Journal of Proteomics & Bioinformatics

Journal of Proteomics & Bioinformatics
Open Access

ISSN: 0974-276X

Editorial - (2017) Volume 10, Issue 6

Proteomics and Bioinformatics: A Modern Way to Elucidate the Resistome in Mycobacterium tuberculosis

Divakar Sharma*, Nirmala Deo, Deepa Bisht and Deepa Bisht
Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
*Corresponding Author: Divakar Sharma, Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India, Tel: +91-9528889509

Present Status

Tuberculosis (TB) remains one of the world’s biggest threats which are caused by Mycobacterium tuberculosis. According to WHO 2016 report, 10.4 million people were infected worldwide with 1.8 million deaths including 0.4 million individuals with HIV-TB co-infection [1]. Vaccines, diagnostics and drugs are the available current tools to control this situation. Over the half century, Mycobacterium bovis bacille Calmette Guérin (BCG) is still the only vaccine against TB worldwide, despite showing highly variable efficacy (0–80%) in different trials [2]. Worldwide, sputum smear microscopy and culture remains the commonly used TB diagnostic and gold standard method respectively. However, use of rapid molecular testing like Line Probe Assay (LPA) has been used for detection of Rifampicin and isoniazid drug resistant Mycobacterium tuberculosis strains. Recently in India, Revised National TB Control Programme (RNTCP) has approved a study for the Validation of second line LPA for detecting resistance to fluoroquinolones, aminoglycosides (kanamycin, amikacin) and cyclic peptides (capreomycin). First and second line anti-TB drugs are effective and necessary component of short course chemotherapy. The treatment failure can lead to the emergence of resistant strains [Multidrug-resistant Tuberculosis (MDR-TB), Extensively Drug Resistant Tuberculosis (XDR-TB) and Totally Drug Resistant Tuberculosis (TDR-TB)] and consequently spread of the resistant form of the disease which have worsened the situation and became a major threat to community. The reasons for this are complex and multifactorial. These drug resistant M. tuberculosis strains or bad bugs can resist the action of drugs by the various mechanisms. These include target gene mutations [3], drug modifying enzymes [4], over expression of efflux pumps and porins alterations [5,6], drugs trapping and overexpression of proteins showed drug neutralizing effects [7-13]. Majorly of drug resistance is contributed by target gene mutation however remaining part of drug resistance is due to various other mechanisms. Our existing gadgets (vaccines, diagnostics and therapeutics) are incapable to provide the complete protection against these deadly situations.

Discovery and Targeted Proteomics Coupled with Bioinformatics Approaches: A Modern Way to Elucidate the Resistome

Since the last decade most of drug resistant proteome reports based on the discovery (expression proteome) and targeted proteomics coupled with bioinformatic approaches have been accumulated [7-24] which suggested that proteomics along with bioinformatics approaches are the modern tool to explore the mystery of resistome in addition to known factors. In the discovery/expression proteomics two-dimensional gel electrophoresis (2DE) and mass spectrometry are the best tools for separations and identifications of proteins which are the potential factors for virulence and resistance. Further the bioinformatic studies (like interproscan analysis, molecular modeling and docking, pupylation analysis and protein-protein interactions) of these potential virulence and resistance factors supported their involvements in virulence and drug resistance. In our previous studies we have reported a panel of proteins (functionally known and unknown/hypothetical) by proteomic and bioinformatic approaches and suggested their roles in virulence and resistance. Further in depth studies of these proteins and their associated pathways could suggest their use as markers or drug targets against resistant tuberculosis.

Proteomics and Bioinformatics Explored New Strategies to Fight against Resistance: In the Antibiotic Resistance Era

Proteins are important because it displays the real state of the cell and could be the potential factor involved in resistance and virulence. Firstly, these proteins might be used as future diagnostic markers against resistance which is the part of diagnostic strategy. Secondarily, these proteins and their pathways could be the potential drug targets against the resistance which is the part of drug targets strategy against resistance. Thirdly, stress proteins, cell wall and membrane related proteins are the key virulence antigens which are expressed during any stress (such as drug) and needed for attaching, entering and surviving in different cellular microenvironments. These proteins (virulence factors) could lead to the development of anti-virulence factors and elucidate the antivirulence strategy against this deadly situation.

Conflict of Interest

There is no conflict of interest between the authors.

Acknowledgements

The authors are grateful to Director, NJIL & OMD for the support. DS is ICMR-PDFs (ICMR, New Delhi).

References

  1. Andersen P, Doherty TM (2005) The success and failure of BCG—implications for a novel tuberculosis vaccine. Nature Rev Microbiol 3: 656-662.
  2. Beauclerk AAD, Cundliffe E (1987) Site of action of two ribosomal RNA methylases responsible for resistance to aminoglycoside. J Mol Biol 193: 661-671.
  3. Welch KT, Virga KG, Whittemore NA, Ozen C, Wright E, et al. (2005) Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes. Bioorg Med Chem 13: 6252-6363.
  4. Magnet S, Courvalin P, Lambert T (2001) Resistance modulation cell division type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii BM4454.Antimicrobe Agents Chemother45: 3375-3380.
  5. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67: 593-656.
  6. Magnet S, Smith TA, Zheng R, Nordmann P, Blanchard JS (2003) Aminoglycosides resistance resulting from tight drug binding to an altered aminoglycosides acetyl transferase. Antomicrob Agents Chemother 47: 1577-1583.
  7. Kumar B, Sharma D, Sharma P, Katoch VM, Venkatesan K,et al. (2013) Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J Proteomics 94: 68-77.
  8. Lata M, Sharma D, Kumar B, Deo N, Tiwari PK, et al. (2015) Proteome analysis of ofloxacin and moxifloxacin induced Mycobacterium tuberculosis isolates by proteomic approach. Protein PeptLett 22: 362-371.
  9. Sharma D, Kumar B, Lata M, Joshi B, Venkatesan K, et al. (2015) Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PLoSO NE 10: e0139414.
  10. Lata M, Sharma D, Deo N, Tiwari PK, Bisht D,et al. (2015) Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates. J Proteomics 127: 114-121.
  11. Sharma D, Lata M, Singh R, Deo N, Venkatesan K, et al. (2016) Cytosolic proteome profiling of aminoglycosides resistant Mycobacterium tuberculosis clinical isolates using MALDI-TOF/MS. Front Microbiol 7: 1816.
  12. Sharma D, Bisht D (2017) Secretory proteome analysis of streptomycin resistant Mycobacteriumtuberculosis clinical isolates. SLAS Discov.
  13. Zhang Y, Yew WW (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13:1320-1330.
  14. Sharma D, Bisht D (2016) An efficient and rapid lipophilic proteins extraction from Mycobacterium tuberculosis H37Rv for two dimensional gel electrophoresis. Electrophoresis 37: 1187-1190.
  15. Jiang X, Zhang W, Gao F, Huang Y, Lv C, et al. (2007) Comparison of the proteome of isoniazid-resistant and susceptible strains of Mycobacterium tuberculosis. Microbial Drug Resistance 12: 231-238.
  16. Sharma P, Kumar B, Gupta Y, Singhal N, Katoch VM, et al. (2010) Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis. Proteome Sci 8: 59.
  17. Sharma D, Shankar H, Lata M, Joshi B, Venkatesan K, et al. (2014) Culture filtrate proteome analysis of aminoglycoside resistant clinical isolates of Mycobacterium tuberculosis. BMC Infect Dis 14: P60.
  18. Singh A, Gopinath K, Sharma P,Bisht D, Sharma P, et al. (2015) Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient with pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian J Med Res 141: 27-45.
  19. Sharma D, Lata M, Faheem M, Khan AU, Joshi B,et al. (2015) Cloning, expression and correlation of Rv0148 to amikacin & kanamycin resistance. Current Proteomics 12:96-100.
  20. Sharma D, Lata M, Faheem M, Khan AU, Joshi B, et al. (2016) Mycobacterium tuberculosis ferritin (Rv3841): Potential involvement in Amikacin (AK) & Kanamycin (KM) resistance.Biochem Biophys Res Commun 478: 908-912.
  21. Sharma D, Bisht D (2017) Mycobacteriumtuberculosis hypothetical proteins and proteins of unknown function: Hope for exploring novel resistance mechanisms as well as future target of drug resistance. Front Microbiol 8: 465.
  22. Sharma D, Bisht D (2017) Role of bacterioferritin & ferritin in Mycobacteriumtuberculosis pathogenesis and drug resistance: A future perspective by interactomic approach. Front Cell Infect Microbiol 7: 240.
  23. Kumar G, Shankar H, Sharma D, Sharma P, Bisht D, et al. (2017) Proteomics of culture filtrate of prevalent Mycobacterium tuberculosis strains: 2D-PAGE map and MALDI-TOF/MS analysis. SLAS Discov.
Citation: Sharma D, Deo N, Bisht D (2017) Proteomics and Bioinformatics: A Modern Way to Elucidate the Resistome in Mycobacterium tuberculosis. J Proteomics Bioinform 10:e33.

Copyright: © 2017 Sharma D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Top