1000 μg/ml) upon the DPPH radical.

nutrition-food-sciences-phenolic-acids

Figure 7: HPLC profile of phenolic acids (λ=230 nm) from garlic aqueous extract.

nutrition-food-sciences-HPLC-profile

Figure 8: HPLC profile of flavonoids (λ=365 nm) from garlic aqueous extract.

Groups TBARS SOD GPX CAT
C 0.4 ± 0.05 27.6 ± 1.42 0.67 ± 0.5 35.6 ± 4.19
D 0.74 ± 0.08** 15.96 ± 1 ** 0.2 ± 0.08** 16.16 ± 1.16 **
D+G 0.36 ± 0.06++ 23.72 ± 2.9++ 0.7 ± 0.1++ 32.5 ± 3.93++
D+EMg 0.38 ± 0.04++ 27 ± 3.3++ 0.76 ± 0.103++ 37.5 ± 3.45++
C: control (normal) rats; D: Diabetics rats; D+G: Diabetic rats treated with Garlic extract; D+ EMg: Diabetic rats treated with α-tocopherol+Mg.
Values are the mean of 6 measurements ± SD.
**Significant difference as compared to control rats (C) (p ≤ 0.01).
++Significant difference between treated diabetic rats (D+G; D+EMg) and diabetic rats (D).

Table 1: TBARS (nmol/mg protein) levels and enzyme activities of SOD (U/mg protein), GPX (U/mg protein) and CAT (U/mg protein) in kidney after 4 weeks of treatment in control, diabetic and treated diabetic rats.

Groups TBARS SOD GPX CAT
C 0.65 ± 0.08 10 ± 0.9 7.32 ± 0.53 21.6 ± 1.04
D 1.25 ± 0.14** 5.9 ± 0, 8** 4.4 ± 0.5** 11.95 ± 0.73**
D+G 0.63 ± 0.06++ 9.8 ± 1.24++ 7.05 ± 1.1++  23 ± 2.53++
D+EMg 0.7 ± 0.07++ 9, 63 ± 1.4++ 7.72 ± 0.74++ 18.63 ± 1.38++
C: control (normal) rats; D: diabetics rats; D+G: diabetic rats treated with Garlic extract; D+ EMg: diabetic rats treated with α−tocopherol+Mg.
Values are the mean of 6 measurements ± SD.
**Significant difference compared to control rats (C) (p ≤ 0.01)
++Significant difference between treated diabetic rats (D+G; D+EMg) and diabetic rats (D).

Table 2: TBARS (nmol/mg protein) levels and enzyme activities of SOD (U/mg protein), GPX (U/mg protein) and CAT (U/mg protein) in brain after 4 weeks of treatment in control, diabetic and treated diabetic rats.

Activities of antioxidant enzymes

Activities of SOD, CAT and GPX were found to be respectively reduced by -42, -55, -70% in kidney and by -41, -45, -40% in brain of alloxan-diabetic rats, as compared to control values (Tables 1 and 2). These changes, revealing a weaker defense against an oxidative stress, were largely corrected in animals treated with garlic extract or a-tocopherol+Mg.

Discussion

Diabetes is a complex metabolic disorder, involving characteristic alterations of glucose metabolism. In diabetic patients, insulin is not produced or is insufficiently produced (diabetes type 1) or peripheral receptors to insulin lack the normal sensitivity (diabetes type 2), which in both cases causes hyperglycaemia and severe alterations of glucose and lipid metabolism. This hyperglycaemia leads to the overproduction of free radicals and the non-enzymatic glycation of proteins. These changes are responsible for adverse effects, especially in kidney and brain.

In the present study, alloxan treatment induced in rats 1) a hyperglycaemia, 2) a reduction in glomerular filtration rate objectified by an increased level of plasma creatinine and urea concentrations and 3) and increase of urine output and proteinuria. According to Keane and Eknoyan [48], proteinuria is a major predictor of glomerular injury and progressive nephropathy. Our findings corroborate the results of previous investigations in streptozotocin-diabetics rats [49].

The weight loss observed in alloxan-diabetic rats can be due both to a reduction of food intake and to the importance of metabolic disorders.

Uric acid level decreased by about 24% in blood of our diabetics rats. This compound, which is the end product of purine catabolism, also exerts antioxidative properties and may participate to the defence against an oxidative stress by scavenging various ROS [50,51].

Shifts in a variety of biological parameters can be attributed to a general oxidative stress triggered by alloxan treatment and the subsequent hyperglycemia. The increase of plasma cortisol level was also reported by Roy et al. [52,53] and Bitar [54] who suggested that diabetes is associated with stimulation of adrenal cortex. Reduced activities of SOD, CAT and GPX in kidney and brain of diabetic rats also contribute to the worsening of the oxidative stress.

Under our experimental conditions, garlic extract was found to be beneficial in reducing the pathological shifts of all considered parameters. Similar results were reported in alloxan-diabetic rats by El-Demerdash et al. [55], who emphasized the alleviating effect of garlic on renal damage. Thomson et al. [5] concluded that the most interesting effect of raw garlic in streptozotocin-diabetic rats was to lower proteinuria and urine output levels. Under our experimental conditions, the property of garlic to decrease cortisol level could be related to the reduction of ROS production as suggested by Kasuga et al. [56] when working on the ability of garlic extract to prevent adrenal hypertrophy, hyperglycaemia and elevation of corticosterone in stressed mice.

Garlic effects could be largely due to its antioxidant potential. This explains the ability of garlic extract to reduce TBARS levels in kidney. Imail et al. [57] also observed that garlic extract was able to scavenge the t-butyl hydroperoxide radical and hence prevented lipid peroxidation of liver microsomes.

We found that garlic treatment was able to restore uric acid level in plasma, and the levels of SOD, CAT and GPX activities. This was also reported by Helen et al. [58], who observed that garlic oil supplementation reduced lipids peroxidation and restored activity of antioxidant enzymes what, in turn, increased glutathione levels in cells.

The beneficial effects promoted by garlic could also be attributed to improved antioxidant activity in brain, which potentially could result in reduction in membrane lipid peroxidation. Being a large consumer of oxygen, containing high rate of polyunsaturated fatty acids in membranes and being poor in anti-oxidant defense systems [18], the brain is highly susceptible to oxidative stress. Due to the presence of 1) allicin and S-allyl cystein sulfoxide which trap the aggressive free radicals [59] and 2) polyphenols and phytosterols, garlic is a good candidate to counteract the diabetes-associated brain damages [13]. The beneficial effects of garlic can be attributed to scavenging free radicals properties as shown by the DPPH test in vitro and by the presence of polyphenols and flavonoids in the garlic extract as shown by the HPLC analysis. In fact phenolic acids and flavonoids were able to liberate a hydrogen proton from their hydroxyl group and could scavenge free radicals and prevent kidney and brain from damage induced by hyperglyceamia.

Under our experimental conditions, not only garlic was found to protect kidney and brain, but the combination of a-tocopherol and magnesium was also found to alleviate the diabetes-associated damages. This treatment also reduced blood urea and creatinine levels, proteinuria, TBARS levels in renal and brain tissues and restored body weight, uric acid level and SOD, CAT and GPX activity in kidney and brain. a-tocopherol and others antioxidants such as glutathione were shown to improve glucose metabolism and to enhance glucose-induced insulin secretion in aged patients with impaired glucose tolerance [60-63]. Magnesium was also demonstrated to contribute to the effect of a-tocopherol in improving sensitivity to insulin [31].

In conclusion, both garlic and a-tocopherol+Mg treatments appear almost equally able to improve the diabetes-associated pathological conditions in rat brain and kidney.

Conflict of Interest

The authors have declared that there is no conflict of interest.

Acknowledgements

This research was funded by the Tunisian Ministry higher education, Scientific Research and Technology through the Laboratory of Physiology Faculty of Sciences of Sfax.

References

  1. McCall AL (1992) The impact of diabetes on the CNS. Diabetes 41: 557-570.
  2. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23: 542-549.
  3. Hong JH, Kim MJ, Park MR, Kwag OG, Lee IS, et al. (2004) Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin Chim Acta 340: 107-115.
  4. Vural H, Aksoy N, Arslan SO, Bozer M (2000) Effects of vitamin E and selenium on lipid peroxidation and antioxidant enzymes in colon of methylazoxymethanol treated rats. Clin Chem Lab Med 38: 1051-1053.
  5. Thomson M, Al Amin ZM, Al-Qattan KK, Shaban LH, Ali Muslim (2007) Anti-diabetic and hypolipidaemic properties of garlic (Allium Sativum) in streptozotocin- induced diabetic rats. Int J Diabetes & Metabolism 15: 108-115.
  6. Dreher D, Junod AF (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32A: 30-38.
  7. Hammers HD, Martin S, Fedesrlin K, Geisen K, Brownlle M (1991) Aminoguanidine treatment inhibit the development of complications in diabetes. Diabetes 40: 405-412.
  8. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH (1994) Cerebral function in diabetes mellitus. Diabetologia 37: 643-650.
  9. Baydas G, Canatan H, Turkoglu A (2002) Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus. J Pineal Res 32: 225-230.
  10. Couch RM (1992) Dissociation of cortisol and adrenal androgen secretion in poorly controlled insulin-dependent diabetes mellitus. Acta Endocrinol (Copenh) 127: 115-117.
  11. Lombardo YB, Chicco AG (2006) Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem 17: 1-13.
  12. Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81: 81-100.
  13. Augusti KT, Sheela CG (1996) Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia 52: 115-120.
  14. Ali M, Thomson M (1995) Consumption of a garlic clove a day could be beneficial in preventing thrombosis. Prostaglandins Leukot Essent Fatty Acids 53: 211-212.
  15. Bordia T, Mohammed N, Thomson M, Ali M (1996) An evaluation of garlic and onion as antithrombotic agents. Prostaglandins Leukot Essent Fatty Acids 54: 183-186.
  16. Thomson M, Mustafa T, Ali M (2000) Thromboxane-B(2) levels in serum of rabbits receiving a single intravenous dose of aqueous extract of garlic and onion. Prostaglandins Leukot Essent Fatty Acids 63: 217-221.
  17. Anwar MM, Meki AR (2003) Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol 135: 539-547.
  18. Rahman K (2003) Garlic and aging: new insights into an old remedy. Ageing Res Rev 2: 39-56.
  19. Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM, Mustafa T (2000) Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot Essent Fatty Acids 62: 253-259.
  20. Eidi A, Eidi M, Esmaeili E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13: 624-629.
  21. Whitemore BB, Naidu AS (2000) Natural food antimicrobial systems. Boca Raton, FL: CRC Press, 265-380.
  22. Pinto JT, Rivlin RS (2001) Antiproliferative effects of allium derivatives from garlic. J Nutr 131: 1058S-60S.
  23. Banerjee SK, Maulik SK (2002) Effect of garlic on cardiovascular disorders: a review. Nutr J 1: 4.
  24. Moriguchi T, Takashina K, Chu PJ, Saito H, Nishiyama N (1994) Prolongation of life span and improved learning in the senescence accelerated mouse produced by aged garlic extract. Biol Pharm Bull 17: 1589-1594.
  25. Moriguchi T, Saito H, Nishiyama N (1997) Anti-ageing effect of aged garlic extract in the inbred brain atrophy mouse model. Clin Exp Pharmacol Physiol 24: 235-242.
  26. Aruoma OI, Spencer JPE, Warren D, Jenner P, Butler J, et al. (1997) Characterisation of food antioxidants, illustrated using commercial garlic and ginger preparations. Food Chem 60: 149-156.
  27. Sun F, Iwaguchi K, Shudo R, Nagaki Y, Tanaka K, et al. (1999) Change in tissue concentrations of lipid hydroperoxides, vitamin C and vitamin E in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 96: 185-190.
  28. Murase H, Moon JH, Yamauchi R, Kato K, Kunieda T, et al. (1998) Antioxidant activity of a novel vitamin E derivative, 2-(alpha-D glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol. Free Radic Biol Med 24: 217-225.
  29. Salonen JT, Nyyssönen K, Tuomainen TP, Mäenpää PH, Korpela H, et al. (1995) Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a four year follow up study in men. BMJ 311: 1124-1127.
  30. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an secretagogue, in diabetic rats. Experientia. 52: 115-120.
  31. Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, et al. (2003) Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med 24: 39-52.
  32. Lefébvre PJ, Paolisso G, Scheen AJ (1994) [Magnesium and glucose metabolism]. Therapie 49: 1-7.
  33. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, et al. (1999) Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 159: 2151-2159.
  34. Kisters K, Spieker C, Tepel M, Zidek W (1993) New data about the effects of oral physiological magnesium supplementation on several cardiovascular risk factors (lipids and blood pressure). Magnes Res 6: 355-360.
  35. Guerrero-Romero F, Rodríguez-Morán M (2000) Hypomagnesemia is linked to low serum HDL-cholesterol irrespective of serum glucose values. J Diabetes Complications 14: 272-276.
  36. White JR Jr, Campbell RK (1993) Magnesium and diabetes: a review. Ann Pharmacother 27: 775-780.
  37. Al-Shamaony L, al-Khazraji SM, Twaij HA (1994) Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol 43: 167-171.
  38. Gupta MP, Solis NG, Avella ME, Sanchez C (1984) Hypoglycemic activity of Neurolaena lobata (L.) R. BR. J Ethnopharmacol 10: 323-327.
  39. Farvid MS, Siassi F, Jalali M, Hosseini M, Saadat N (2004) The impact of vitamin and/or mineral supplementation on lipid profiles in type 2 diabetes. Diabetes Research and Clinical Practice 65: 21-28.
  40. Aksoy N, Vural H, Sabuncu T, Arslan O, Aksoy S (2005) Beneficial effects of vitamins C and E against oxidative stress in diabetic rats. Nutrition Research 25: 625- 630.
  41. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15: 212-216.
  42. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34: 497-500.
  43. Durak I, Yurtarslanl Z, Canbolat O, Akyol O (1993) A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta 214: 103-104.
  44. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105: 114-121.
  45. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  46. Grzegorczyk I, Matkowsk A, Wysokinska H (2007) Anitioxidant Activity of Extracts from in Vitro Cultures of Salvia officinalis L. Food Chemistry 104: 536-541.
  47. Keane WF, Eknoyan G (1999) Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis 33: 1004-1010.
  48. Greive KA, Osicka TM, Russo LM, Comper WD (2003) Nephrotic-like proteinuria in experimental diabetes. Am J Nephrol 23: 38-46.
  49. Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 78: 6858-6862.
  50. Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156: 96-105.
  51. Roy M, Collier B, Roy A (1990) Hypothalamic-pituitary-adrenal axis dysregulation among diabetic outpatients. Psychiatry Res 31: 31-37.
  52. Roy MS, Roy A, Gallucci WT, Collier B, Young K, et al. (1993) The ovine corticotropin-releasing hormone-stimulation test in type I diabetic patients and controls: suggestion of mild chronic hypercortisolism. Metabolism 42: 696-700.
  53. Bitar MS (1998) Glucocorticoid dynamics and impaired wound healing in diabetes mellitus. Am J Pathol 152: 547-554.
  54. El-Demerdash FM, Yousef MI, El-Naga NI (2005) Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol 43: 57-63.
  55. Kasuga S, Ushijima M, Morihara N, Itakura Y, Nakata Y (1999) Effect of aged garlic extract (AGE) on hyperglycemia induced by immobilization stress in mice. Nihon Yakurigaku Zasshi 114: 191-197.
  56. Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, et al. (1994) Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med 60: 417-420.
  57. Helen A, Rajasree CR, Krishnakumar K, Augusti KT, Vijayammal PL (1999) Antioxidant role of oils isolated from garlic (Allium sativum Linn) and onion (Allium cepa Linn) on nicotine-induced lipid peroxidation. Vet Hum Toxicol 41: 316-319.
  58. Vaidya V, Ingold KU, Pratt DA (2009) Garlic: source of the ultimate antioxidants--sulfenic acids. Angew Chem Int Ed Engl 48: 157-160.
  59. Paolisso G, Sgambato S, Gambardella A, Pizza G, Tesauro P, et al. (1992) Daily magnesium supplements improve glucose handling in elderly subjects. Am J Clin Nutr 55: 1161-1167.
  60. Paolisso G, Di Maro G, Galzerano D, Cacciapuoti F, Varricchio G, et al. (1994) Pharmacological doses of vitamin E and insulin action in elderly subjects. Am J Clin Nutr 59: 1291-1296.
  61. Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19: 257-267.
  62. Barbagallo M, Dominguez LJ, Tagliamonte MR, Resnick LM, Paolisso G (1999) Effects of vitamin E and glutathione on glucose metabolism: role of magnesium. Hypertension 34: 1002-1006.
Citation: Hfaiedh N, Murat JC, Elfeki A (2013) Diabetes-Induced Damages in Rat Kidney and Brain and Protective Effects of Natural Antioxidants. J Nutr Food Sci 3:209.

Copyright: © 2013 Hfaiedh N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Top