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Abstract
The computational capability of living systems has intrigued researchers for years. Primarily, the focus has been 

on implementing aspects of living systems in computational devices. Computer literal peoples expand their hand to the 
molecular biologist and chemist to explore the potential for computation of biological molecules line Deoxyribonucleic 
Acid (DNA) and Ribonucleic Acid (RNA) which are information carrying molecules. In this context, DNA computation is 
basically a collection of specially selected DNA strands whose combinations will result in the solution to some problems. 
DNA computation rather DNA-based computing is at the intersection of several threads of research. Main advantages 
of DNA computation are miniaturization and parallelism over conventional silicon-based machines. The information- 
bearing capability of DNA molecules is a cornerstone of modern theories of genetics and molecular biology. In this paper 
we have tried to focus on some key issues regarding the used and implementation DNA-based devices in life science 
fi eld. We have also tried to suggest its advantage over silicon computers.

Keywords: Annealing; Complexity; Graphs; Hamiltonian path;
Ligation

Introduction
Biochemical “nanocomputers” already exist in nature. They are 

manifested in all living things. But they’re largely uncontrolled by 
humans. We cannot, for example, program a tree to calculate the digits 
of pi (Melkikh, 2008; Ogasawara et al., 2008; Watson et al., 1987). The 
idea of using DNA to store and process information took off in 1994 
when a California scientist fi rstly used DNA in a test tube to solve 
a simple mathematical problem (Stryer, 1995). Since then, several 
research groups have proposed designs for DNA computers, and those 
attempts have relied on an energetic molecule called ATP for fuel. 
“This re-designed device uses its DNA input as its source of fuel,” said 
Ehud Shapiro, who led an Israeli research team (Von Neumann, 1966). 
To the naked eye, the DNA computer looks like clear water solution 
in a test tube. There is no mechanical device. A trillion bio-molecular 
devices could fi t into a single drop of water. Instead of showing up 
on a computer screen, results are analyzed using a technique that 
allows scientists to see the length of the DNA output molecule. DNA 
computation is a form of computing which uses DNA and molecular 
biology, instead of the traditional silicon-based computer technologies. 
A single gram of DNA with volume of 1 cm³ can hold as much 
information as a trillion compact discs, approximately 750 terabytes 
(Ulam, 1972; Holland, 1992; Feynman, 1961).

DNA-based computing is at the intersection of several threads of 
research. The information bearing capability of DNA molecules is a 
cornerstone of modern theories of genetics and molecular biology. 
The information in a DNA molecule is contained in the sequence 
of nucleotide bases, which hydrogen bond in a complementary 
fashion to form double- stranded molecules from single-stranded 
oligonucleotides (Wu, 2001). Various aspects of life inspired 
early results in computer science in the 1950’s (J. von Neumann’s 
universal constructor and computer (Head, 1987), S. Ulam’s models 
of growth using cellular automata. A second development occurred 
in the early 1970’s with J. Holland’s computational implementation 
of fundamental biological mechanisms, such as genetic operations 
(splicing, recombination and mutation) and evolution (Dailey et al., 
2009). Finally, a third stage inaugurated by L. Adleman’s 1994 proof 
of concept that recombinant properties of real DNA can actually use 

massive parallelism to solve problems appropriately encoded into 
single DNA strands.

History of DNA Computation

The computational capability of living systems has intrigued 
researchers for years. Primarily, the focus has been on implementing 
aspects of living systems in computational devices. Examples are 
cellular automata, genetic algorithms, artificial neural networks, and 
artificial life. The argument has been that universal computational 
devices are capable of simulating the behavior of physical, living 
systems through appropriate programming. Therefore, the direction 
of innovation has been from biology to computer science. Rechard 
Feynman first introduced the molecular computation (Heyries et al., 
2009) at early 1960s. This field was initially developed by Leonard 
Adleman of the University of Southern California. In 1994, Adleman 
demonstrated a proof-of-concept use of DNA as form of computation 
which was used to solve the seven-point Hamiltonian path problem. 
The electronic computers use two digits that are 0 and 1 known as 
binary digits, whereas a DNA strand contains four-letter alphabet that 
is A, T, G and C which can hold much more information than earlier 
type of computers. Since the initial Adleman experiments, advances 
have been made, and various Turing machines have been proven to 
be constructable. Lipton proposed DNA experiments to solve the 
satisfiability problem. In 1997, Ouyan et al. presented a molecular 
biology based experimental solution to the “maximal clique” 
problem. In 2000, Liu et al. designed a DNA model system, where 
a multibased encoding stategy is used in an approach to surface-
based DNA computation. In 2001, Wu analyzed and improved their 
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surface-based method (Macko and Whelan, 2008). All their works use 
the tools of molecular biology, and all demonstrate the feasibility 
of carrying out computations at the molucular level. One of the 
formal frameworks for molecular computations is the Head’s splicing 
system, which gives a theoretical foundation for computing based on 
DNA recombination (Liu et al., 2008). In the year 2004, Shapiro and 
co-workers constructed a DNA computer, coupled with an input and 
output module and is capable of diagnosing cancerous activity within 
a cell, and then releasing an anti-cancer drug upon diagnosis (Łoś et 
al., 2008).

DNA vs Silicon Micro-Processor
Main advantages of DNA computation are miniaturization and 

parallelism over conventional silicon-based machines. For example, 
a square centimeter of silicon can currently support around a million 
transistors, whereas current manipulation techniques can handle to 
the order of 1020 strands of DNA. However, this miniaturization alone 
does not give us the computational power that DNA promises (Feyen 
et al., 2008). Beyond these DNA computers have some drawbacks 
like the gel electrophoresis and polymerase chain reaction [PCR] are 
slower by a factor of 108 compared with operations on conventional 
computers. This drawback is outweighed by the potential for the 
massive parallelism offered by DNA computation, due to the fact 
that all strands are manipulated simultaneously. The combination of 
parallelism and miniaturization promises orders of magnitude more 
operations per second than current supercomputers (Chang et al., 
2008).

DNA, with its unique data structure and ability to perform many 
parallel operations, allows you to look at a computational problem from 
a different point of view. Transistor-based computers typically handle 
operations in a sequential manner. Of course there are multi-processor 
computers, and modern CPUs incorporate some parallel processing, 
but in general, in the basic von Neumann architecture computer, 
instructions are handled sequentially. A von Neumann machine, which 
is what all modern CPUs are, basically repeats the same “fetch and 
execute cycle” over and over again. It fetches an instruction and the 
appropriate data from main memory and it executes the instruction (Na 
et al., 2008). It does these many, many times in a row, really, really fast. 
The great Richard Feynman, in his Lectures on Computation, summed 
up von Neumann computers by saying, “the inside of a computer is 
as dumb as hell, but it goes like mad!” DNA computers, however, are 
non-von Neuman, stochastic machines that approach computation in 
a different way from ordinary computers for the purpose of solving a 
different class of problems (Leclerc et al., 2008).

Typically, increasing performance of silicon computing means 
faster clock cycles (and larger data paths), where the emphasis is on 
the speed of the CPU and not on the size of the memory. For example, 
will doubling the clock speed or doubling your RAM give you better 
performance? For DNA computation, though, the power comes from 
the memory capacity and parallel processing. If forced to behave 
sequentially, DNA loses its appeal. For example, let’s look at the read 
and write rate of DNA. In bacteria, DNA can be replicated at a rate 
of about 500 base pairs a second. Biologically this is quite fast (10 
times faster than human cells) and considering the low error rates, an 
impressive achievement (Kim et al., 2008). But this is only 1000 bits/
sec, which is a snail’s pace when compared to the data throughput 
of an average hard drive. But look what happens if you allow many 
copies of the replication enzymes to work on DNA in parallel.

First of all, the replication enzymes can start on the second 

replicated strand of DNA even before they’re finished copying the 
first one. So already the data rate jumps to 2000 bits/sec. But look 
what happens after each replication is finished - the number of DNA 
strands increases exponentially (2n after n iterations). With each 
additional strand, the data rate increases by 1000 bits/sec. So after 
10 iterations, the DNA is being replicated at a rate of about 1Mbit/
sec. After 30 iterations it increases to 1000 Gbits/sec. This is beyond 
the sustained data rates of the fastest hard drives (Bakar et al., 2008).

Now let’s consider how you would solve a nontrivial example of 
the traveling salesman problem (number of cities > 10) with silicon 
vs. DNA. With a von Neumann computer, one naive method would be 
to set up a search tree, measure each complete branch sequentially, 
and keep the shortest one. Improvements could be made with 
better search algorithms, such as pruning the search tree when one 
of the branches you are measuring is already longer than the best 
candidate. A method you certainly would not use would be to first 
generate all possible paths and then search the entire list (Han et al., 
2008). Why? Well, consider that the entire list of routes for a 20 city 
problem could theoretically take 45 million GB of memory (18! routes 
with 7 byte words)! Also for a 100 MIPS computer, it would take two 
years just to generate all paths (assuming one instruction cycle to 
generate each city in every path). However, using DNA computation, 
this method becomes feasible! Also, routes no longer have to be 
searched through sequentially. Operations can be done all in parallel 
(Tominaga et al., 2007).

Computational Complexity and Problems

Mathematical biology is a highly interdisciplinary area that lies 
at the intersection of mathematics and biology. Certain stochastic 
processes and statistical methods have been developed to solve 
problems in various branches of biology. Despite the complexity of 
the technology involved the idea behind Mathematical biology is the 
simple observation that the following two processes one biological 
and one mathematical are analogous: -

1. The very complex structure of a living being is the result of
applying simple operations, copying, splicing etc to initial
information encoded in a DNA sequence.

2. The result f (w) of applying a computable function to an
argument w can be obtained by applying a combination of basic
simple functions to w (Lin et al., 2007; Henkel et al., 2007; Chen
et al., 2007; Cost and Cozzarelli, 2007).

A single strand of DNA can be likened to a string consisting of a
combination of four different symbols A, G, C and T. Mathematically, 
this means we have at our disposal a 4 letter alphabet  = {A, G, C, 
T} to encode information, which is more than enough considering 
that an electronic computer needs only two digits 1 and 0 for the 
same purpose. Some of the simple operations that can be performed 
on DNA sequences are accomplished by a number of commercially 
available restriction enzymes that execute a few basic tasks. A 
remarkable fact about Adleman’ s result is that not only does it give 
a solution to a mathematical problem but that the problem solved is 
a hard computational problem in the sense explained below (Cost, 
2007).

Mathematical models

Problems can be ranked in difficulty according to how long the 
best algorithm to solve the problem will take to execute on a single 
computer. Algorithms can be divided into a number of classes on the 
basis of time complexity (Figure 1).
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1. Linear: - These have a time complexity such as T (n) = a*n + k,
‘a’ is a constant.

2. Constant Time Algorithm: - These have a time complexity such
as T (n) = k.

3. Polynomial Algorithm (Quadratic relationship): - These have a
time complexity such as T (n) = n2 + a * n ‘a’ is a constant

4. Exponential: - These are very complex having time complexity
such as T (n) = en.

Algorithms whose running time is bounded by a polynomial
(respectively exponential) function, in terms of the size of the 
input describing the problem, are in the “polynomial time” class 
P (respectively the exponential time class EXP). A special class of 
problems, apparently intractable including P and included in EXP is 
the “non-deterministic polynomial time” class, or NP [24] (Figure 2). 
The following inclusions between classes of problems hold:

P ЄNP Є EXP Є Universal

NP contains the problems for which no polynomial time algorithm 
solving them is known, but that can be solved in polynomial time by 
using a non-deterministic computer. The directed Hamiltonian path 
problem is a special kind of problem in NP known as NP-complete. An 
NPcomplete problem has the property that every other problem in 
NP can be reduced to it in polynomial time (Li et al., 2006; Condon, 
2006; Ibrahim, 2006).

Aldeman’s hypothesis: In 1994, Leonard M. Adleman solved an 
unremarkable computational problem with a remarkable technique. 
The type of problem that Adleman solved is formally known as a 
directed Hamiltonian Path (HP) problem, but is more popularly 
recognized as a variant of the so-called “traveling salesman problem.” 
A Hamiltonian Path in a connected graph is defined as a closed walk 

that traverses every vertex of graph ‘G’ exactly once, except the 
starting vertex at which the walk also terminates (Feldkamp et al., 
2006; Li et al., 2005; Grover and Mathies, 2005).

The above Figure 3 shows a connected graph having a Hamiltonian 
path as ABCDEFGH. The path passes through each vertex exactly 
once. The Traveling Salesman Problem can be stated as: A salesman is 
required to visit a number of cities during a trip. Given the distances 
between the cities, in what order should he travel so as to visit ever 
city precisely once and return home, with the minimum mileage 
traveled? Aldeman’s work is significant for a number of reasons 
(Shortreed et al., 2005; Cardona et al., 2005; Kim et al., 2005; Yang 
and Yang, 2005).

1. It illustrates the possibilities of using DNA to solve a class of
problems that is difficult or   impossible to solve using traditional 
computing methods.

2. It is an example of computation at a molecular level, potentially
a size limit that may never be reached by the semiconductor
industry.

3. It demonstrates unique aspects of DNA as a data structure.
4. It demonstrates that computing with DNA can work in a

massively parallel fashion (Tanaka et al., 2005; Lee et al., 2004;
Liu et al., 2004).

DNA has the unique ability to carry out multitasking operations
and perform large number of functions simultaneously. Transistor-
based computers typically follow the basic von Neumann architecture 
where instructions are handled sequentially. A von Neumann machine 
repeats the same “fetch and execute cycle” over and over again; it 
fetches an instruction and the appropriate data from main memory, 
and it executes the instruction. DNA computers are non-von Neumann 
in nature and are stochastic machines that approach computation in 
a different way from ordinary computers for the purpose of solving a 
different class of problems. For DNA computation, though, the power 
comes from the memory capacity and parallel processing (Schmidt et 
al., 2004; Halpin and Harbury, 2004).

Shortcomings of aldeman’s experiment: The complexity of the 
traveling salesman problem simply doesn’t disappear when applying a 
different method of solution, it still increases exponentially. Regarding 
the power of computation while using this method, Adleman 
mentioned some of these features. A typical desk top computer 
can execute approximately 106 operations per second. The fastest 
super computers currently available can execute approximately 1012 
operations per second. If the concatenation of two DNA molecules 
is considered as a single operation and if it is assumed that about 
half of the approximately 4×1014 edge oligonucleotides in Step 1 
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were ligated, then during step1 approximately 1014 operations were 
executed (Zeng et al., 2007). At this scale, the number of operations 
per second during the ligation step would exceed that of current 
super computers by more than a thousand fold. Thus the potential 
of molecular computation is impressive. What is not clear is whether 
such massive numbers of inexpensive operations can be productively 
used to solve real computational problems. One major advantage of 
electronic computers is the variety of operations they provide and 
the flexibility with which these operations can be applied. However, 
for certain intrinsically complex problems such as the directed 
Hamiltonian path problem where existing electronic computers 
are very inefficient and where massively parallel searches can be 
organized to take advantage of the operations that molecular biology 
currently provides, it is conceivable that molecular computation 
might compete with electronic computation in the near future (Wang 
et al., 2000).

For Aldeman’s method, what scales exponentially is not the 
computing time, but rather the amount of DNA. Unfortunately this 
places some hard restrictions on the number of cities that can be 
solved. After the Adleman article was published, more than a few 
people have pointed out that using his method to solve a 200 city 
HP problem would take an amount of DNA that weighed more than 
the earth. Another factor that places limits on his method is the error 
rate for each operation. These operations are not deterministic but 
stochastically driven each step contains statistical errors, limiting the 
number of iterations you can do successively before the probability 
of producing an error becomes greater than producing the correct 
result (Su and Smith, 2004; Feldkamp et al., 2004). For certain 
specialized problems, DNA computers are faster and smaller than any 
other computer built so far. But DNA computation does not provide 
any new capabilities from the standpoint of computability theory, 
the study of which problems are computationally solvable using 
different models of computation. For example, if the space required 
for the solution of a problem grows exponentially with the size of 
the problem (EXPSPACE problems) on von Neumann machines it still 
grows exponentially with the size of the problem on DNA machines. 
For very large EXPSPACE problems, the amount of DNA required is 
too large to be practical.

DNA logic gates

Logic gates are a vital part of how your computer carries out 
functions that you command it to do. These gates convert binary 
code moving through the computer into a series of signals that 
the computer uses to perform operations. Currently, logic gates 
interpret input signals from silicon transistors, and convert those 
signals into an output signal that allows the computer to perform 
complex functions. The Rochester team’s DNA logic gates are the 
first step toward creating a computer that has a structure similar to 
that of an electronic personal computer. Instead of using electrical 
signals to perform logical operations, these DNA logic gates rely on 
DNA code. These gates are actually tiny DNA processing centers that 
detect specific fragments of the genetic blueprint as input, and then 
splice together the fragments to form a single output. For instance, a 
genetic gate called the “And gate” links two DNA inputs by chemically 
binding them so they’re locked in an end-to-end structure, similar to 
the way two Legos might be fastened by a third Lego between them. 
The researchers believe that these logic gates might be combined 
with DNA microchips to create a breakthrough in DNA computation 
(Ogihara and Ray, 2000).

SAT problems

The satisfiability (SAT) problem is a core problem in mathematical 

logic and computing theory. This has been used in solving many 
problems that involves automated reasoning, computer-aided 
design, computeraided manufacturing, machine vision, database, 
robotics, integrated circuit design, computer architecture design, 
and computer network design. In recent years, many optimization 
methods, parallel algorithms, and practical techniques have been 
developed for solving SAT (Gu et al., 1997). Lipton extended the 
work of Adleman in solving any NP complete problems directly using 
biological experiments. Since the biological machines will be limited 
in the amount of parallelism that they can perform, solving a SAT 
problem on a large number of variables directly is far better than 
using the reduction from SAT to Hamiltonian Path problem (Lipton, 
1995). Lipton also suggested methods to speed up computations.

Computational Power of DNA

DNA computers

Though double stranded DNA appears to be a good, stable 
storage medium for information, most proposed DNA computation 
systems use single stranded DNA (oligonucleotides) for storage  (and 
computation). This choice is largely because these proposals depend 
on the annealing or hybridization of oligonucleotides to perform 
data storage or computation actions. Unfortunately hybridization is 
imprecise, and incorrect hybridizations easily occur. This places strict 
requirements on codeword formation and puts an upper bound on 
the amount of information which can be stored (Li et al., 2004).

The church-turing thesis: It states that no realizable computing 
device can be more powerful than a Turing machine. One of the main 
reasons that Church-Turing’s thesis is widely accepted is that very 
diverse alternate formalizations of the class of effective procedures 
have all turned out to be equivalent to the Turing machine 
formalization. These alternate formalizations include Markov normal 
algorithms, Post normal systems, type 0 grammars etc (Li et al., 2003). 

Mapping of a subset of the Cartesian power set Nn into N, where 
n >= 1 and N is the set of natural numbers, are referred as partial 
functions. If the domain of such a function equals Nn, then the 
function is called total. E. g.

1. The zero function: Z (x0) = 0, for all x0 Є N.
2. The successor function: S (x0) = x0 + 1, for all x0 Є N.
3. The projection function: For all I, n and xi Є N, 0 <= i <= n is

Ui
n+1 (x0, x1, …………,xn) = xi (Liu et al., 2003).

A function f is defined partial-recursively if it is the zero function,
the successor function, or a projection function. It is defined by 
composing functions which are defined partial recursively. It is 
defined by the recursion scheme from functions which are defined 
partial recursively. It is defined using the minimization operation 
on a function that is defined partial recursively and is total. It was 
proved that a function f is partial recursive if and only if there is 
a Turing machine which computes the values of f. On the other 
hand, according to the Church Turing thesis, everything that can be 
effectively computed by any kind of device can be computed by a 
Turing machine. As a consequence, partial recursive functions came 
to be known also under the name of effectively computable functions 
(Liu et al., 2003; Zhang et al., 2003; ZhiXiang et al., 2003).

Implementation techniques: Despite the progress achieved in 
DNA computation, the main obstacles to creating a practical DNA 
computer still remain to be overcome. These obstacles are roughly 
of two types: 

1. Practical: Arising primarily from difficulties in dealing with large
scale systems and in coping   with errors.
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2. Theoretical: Concerning the versatility of DNA computers and
their capacity to efficiently accommodate a wide variety of
computational problems (Hug and Schuler, 2003).

The synthesis of a DNA strand can sometimes result in the
strand annealing to itself and creating a hairpin structure. Even the 
seemingly straightforward mixing operation can sometimes pose 
problems. If DNA is not handled gently, the sheer forces from pouring 
and mixing will fragment it. Also of concern for this operation is the 
amount of DNA which remains stuck to the walls of the tubes, pumps, 
pipette tips etc and is thus lost from the computation. Hybridization 
has also to be carefully monitored because the thermodynamic 
parameters necessary for annealing to occur are sequence dependent. 
Hybridization stringency refers to the number of complementary 
base pairs that have to match for DNA oligonucleotides to bond. 
Separation of strands by length and extraction of strands containing 
a given pattern can also be inefficient and this might pose problems 
with scale-up of the test tube approach (Penchovsky and Ackermann, 
2003; Kishi et al., 2003).

Besides the accuracy of bio-operations, another peril of the 
implementation of DNA computations is the fact that the size of the 
problem influences the concentration of reactants and this in turn 
has an effect on the rate of production and quality of final reaction 
products. An analysis of Adleman’s experiment showed that an 
exponential loss of concentration occurs even on sparse digraphs and 
that this loss of concentration can become a significant consideration 
for problems not much larger than those solved by Adleman. The 
idea of algorithm transformation can be suggested in cases where 
the DNA algorithm amounts to sorting a huge library of initial 
candidate solution complexes into those which encode a solution to 
a problem and those which do not. In such cases, including Adleman‘s 
experiment the main occurring errors are false positives, false 
negatives and strand losses. A possible solution to these types of 
problems is to change the algorithms by using intelligent space and 
time trade offs (Liu et al., 2002; Yin et al., 2002; Wang et al., 2001).

The transformation makes use of a slowdown factor of M, 
proposing for a given algorithm ‘A’ a new algorithm ‘A’ ’ that has a 
smaller error rate than A as follows:

1. Repeat M times.
2. Run A on input I, producing tubes Y and N.
3. Discard tube N and rename tube Y as tube I.
4. Return tube I as the “Yes” tube and an empty tube as “No”. This

approach is of value when the original algorithm A is known to
place very reliably good sequences into the “Yes” tube i.e. low
false negatives but too often also place bad sequences into the
“Yes” tube i.e. high false positives (Hug and Schuler, 2001).

Error debugging approach: A corresponding variation of the
above transformation can be used if the algorithm is known to have 
high false negatives and low false positives. This and similar methods 
are used in the model employs stickers that are short complementary 
sequences to mark the “on” bits, while the unmarked bits are 
considered “off”. The advantage of the proposed sticker model is 
that it does not rely on short lived materials as enzymes and that it 
does not involve processes that are costly in terms of energy such as 
PCR. To put things in perspective, an opposite approach that relies 
only on PCR to solve problems has proved to be less error prone 
(Darehmiraki, 2009; Zhang et al., 2006).

Satisfiability problem: A potential DNA experiment can be 
described for finding a solution to another NP-complete problem 

that can be called Satisfiability Problem. The Satisfiability Problem 
consists of a Boolean expression, the question being whether or not 
there is an assignment of truth values, true or false to its variables that 
makes the value of the whole expression true. DNA algorithms have 
since been proposed for expansion of symbolic determinants, graph 
connectivity and knapsack problem using dynamic programming, 
road coloring problem, matrix multiplication, addition, exascale 
computer algebra problems etc (Marathe et al, 2001; Penchovsky et 
al., 2000).

Data encryption standard

Data Encryption Standard (DES) encrypts 64 bit messages and 
uses a 56 bit key. Breaking DES means that given one (plain-text, 
cipher-text) pair, we can find a key which maps the plain-text to the 
cipher-text. A conventional attack on DES would need to perform an 
exhaustive search through all of the 256 DES keys, which, at a rate of 
100,000 operations per second would take 10, 000 years. Thus the 
molecular programs came into existence that takes about 4 months 
of laboratory work instead (Cho, 2000).

It is estimated that DNA computation could yield tremendous 
advantages from the point of view of speed, energy efficiency and 
economic information storing. E.g. in Adleman’s model, the number 
of operations per second could be up to approximately 1.2 X 
1018. This is approximately 1,200,000 times faster than the fastest 
supercomputer (Rothemund, 2000). DNA computers also have the 
potential for extraordinary energy efficiency. In principle, one joule 
is sufficient for approximately 2 X 1019 1igation operations. This 
is remarkable considering that the second law of thermodynamics 
dictates a theoretical maximum of 34 X 1019 (irreversible) operations 
per joule (at room temperature). Existing supercomputers are far less 
efficient, executing at most 109operations per joule. Finally, storing 
information in molecules of DNA could allow for an information 
density of approximately 1 bit per cubic nanometer, while existing 
storage media store information at a density of approximately 1 bit 
per 1012 nm3 (Ogihara and Ray, 2000).

Operability of DNA-based devices

From a practical point of view it maybe not that important to 
simulate a Turing machine by a DNA computation device. One 
should not aim to fit the DNA model into the Procrustean bed of 
classical models of computation, but try to completely rethink the 
notion of computation. DNAbased devices have been addressed for 
most models of DNA computation that have so far been proposed 
(Sakakibara and Suyama, 2000; Faulhammer et al., 2000). The existing 
models of DNA computation are based on various combinations of a 
few primitive biological operations: -

1. Synthesize: Synthesizing a desired polynomial length strand
used in all models.

2. Mixing: Pour the contents of the test tubes into another one to
achieve union of bases.

3. Annealing: Bond together two single stranded complementary
DNA sequences by cooling the   solution.

4. Melting: Break apart a double stranded DNA into its single
stranded complementary components by heating the solution
(Lee et al., 1999).

5. Amplifying: Copying, make copies of DNA strands by using the
Polymerase Chain Reaction (PCR).

6. Separation: Separating the strands by length using gel
electrophoresis.

7. Extraction: Extracting those strands that contain a given
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pattern as a substring by using affinity purification (Wang et 
al., 1999).

8. Cutting: Cutting DNA double strands at specific sites by using
restriction enzymes. 

9. Ligation: Paste DNA strands with compatible sticky ends by
using DNA ligase. 

10. Substitution: Substitute, insert or delete DNA sequences by
using PCR site specific oligonucleotide mutagenesis.

11. Marking: Marking single strands by hybridization,
complementary sequences are attached to the strands, making 
them double stranded.

12. Destroying: Destroying the marked strands by using
exonucleases.

13. Detecting: Reading the given the contents of a tube and say
‘yes’ if it contains at least one DNA strand and ‘no’ otherwise 
(Aoi et al., 1999; Mills et al., 1999; Fu and Beigel, 1999).

The bio-operations listed above are used to write programs which 
receive a tube containing DNA strands as input and return as output 
either ‘yes’ or ‘no’ or a set of tubes.

Non-determinism

DNA computation suggests the potential of DNA with immense 
parallelism and huge storage capacity by solving NP-complete 
problems such as the Traveling Salesman Problem (TSP). If DNA 
computation is used to solve TSP, however, weights between 
vertexes in sequence design cannot be encoded effectively. Studies 
propose an algorithm for code optimization (ACO) that applies DNA 
coding method to DNA computation in order to encode weights in 
TSP effectively. By applying ACO to TSP, we designed sequence more 
effectively than Adleman’s DNA computation algorithm. Furthermore, 
we could find the shortest path quickly and reduce biological error 
rate (Beigel and Fu, 1997).

A decision problem is in the class NP if: (a) there is no known 
algorithm for it that will execute in polynomial time on a conventional 
computer and (b) it can be solved in polynomial time using a non-
deterministic computer (one with inherently unlimited parallelism). A 
problem is intractable if no polynomial time algorithm can possibly be 
devised for it. A problem in NP is NP-complete if every other problem 
in NP can be expressed in terms of it by means of a polynomial time 
algorithm. NP-complete problems are considered to be the hardest 
problems, since if any problem in NP is shown to be intractable 
then all NP-complete problems are intractable. However, if any NP-
complete problem can be solved in polynomial time, all problems in 
NP become tractable (Beigel and Fu, 1998).

A non-deterministic computer can be simulated by a test tube of 
DNA strands using the techniques of molecular biology to implement 
operations on them. In theory, many otherwise intractable problems 
can be implemented in polynomial time on such a DNA computer. In 
fact, Adleman’s simulation of the Hamiltonian Path problem, known 
to be NP-complete, has an execution time that is linear in the number 
of vertices of the graph. This is the reason that DNA computation 
has become a new focus of research in computer science. Following 
Adleman’s success, polynomial time algorithms for other NP-
complete problems, such as SAT, Independent Set and 3-colorability 
have been published. So far, however, a number of problems have 
made the implementation of DNA algorithms impractical for all but 
small instances of the problems.

Technologies for DNA Computation

DNA word sets

For generating sets non-interacting DNA sequences an algorithm 

is developed that employs various thermodynamic models for 
duplex stabilities and secondary structures prediction. DNA ‘word’ 
structure is used where individual ‘words’ of a typical given length are 
concatenated into longer sequences. Word sets are generated and 
their figures of merit are compared to sets as described previously in 
the literature. This is followed by verifying the predicted hybridization 
behavior using standard UV hyperchromism measurements of duplex 
melting temperatures (Shortreed et al., 2005).

Markov chains

Various algorithms performing computations over Markov 
chains have been developed. These determine sequence power 
of the transition matrix of a Markov chain and their properties 
of convergence. Some other algorithms help enable to estimate 
this limit. These also allow the computation of a limit using DNA 
computation. The states and the transition probabilities have been 
encoded using strands of DNA for generating paths of the Markov 
chain (Cardona et al., 2005).

Sequence complexity

It has been noticed that randomly generated oligonucleotide 
populations serve as pools for selecting non-cross-hybridizing 
sequences, for nanoscale self-assembly and biological and  biomedical 
applications, as well as for DNA computation applications. Various 
nonlinear kinetic models are present for the complexity estimation 
of large unknown polynucleotide populations. Models are used 
to estimate the sequence complexity of the random 20 base-pair 
population after in vitro renaturation experiments. The kinetic 
behaviors of the random 20mers can also be evaluated with in vitro 
thermal melting experiments (Garzon et al., 1999).

Sticker model

It is essentially easier creating an initial data pool covering 
answers at first place followed by a series of selection process to 
destroy the incorrect ones. The surviving DNA sequences are read 
as the solutions to the problem. But, algorithms are limited to the 
problem size. As the number of parameters in the studied problem 
grows, the algorithm becomes impossible owing to the tremendous 
initial data pool size. The solution sequences are built in parts to 
satisfy one clause in a step, and eventually solve the whole Boolean 
formula after a number of steps. The size of data pool grows from 
one sort of molecule to the number of solution assignments (Yang 
and Yang, 2005).

Traveling salesman problem

DNA encoding method can be used to represent numerical values 
and a biased molecular algorithm based on the thermodynamic 
properties of DNA. DNA strands are designed to encode real values 
by variation of their melting temperatures. The thermodynamic 
properties of DNA are used for effective local search of optimal 
solutions using biochemical techniques, such as denaturation 
temperature gradient polymerase chain reaction and temperature 
gradient gel electrophoresis. The algorithm is applied to the traveling 
salesman problem, an instance of optimization problems on weighted 
graphs (Kim et al., 2005).

Molecular nanotechnology

Researchers have discovered DNA sequences and structures with 
new functional properties for preventing the expression of harmful 
genes. Bioinformaticians design rigid DNA structures that serve as 
scaffolds for the organization of matter at the molecular scale, and 
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can build simple DNA-computing devices, diagnostic machines and 
DNA motors. The integration of biological & engineering advances 
offers great potential for therapeutic & diagnostic applications 
(Condon, 2006).

Cellular computing

Cells perform computation by reading and writing DNA using 
processes that modify sequences at the DNA or RNA level. Two ciliated 
protozoans of the genus Oxytricha had solved a potentially harder 
problem using DNA several million years earlier. The solution to this 
problem, which occurs during the process of gene unscrambling, 
represents one of nature’s ingenious solutions to the problem of the 
creation of genes. RNA editing can also be viewed as a computational 
process offering a second algorithm for the construction of functional 
genes from encrypted pieces of the genome (Landweber and Kari, 
1999).

Autonomous DNA computation

A one-pot autonomous DNA computation machine is proposed 
that is based on photochemical gate transition. Here, photoligation via 
5-carboxyvinyldeoxyuridene (cvU) containing oligodeoxynucleotides
and photocleavage via carbazole - modified oligodeoxynucleotides,
were employed. The binary digit additions are carried out by one-
time irradiation at 366 nm in the single test tube. The fluorescence
readout by the DNA chip was in good agreement with the correct
answer of binary digit additions (Ogasawara et al., 2008).

Clustering approaches

Clustering is used for revealing a structure in highly dimensional 
data and arriving at a collection of meaningful relationships in data 
and information granules. DNA computation has also been used for 
developing clustering techniques. This is very useful while dealing 
with huge data sets, unknown number of clusters and encountering 
a heterogeneous character of available data. It is shown the essential 
components of the clustering technique through the corresponding 
mechanisms of DNA computation (Bakar et al., 2008).

Application

Splicing system model of dna recombination

The Splicing System model introduced by Tom Head aims to be 
a one pot computer with all the operations carried out in principle 
by enzymes. Moreover, it has the theoretical advantage of being a 
mathematical model with all the claims backed up by mathematical 
proofs (Lee et al., 2004; Manca et al., 1999).

1. An alphabet is a finite nonempty set its elements are called
letters or symbols. * denotes the free monoid generated by the
alphabet  under the operation of catenation and juxtaposition.

2. The elements of * are called words or strings. The empty string
(the null element of *) is denoted by . A language over the
alphabet  is a subset of *. E.g. if    = {a, b} then aaba, aabbb
= a2b3 are words over  and the following sets are languages
over: L1 = {}, L2 = {a, ba, aba, abbaa}, L3 = {ap| p prime}.

3. The catenation of languages L1 and L2 is denoted by L1 L2 is
defined by L1 L2 = {uv | u Є L1, v Є L2} (Landweber and Kari,
1999; Maley, 1998).

4. A finite language can always be defined by listing all of its
words. Such a procedure is not possible for infinite languages
and therefore other devices for the representation of infinite
languages have been developed. One of them is to introduce

a generative device and define the language as consisting of all 
the words generated by the device. The basic generative devices 
used for specifying languages are grammars (Liu et al., 1998).

5. A generative grammar is an ordered quadruple G = {N, T, S, P},
where N and T are disjoint alphabets, S Є N and P is a finite set
of ordered pairs (u, v) such that u, v are words over N Ư T and
u contains at least one letter of N. The elements of N are called
non-terminals and those of T terminals, S are called the axiom.
Elements {u, v} of P are called rewriting rules and are written u
=>v. If x = x1ux2, y = x1vx2, and u => v Є P, then we write x
=> y and say that x derives y in the grammar G. The reflexive
and transitive closure of the derivation relation => is denoted
by =>*. The language generated by G is L {G} = {w Є T* | S
=> *w}.

6. Grammars are classified by imposing restrictions on the forms
of productions (Kulić, 1998). A grammar is called of type-0 if no
restriction (zero restrictions) is applied to the rewriting rules
and is called regular if each rule of P is of the form A→aB, A→a,
A,B Є N, a Є T. The family of finite languages will be denoted by
FIN_ the family of languages generated by regular grammars by
REG and the family of languages generated by type-0 grammars
by L0(Roweis et al., 1998).

Given an alphabet  and two strings x and y over, the splicing of 
x and y according to the splicing rule r consists of two steps:

1. Cut x and y at certain positions determined by the splicing rule r
2. Paste the resulting prefix of x with the suffix of y respectively the 

prefix of y with the suffix of x. Using the formalism splicing rule r
over  is a word of the form 1 # 1 $ 2 # 2 where 1, 1, 2,
2 are strings over  and #, $ are markers not belonging to .

3. We say that z and w are obtained by splicing x and y according to 
the splicing rule r = 1 # 1 $ 2 # 2  and we write
(x, y)  →  r(z, w) if and only if
x = x1 1 1 x́   z = x1 1 2 y΄2
y = y2 22y2’ w = y2 21x1’ for some x1, x1’, y2,y2’ Є (Freund
et al., 1998; Frutos et al., 1997).

4. The words 11 and 22 are called sites of the splicing, while
x and y are called the terms of the splicing. The splicing rule
r determines both the sites and the positions of the cutting:
between 1 and 1 for the first term and 2 and 2 for the second.

5. The site 11 can occur more than once in x while the site 22 
can occur more than once in y.Whenever this happens, the sites
are chosen non-deterministically. As a consequence, the result of 
splicing x and y can be a set containing more than one pair (z. w)
(Ouyang et al., 1997).

6. How the splicing works can be illustrated by using it to simulate
the addition of two positive numbers, n and m. If an alphabet
= {a, b, c} is considered and the splicing rule r = a # b $ c #
a, then the splicing of x = an b and y = c am according to r yields
the words an+m and cb.

7. The splicing operation can be used as a basic tool for building a
generative mechanism, called splicing system.

8. If the classical notion of a set is used, we implicitly assume that
after splicing x and y and obtaining z and w, we may use again
x or y as terms of the splicing i.e. the strings are not consumed
by splicing. Similarly, there is no restriction on the number of
copies of the newly obtained z and w (Gibbons et al., 1997;
Csuhaj-Varjú et al., 1996).

DNA nanomachines
DNA has been explored as an excellent material for building 

large-scale nanostructures, constructing individual nanomechanical 
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devices, and performing computations (Pool, 1995). A variety of 
DNA nanomechanical devices have been previously constructed that 
demonstrate motions such as open/close, extension/contraction, 
andmotors/rotation (Morimoto et al., 2007), mediated by external 
environmental changes such as the addition and removal of DNA 
fuel strands or the change of ionic composition of the solution 
(Chee et al., 1996). The DNA walker could ultimately be used to 
carry out computations and to precisely transport nanoparticles 
of material. The walker can be programmed in several ways in this 
direction. For example, information can be encoded in the walker 
fragments as well as in the track so that, while performing motion, 
the walker simultaneously carries out computation. Yin et al in the 
year 2005 designed an autonomous DNA walking device in which a 
walker moves along a linear track unidirectionally (Liu et al., 2000). 
Sherman and Seeman in 2004 have constructed a DNA walking device 
controlled by DNA fuel strands. Reif in the year 2003 designed an 
autonomous DNA walking device and an autonomous DNA rolling 
device that move in a random bidirectional fashion along DNA tracks. 
Shin and Pierce in 2004 designed the DNA walker for molecular 
transport. Recently, Yin et al in 2005 encoded computational power 
into a DNA walking device embedded in a DNA lattice and therefore 
accomplished the design for an autonomous nano-mechanical device 
capable of universal computation and translational motion (Kaplan 
et al., 2001).

Other models

The construction of unusual DNA molecules has a long history 
(Seeman et al., 1996). Such molecules include knots (Du and Seeman, 
1994), Holliday junctions (Fu et al., 1994) and octahedra (Zhang and 
Seeman, 1994). The construction of such objects relies upon the 
creation of branched DNA molecules known as junctions. Because 
these objects do not occur naturally, they must be engineered in the 
laboratory. In order to determine the specific sequences to assign 
to components of branches (i.e. single strands of DNA) a technique 
known as sequence symmetry minimization is used (Seeman, 1982). 
This assigns sequences to various components such that when they 
are placed in solution they hybridize to form the desired structure. 
Winfree and coworkers in 1996 proposed the tendency of DNA 
structures to self-assemble as a computational tool (Winfree et 
al., 1996). They show that the self-assembly of complex branches 
known as double crossovers. Although of great theoretical interest, 
experimental investigations of the power of self-assembly are still at 
a very preliminary stage. They also showed that, in principle, the two 
dimensional self-assembly model is experimentally implementable.

DNA-based reversible gates

Due to the progress made in areas of nanotechnology, storing 
information in terms of DNA computing-chips has been possible. 
The use of reversible logic gates for synthesis of circuits in aspects 
of quantum computing is being tried (Tumpane et al., 2007). 
Furthermore, it has been seen that in this article, the reversible 
logic is proposed to be simulated by using DNA molecules and bio-
chemistry operations: the input and the output of a reversible gate 
or a reversible sequential circuit are both DNA sequences, and the 
computing progresses correspond to the biochemistry operations. 
These can also be used for designing the optimal reversible sequential 
circuits, some new trends in DNA and quantum computing (Benenson 
et al., 2003).

Conclusion and Perspectives
The apparent ease with which DNA hybridization can be 

formalized made Adleman’s invention very attractive to researchers in 
the fields of computer science and discrete mathematics. Numerous 
architectures for DNA based computing have since been proposed. 
There is no doubt that DNA will soon exhibit all sorts of eccentric 
behavior that cannot be conveniently incorporated into formal 
descriptions. Some researchers are therefore skeptical whether DNA 
will ever follow bacteriorhodpsin on its (narrow) path to take on the 
silicon competition. However, DNA may very well have potential for 
soft computing applications that can tolerate or even benefit from 
components which do not overly conform to formal rules.

You can use your DNA computer only to solve a specific problem 
and you can typically use it only once, in one problem case. DNA 
computers may solve problems with an alarmingly high error 
rate. Instead of being “universal”, DNA computers are “instance” 
computers: they are good at one instance of a problem, and one 
problem type. If you set up a DNA computer to simulate a universal 
computer that can be programmed easily, you still lose out against 
the above trade-off, so it is probably a waste of time to try to build 
Turing machines with any hope of utilising parallelism to speed them 
up.

The advantages of DNA computers, at least for the time being, are 
outweighed by the difficulties of using them to do anything useful. 
There is more theory than practical success at the moment, though 
they have enormous potential for applications in medicine, farming, 
food and fingerprint recognition and forensic science. Conventional 
problems are best handled by conventional computers; with DNA 
computers, we need to think differently. One trick is to use molecules 
to solve problems they are naturally good at solving. Thus DNA 
computers are good at doing DNA-related things.

Another example is to make a fish-freshness sensor. You must 
measure many compounds and assess odour and taste to tell if a fish 
is fresh. This sort of problem is one that animals solve all the time, 
so there is good reason to hope that DNA computers could be built 
to do it, too.

The field of DNA computation remains alive and promising, 
even as new challenges emerge. Most important among these are 
the uncertainty, because of the DNA chemistry, in the computational 
results, and the exponential increase in number of DNA molecules 
necessary to solve problems of interesting size. Despite these issues, 
definite progress has been made both in quantifying errors, and in 
development of new protocols for more efficient and error- tolerant 
DNA computation. In addition, new paradigms based on molecular 
evolution viz. molecular systematics, mutationism etc. have emerged 
from molecular biology to inspire new directions such as molecular 
computers, which are capable of doing high performance computing 
in DNA computation.
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