
J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 234

Review Article
OPEN ACCESS Freely available online

doi:10.4172/jpb.1000145

JPB/Vol.3 Issue 7

Journal of Proteomics & Bioinformatics - Open Access

DNA Computation: Applications and Perspectives
Somnath Tagore 1*, Saurav Bhattacharya2, Md Ataul Islam3 and Md Lutful Islam4

1Department of Bioinformatics, Dr. D.Y. Patil University, Navi Mumbai, India
2Department of Molecular Biology & Biotechnology, University of Kalyani, India
3Department of Chemical Technology, University of Calcutta, India
4Department of Computer Science, MH Saboo Siddique College of Engg., Mumbai, India

 *Corresponding author: Somnath Tagore, Department of Bioinformatics, Dr. D.Y.
Patil University, Navi Mumbai, India, E-mail: somnathtagore@yahoo.co.in

Received June 12, 2010; Accepted June 29, 2010; Published June 29, 2010

Citation: Tagore S, Bhattacharya S, Islam MA, Islam ML (2010) DNA Computation:
Applications and Perspectives. J Proteomics Bioinform 3: 234-243. doi:10.4172/
jpb.1000145

Copyright: © 2010 Tagore S, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
The computational capability of living systems has intrigued researchers for years. Primarily, the focus has been

on implementing aspects of living systems in computational devices. Computer literal peoples expand their hand to the
molecular biologist and chemist to explore the potential for computation of biological molecules line Deoxyribonucleic
Acid (DNA) and Ribonucleic Acid (RNA) which are information carrying molecules. In this context, DNA computation is
basically a collection of specially selected DNA strands whose combinations will result in the solution to some problems.
DNA computation rather DNA-based computing is at the intersection of several threads of research. Main advantages
of DNA computation are miniaturization and parallelism over conventional silicon-based machines. The information-
bearing capability of DNA molecules is a cornerstone of modern theories of genetics and molecular biology. In this paper
we have tried to focus on some key issues regarding the used and implementation DNA-based devices in life science
fi eld. We have also tried to suggest its advantage over silicon computers.

Keywords: Annealing; Complexity; Graphs; Hamiltonian path;
Ligation

Introduction
Biochemical “nanocomputers” already exist in nature. They are

manifested in all living things. But they’re largely uncontrolled by
humans. We cannot, for example, program a tree to calculate the digits
of pi (Melkikh, 2008; Ogasawara et al., 2008; Watson et al., 1987). The
idea of using DNA to store and process information took off in 1994
when a California scientist fi rstly used DNA in a test tube to solve
a simple mathematical problem (Stryer, 1995). Since then, several
research groups have proposed designs for DNA computers, and those
attempts have relied on an energetic molecule called ATP for fuel.
“This re-designed device uses its DNA input as its source of fuel,” said
Ehud Shapiro, who led an Israeli research team (Von Neumann, 1966).
To the naked eye, the DNA computer looks like clear water solution
in a test tube. There is no mechanical device. A trillion bio-molecular
devices could fi t into a single drop of water. Instead of showing up
on a computer screen, results are analyzed using a technique that
allows scientists to see the length of the DNA output molecule. DNA
computation is a form of computing which uses DNA and molecular
biology, instead of the traditional silicon-based computer technologies.
A single gram of DNA with volume of 1 cm³ can hold as much
information as a trillion compact discs, approximately 750 terabytes
(Ulam, 1972; Holland, 1992; Feynman, 1961).

DNA-based computing is at the intersection of several threads of
research. The information bearing capability of DNA molecules is a
cornerstone of modern theories of genetics and molecular biology.
The information in a DNA molecule is contained in the sequence
of nucleotide bases, which hydrogen bond in a complementary
fashion to form double- stranded molecules from single-stranded
oligonucleotides (Wu, 2001). Various aspects of life inspired
early results in computer science in the 1950’s (J. von Neumann’s
universal constructor and computer (Head, 1987), S. Ulam’s models
of growth using cellular automata. A second development occurred
in the early 1970’s with J. Holland’s computational implementation
of fundamental biological mechanisms, such as genetic operations
(splicing, recombination and mutation) and evolution (Dailey et al.,
2009). Finally, a third stage inaugurated by L. Adleman’s 1994 proof
of concept that recombinant properties of real DNA can actually use

massive parallelism to solve problems appropriately encoded into
single DNA strands.

History of DNA Computation

The computational capability of living systems has intrigued
researchers for years. Primarily, the focus has been on implementing
aspects of living systems in computational devices. Examples are
cellular automata, genetic algorithms, artificial neural networks, and
artificial life. The argument has been that universal computational
devices are capable of simulating the behavior of physical, living
systems through appropriate programming. Therefore, the direction
of innovation has been from biology to computer science. Rechard
Feynman first introduced the molecular computation (Heyries et al.,
2009) at early 1960s. This field was initially developed by Leonard
Adleman of the University of Southern California. In 1994, Adleman
demonstrated a proof-of-concept use of DNA as form of computation
which was used to solve the seven-point Hamiltonian path problem.
The electronic computers use two digits that are 0 and 1 known as
binary digits, whereas a DNA strand contains four-letter alphabet that
is A, T, G and C which can hold much more information than earlier
type of computers. Since the initial Adleman experiments, advances
have been made, and various Turing machines have been proven to
be constructable. Lipton proposed DNA experiments to solve the
satisfiability problem. In 1997, Ouyan et al. presented a molecular
biology based experimental solution to the “maximal clique”
problem. In 2000, Liu et al. designed a DNA model system, where
a multibased encoding stategy is used in an approach to surface-
based DNA computation. In 2001, Wu analyzed and improved their

Citation: Tagore S, Bhattacharya S, Islam MA, Islam ML (2010) DNA Computation: Applications and Perspectives. J Proteomics Bioinform 3: 234-243.
doi:10.4172/jpb.1000145

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 235

surface-based method (Macko and Whelan, 2008). All their works use
the tools of molecular biology, and all demonstrate the feasibility
of carrying out computations at the molucular level. One of the
formal frameworks for molecular computations is the Head’s splicing
system, which gives a theoretical foundation for computing based on
DNA recombination (Liu et al., 2008). In the year 2004, Shapiro and
co-workers constructed a DNA computer, coupled with an input and
output module and is capable of diagnosing cancerous activity within
a cell, and then releasing an anti-cancer drug upon diagnosis (Łoś et
al., 2008).

DNA vs Silicon Micro-Processor
Main advantages of DNA computation are miniaturization and

parallelism over conventional silicon-based machines. For example,
a square centimeter of silicon can currently support around a million
transistors, whereas current manipulation techniques can handle to
the order of 1020 strands of DNA. However, this miniaturization alone
does not give us the computational power that DNA promises (Feyen
et al., 2008). Beyond these DNA computers have some drawbacks
like the gel electrophoresis and polymerase chain reaction [PCR] are
slower by a factor of 108 compared with operations on conventional
computers. This drawback is outweighed by the potential for the
massive parallelism offered by DNA computation, due to the fact
that all strands are manipulated simultaneously. The combination of
parallelism and miniaturization promises orders of magnitude more
operations per second than current supercomputers (Chang et al.,
2008).

DNA, with its unique data structure and ability to perform many
parallel operations, allows you to look at a computational problem from
a different point of view. Transistor-based computers typically handle
operations in a sequential manner. Of course there are multi-processor
computers, and modern CPUs incorporate some parallel processing,
but in general, in the basic von Neumann architecture computer,
instructions are handled sequentially. A von Neumann machine, which
is what all modern CPUs are, basically repeats the same “fetch and
execute cycle” over and over again. It fetches an instruction and the
appropriate data from main memory and it executes the instruction (Na
et al., 2008). It does these many, many times in a row, really, really fast.
The great Richard Feynman, in his Lectures on Computation, summed
up von Neumann computers by saying, “the inside of a computer is
as dumb as hell, but it goes like mad!” DNA computers, however, are
non-von Neuman, stochastic machines that approach computation in
a different way from ordinary computers for the purpose of solving a
different class of problems (Leclerc et al., 2008).

Typically, increasing performance of silicon computing means
faster clock cycles (and larger data paths), where the emphasis is on
the speed of the CPU and not on the size of the memory. For example,
will doubling the clock speed or doubling your RAM give you better
performance? For DNA computation, though, the power comes from
the memory capacity and parallel processing. If forced to behave
sequentially, DNA loses its appeal. For example, let’s look at the read
and write rate of DNA. In bacteria, DNA can be replicated at a rate
of about 500 base pairs a second. Biologically this is quite fast (10
times faster than human cells) and considering the low error rates, an
impressive achievement (Kim et al., 2008). But this is only 1000 bits/
sec, which is a snail’s pace when compared to the data throughput
of an average hard drive. But look what happens if you allow many
copies of the replication enzymes to work on DNA in parallel.

First of all, the replication enzymes can start on the second

replicated strand of DNA even before they’re finished copying the
first one. So already the data rate jumps to 2000 bits/sec. But look
what happens after each replication is finished - the number of DNA
strands increases exponentially (2n after n iterations). With each
additional strand, the data rate increases by 1000 bits/sec. So after
10 iterations, the DNA is being replicated at a rate of about 1Mbit/
sec. After 30 iterations it increases to 1000 Gbits/sec. This is beyond
the sustained data rates of the fastest hard drives (Bakar et al., 2008).

Now let’s consider how you would solve a nontrivial example of
the traveling salesman problem (number of cities > 10) with silicon
vs. DNA. With a von Neumann computer, one naive method would be
to set up a search tree, measure each complete branch sequentially,
and keep the shortest one. Improvements could be made with
better search algorithms, such as pruning the search tree when one
of the branches you are measuring is already longer than the best
candidate. A method you certainly would not use would be to first
generate all possible paths and then search the entire list (Han et al.,
2008). Why? Well, consider that the entire list of routes for a 20 city
problem could theoretically take 45 million GB of memory (18! routes
with 7 byte words)! Also for a 100 MIPS computer, it would take two
years just to generate all paths (assuming one instruction cycle to
generate each city in every path). However, using DNA computation,
this method becomes feasible! Also, routes no longer have to be
searched through sequentially. Operations can be done all in parallel
(Tominaga et al., 2007).

Computational Complexity and Problems

Mathematical biology is a highly interdisciplinary area that lies
at the intersection of mathematics and biology. Certain stochastic
processes and statistical methods have been developed to solve
problems in various branches of biology. Despite the complexity of
the technology involved the idea behind Mathematical biology is the
simple observation that the following two processes one biological
and one mathematical are analogous: -

1. The very complex structure of a living being is the result of
applying simple operations, copying, splicing etc to initial
information encoded in a DNA sequence.

2. The result f (w) of applying a computable function to an
argument w can be obtained by applying a combination of basic
simple functions to w (Lin et al., 2007; Henkel et al., 2007; Chen
et al., 2007; Cost and Cozzarelli, 2007).

A single strand of DNA can be likened to a string consisting of a
combination of four different symbols A, G, C and T. Mathematically,
this means we have at our disposal a 4 letter alphabet  = {A, G, C,
T} to encode information, which is more than enough considering
that an electronic computer needs only two digits 1 and 0 for the
same purpose. Some of the simple operations that can be performed
on DNA sequences are accomplished by a number of commercially
available restriction enzymes that execute a few basic tasks. A
remarkable fact about Adleman’ s result is that not only does it give
a solution to a mathematical problem but that the problem solved is
a hard computational problem in the sense explained below (Cost,
2007).

Mathematical models

Problems can be ranked in difficulty according to how long the
best algorithm to solve the problem will take to execute on a single
computer. Algorithms can be divided into a number of classes on the
basis of time complexity (Figure 1).

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 236

Review Article
OPEN ACCESS Freely available online

doi:10.4172/jpb.1000145

JPB/Vol.3 Issue 7

Journal of Proteomics & Bioinformatics - Open Access

1. Linear: - These have a time complexity such as T (n) = a*n + k,
‘a’ is a constant.

2. Constant Time Algorithm: - These have a time complexity such
as T (n) = k.

3. Polynomial Algorithm (Quadratic relationship): - These have a
time complexity such as T (n) = n2 + a * n ‘a’ is a constant

4. Exponential: - These are very complex having time complexity
such as T (n) = en.

Algorithms whose running time is bounded by a polynomial
(respectively exponential) function, in terms of the size of the
input describing the problem, are in the “polynomial time” class
P (respectively the exponential time class EXP). A special class of
problems, apparently intractable including P and included in EXP is
the “non-deterministic polynomial time” class, or NP [24] (Figure 2).
The following inclusions between classes of problems hold:

P ЄNP Є EXP Є Universal

NP contains the problems for which no polynomial time algorithm
solving them is known, but that can be solved in polynomial time by
using a non-deterministic computer. The directed Hamiltonian path
problem is a special kind of problem in NP known as NP-complete. An
NPcomplete problem has the property that every other problem in
NP can be reduced to it in polynomial time (Li et al., 2006; Condon,
2006; Ibrahim, 2006).

Aldeman’s hypothesis: In 1994, Leonard M. Adleman solved an
unremarkable computational problem with a remarkable technique.
The type of problem that Adleman solved is formally known as a
directed Hamiltonian Path (HP) problem, but is more popularly
recognized as a variant of the so-called “traveling salesman problem.”
A Hamiltonian Path in a connected graph is defined as a closed walk

that traverses every vertex of graph ‘G’ exactly once, except the
starting vertex at which the walk also terminates (Feldkamp et al.,
2006; Li et al., 2005; Grover and Mathies, 2005).

The above Figure 3 shows a connected graph having a Hamiltonian
path as ABCDEFGH. The path passes through each vertex exactly
once. The Traveling Salesman Problem can be stated as: A salesman is
required to visit a number of cities during a trip. Given the distances
between the cities, in what order should he travel so as to visit ever
city precisely once and return home, with the minimum mileage
traveled? Aldeman’s work is significant for a number of reasons
(Shortreed et al., 2005; Cardona et al., 2005; Kim et al., 2005; Yang
and Yang, 2005).

1. It illustrates the possibilities of using DNA to solve a class of
problems that is difficult or impossible to solve using traditional
computing methods.

2. It is an example of computation at a molecular level, potentially
a size limit that may never be reached by the semiconductor
industry.

3. It demonstrates unique aspects of DNA as a data structure.
4. It demonstrates that computing with DNA can work in a

massively parallel fashion (Tanaka et al., 2005; Lee et al., 2004;
Liu et al., 2004).

DNA has the unique ability to carry out multitasking operations
and perform large number of functions simultaneously. Transistor-
based computers typically follow the basic von Neumann architecture
where instructions are handled sequentially. A von Neumann machine
repeats the same “fetch and execute cycle” over and over again; it
fetches an instruction and the appropriate data from main memory,
and it executes the instruction. DNA computers are non-von Neumann
in nature and are stochastic machines that approach computation in
a different way from ordinary computers for the purpose of solving a
different class of problems. For DNA computation, though, the power
comes from the memory capacity and parallel processing (Schmidt et
al., 2004; Halpin and Harbury, 2004).

Shortcomings of aldeman’s experiment: The complexity of the
traveling salesman problem simply doesn’t disappear when applying a
different method of solution, it still increases exponentially. Regarding
the power of computation while using this method, Adleman
mentioned some of these features. A typical desk top computer
can execute approximately 106 operations per second. The fastest
super computers currently available can execute approximately 1012
operations per second. If the concatenation of two DNA molecules
is considered as a single operation and if it is assumed that about
half of the approximately 4×1014 edge oligonucleotides in Step 1

Polynornial

Time of
completion

Input time

Linear
(constant slope)

Coonstant time

Figure 1: Time complexity.

Figure 2: Space complexity.

Space
(memory)

Esponential

Input size

T(n)=e
n

Figure 3: Hamiltonian path.

Citation: Tagore S, Bhattacharya S, Islam MA, Islam ML (2010) DNA Computation: Applications and Perspectives. J Proteomics Bioinform 3: 234-243.
doi:10.4172/jpb.1000145

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 237

were ligated, then during step1 approximately 1014 operations were
executed (Zeng et al., 2007). At this scale, the number of operations
per second during the ligation step would exceed that of current
super computers by more than a thousand fold. Thus the potential
of molecular computation is impressive. What is not clear is whether
such massive numbers of inexpensive operations can be productively
used to solve real computational problems. One major advantage of
electronic computers is the variety of operations they provide and
the flexibility with which these operations can be applied. However,
for certain intrinsically complex problems such as the directed
Hamiltonian path problem where existing electronic computers
are very inefficient and where massively parallel searches can be
organized to take advantage of the operations that molecular biology
currently provides, it is conceivable that molecular computation
might compete with electronic computation in the near future (Wang
et al., 2000).

For Aldeman’s method, what scales exponentially is not the
computing time, but rather the amount of DNA. Unfortunately this
places some hard restrictions on the number of cities that can be
solved. After the Adleman article was published, more than a few
people have pointed out that using his method to solve a 200 city
HP problem would take an amount of DNA that weighed more than
the earth. Another factor that places limits on his method is the error
rate for each operation. These operations are not deterministic but
stochastically driven each step contains statistical errors, limiting the
number of iterations you can do successively before the probability
of producing an error becomes greater than producing the correct
result (Su and Smith, 2004; Feldkamp et al., 2004). For certain
specialized problems, DNA computers are faster and smaller than any
other computer built so far. But DNA computation does not provide
any new capabilities from the standpoint of computability theory,
the study of which problems are computationally solvable using
different models of computation. For example, if the space required
for the solution of a problem grows exponentially with the size of
the problem (EXPSPACE problems) on von Neumann machines it still
grows exponentially with the size of the problem on DNA machines.
For very large EXPSPACE problems, the amount of DNA required is
too large to be practical.

DNA logic gates

Logic gates are a vital part of how your computer carries out
functions that you command it to do. These gates convert binary
code moving through the computer into a series of signals that
the computer uses to perform operations. Currently, logic gates
interpret input signals from silicon transistors, and convert those
signals into an output signal that allows the computer to perform
complex functions. The Rochester team’s DNA logic gates are the
first step toward creating a computer that has a structure similar to
that of an electronic personal computer. Instead of using electrical
signals to perform logical operations, these DNA logic gates rely on
DNA code. These gates are actually tiny DNA processing centers that
detect specific fragments of the genetic blueprint as input, and then
splice together the fragments to form a single output. For instance, a
genetic gate called the “And gate” links two DNA inputs by chemically
binding them so they’re locked in an end-to-end structure, similar to
the way two Legos might be fastened by a third Lego between them.
The researchers believe that these logic gates might be combined
with DNA microchips to create a breakthrough in DNA computation
(Ogihara and Ray, 2000).

SAT problems

The satisfiability (SAT) problem is a core problem in mathematical

logic and computing theory. This has been used in solving many
problems that involves automated reasoning, computer-aided
design, computeraided manufacturing, machine vision, database,
robotics, integrated circuit design, computer architecture design,
and computer network design. In recent years, many optimization
methods, parallel algorithms, and practical techniques have been
developed for solving SAT (Gu et al., 1997). Lipton extended the
work of Adleman in solving any NP complete problems directly using
biological experiments. Since the biological machines will be limited
in the amount of parallelism that they can perform, solving a SAT
problem on a large number of variables directly is far better than
using the reduction from SAT to Hamiltonian Path problem (Lipton,
1995). Lipton also suggested methods to speed up computations.

Computational Power of DNA

DNA computers

Though double stranded DNA appears to be a good, stable
storage medium for information, most proposed DNA computation
systems use single stranded DNA (oligonucleotides) for storage (and
computation). This choice is largely because these proposals depend
on the annealing or hybridization of oligonucleotides to perform
data storage or computation actions. Unfortunately hybridization is
imprecise, and incorrect hybridizations easily occur. This places strict
requirements on codeword formation and puts an upper bound on
the amount of information which can be stored (Li et al., 2004).

The church-turing thesis: It states that no realizable computing
device can be more powerful than a Turing machine. One of the main
reasons that Church-Turing’s thesis is widely accepted is that very
diverse alternate formalizations of the class of effective procedures
have all turned out to be equivalent to the Turing machine
formalization. These alternate formalizations include Markov normal
algorithms, Post normal systems, type 0 grammars etc (Li et al., 2003).

Mapping of a subset of the Cartesian power set Nn into N, where
n >= 1 and N is the set of natural numbers, are referred as partial
functions. If the domain of such a function equals Nn, then the
function is called total. E. g.

1. The zero function: Z (x0) = 0, for all x0 Є N.
2. The successor function: S (x0) = x0 + 1, for all x0 Є N.
3. The projection function: For all I, n and xi Є N, 0 <= i <= n is

Ui
n+1 (x0, x1, …………,xn) = xi (Liu et al., 2003).

A function f is defined partial-recursively if it is the zero function,
the successor function, or a projection function. It is defined by
composing functions which are defined partial recursively. It is
defined by the recursion scheme from functions which are defined
partial recursively. It is defined using the minimization operation
on a function that is defined partial recursively and is total. It was
proved that a function f is partial recursive if and only if there is
a Turing machine which computes the values of f. On the other
hand, according to the Church Turing thesis, everything that can be
effectively computed by any kind of device can be computed by a
Turing machine. As a consequence, partial recursive functions came
to be known also under the name of effectively computable functions
(Liu et al., 2003; Zhang et al., 2003; ZhiXiang et al., 2003).

Implementation techniques: Despite the progress achieved in
DNA computation, the main obstacles to creating a practical DNA
computer still remain to be overcome. These obstacles are roughly
of two types:

1. Practical: Arising primarily from difficulties in dealing with large
scale systems and in coping with errors.

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 238

Review Article
OPEN ACCESS Freely available online

doi:10.4172/jpb.1000145

JPB/Vol.3 Issue 7

Journal of Proteomics & Bioinformatics - Open Access

2. Theoretical: Concerning the versatility of DNA computers and
their capacity to efficiently accommodate a wide variety of
computational problems (Hug and Schuler, 2003).

The synthesis of a DNA strand can sometimes result in the
strand annealing to itself and creating a hairpin structure. Even the
seemingly straightforward mixing operation can sometimes pose
problems. If DNA is not handled gently, the sheer forces from pouring
and mixing will fragment it. Also of concern for this operation is the
amount of DNA which remains stuck to the walls of the tubes, pumps,
pipette tips etc and is thus lost from the computation. Hybridization
has also to be carefully monitored because the thermodynamic
parameters necessary for annealing to occur are sequence dependent.
Hybridization stringency refers to the number of complementary
base pairs that have to match for DNA oligonucleotides to bond.
Separation of strands by length and extraction of strands containing
a given pattern can also be inefficient and this might pose problems
with scale-up of the test tube approach (Penchovsky and Ackermann,
2003; Kishi et al., 2003).

Besides the accuracy of bio-operations, another peril of the
implementation of DNA computations is the fact that the size of the
problem influences the concentration of reactants and this in turn
has an effect on the rate of production and quality of final reaction
products. An analysis of Adleman’s experiment showed that an
exponential loss of concentration occurs even on sparse digraphs and
that this loss of concentration can become a significant consideration
for problems not much larger than those solved by Adleman. The
idea of algorithm transformation can be suggested in cases where
the DNA algorithm amounts to sorting a huge library of initial
candidate solution complexes into those which encode a solution to
a problem and those which do not. In such cases, including Adleman‘s
experiment the main occurring errors are false positives, false
negatives and strand losses. A possible solution to these types of
problems is to change the algorithms by using intelligent space and
time trade offs (Liu et al., 2002; Yin et al., 2002; Wang et al., 2001).

The transformation makes use of a slowdown factor of M,
proposing for a given algorithm ‘A’ a new algorithm ‘A’ ’ that has a
smaller error rate than A as follows:

1. Repeat M times.
2. Run A on input I, producing tubes Y and N.
3. Discard tube N and rename tube Y as tube I.
4. Return tube I as the “Yes” tube and an empty tube as “No”. This

approach is of value when the original algorithm A is known to
place very reliably good sequences into the “Yes” tube i.e. low
false negatives but too often also place bad sequences into the
“Yes” tube i.e. high false positives (Hug and Schuler, 2001).

Error debugging approach: A corresponding variation of the
above transformation can be used if the algorithm is known to have
high false negatives and low false positives. This and similar methods
are used in the model employs stickers that are short complementary
sequences to mark the “on” bits, while the unmarked bits are
considered “off”. The advantage of the proposed sticker model is
that it does not rely on short lived materials as enzymes and that it
does not involve processes that are costly in terms of energy such as
PCR. To put things in perspective, an opposite approach that relies
only on PCR to solve problems has proved to be less error prone
(Darehmiraki, 2009; Zhang et al., 2006).

Satisfiability problem: A potential DNA experiment can be
described for finding a solution to another NP-complete problem

that can be called Satisfiability Problem. The Satisfiability Problem
consists of a Boolean expression, the question being whether or not
there is an assignment of truth values, true or false to its variables that
makes the value of the whole expression true. DNA algorithms have
since been proposed for expansion of symbolic determinants, graph
connectivity and knapsack problem using dynamic programming,
road coloring problem, matrix multiplication, addition, exascale
computer algebra problems etc (Marathe et al, 2001; Penchovsky et
al., 2000).

Data encryption standard

Data Encryption Standard (DES) encrypts 64 bit messages and
uses a 56 bit key. Breaking DES means that given one (plain-text,
cipher-text) pair, we can find a key which maps the plain-text to the
cipher-text. A conventional attack on DES would need to perform an
exhaustive search through all of the 256 DES keys, which, at a rate of
100,000 operations per second would take 10, 000 years. Thus the
molecular programs came into existence that takes about 4 months
of laboratory work instead (Cho, 2000).

It is estimated that DNA computation could yield tremendous
advantages from the point of view of speed, energy efficiency and
economic information storing. E.g. in Adleman’s model, the number
of operations per second could be up to approximately 1.2 X
1018. This is approximately 1,200,000 times faster than the fastest
supercomputer (Rothemund, 2000). DNA computers also have the
potential for extraordinary energy efficiency. In principle, one joule
is sufficient for approximately 2 X 1019 1igation operations. This
is remarkable considering that the second law of thermodynamics
dictates a theoretical maximum of 34 X 1019 (irreversible) operations
per joule (at room temperature). Existing supercomputers are far less
efficient, executing at most 109operations per joule. Finally, storing
information in molecules of DNA could allow for an information
density of approximately 1 bit per cubic nanometer, while existing
storage media store information at a density of approximately 1 bit
per 1012 nm3 (Ogihara and Ray, 2000).

Operability of DNA-based devices

From a practical point of view it maybe not that important to
simulate a Turing machine by a DNA computation device. One
should not aim to fit the DNA model into the Procrustean bed of
classical models of computation, but try to completely rethink the
notion of computation. DNAbased devices have been addressed for
most models of DNA computation that have so far been proposed
(Sakakibara and Suyama, 2000; Faulhammer et al., 2000). The existing
models of DNA computation are based on various combinations of a
few primitive biological operations: -

1. Synthesize: Synthesizing a desired polynomial length strand
used in all models.

2. Mixing: Pour the contents of the test tubes into another one to
achieve union of bases.

3. Annealing: Bond together two single stranded complementary
DNA sequences by cooling the solution.

4. Melting: Break apart a double stranded DNA into its single
stranded complementary components by heating the solution
(Lee et al., 1999).

5. Amplifying: Copying, make copies of DNA strands by using the
Polymerase Chain Reaction (PCR).

6. Separation: Separating the strands by length using gel
electrophoresis.

7. Extraction: Extracting those strands that contain a given

Citation: Tagore S, Bhattacharya S, Islam MA, Islam ML (2010) DNA Computation: Applications and Perspectives. J Proteomics Bioinform 3: 234-243.
doi:10.4172/jpb.1000145

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 239

pattern as a substring by using affinity purification (Wang et
al., 1999).

8. Cutting: Cutting DNA double strands at specific sites by using
restriction enzymes.

9. Ligation: Paste DNA strands with compatible sticky ends by
using DNA ligase.

10. Substitution: Substitute, insert or delete DNA sequences by
using PCR site specific oligonucleotide mutagenesis.

11. Marking: Marking single strands by hybridization,
complementary sequences are attached to the strands, making
them double stranded.

12. Destroying: Destroying the marked strands by using
exonucleases.

13. Detecting: Reading the given the contents of a tube and say
‘yes’ if it contains at least one DNA strand and ‘no’ otherwise
(Aoi et al., 1999; Mills et al., 1999; Fu and Beigel, 1999).

The bio-operations listed above are used to write programs which
receive a tube containing DNA strands as input and return as output
either ‘yes’ or ‘no’ or a set of tubes.

Non-determinism

DNA computation suggests the potential of DNA with immense
parallelism and huge storage capacity by solving NP-complete
problems such as the Traveling Salesman Problem (TSP). If DNA
computation is used to solve TSP, however, weights between
vertexes in sequence design cannot be encoded effectively. Studies
propose an algorithm for code optimization (ACO) that applies DNA
coding method to DNA computation in order to encode weights in
TSP effectively. By applying ACO to TSP, we designed sequence more
effectively than Adleman’s DNA computation algorithm. Furthermore,
we could find the shortest path quickly and reduce biological error
rate (Beigel and Fu, 1997).

A decision problem is in the class NP if: (a) there is no known
algorithm for it that will execute in polynomial time on a conventional
computer and (b) it can be solved in polynomial time using a non-
deterministic computer (one with inherently unlimited parallelism). A
problem is intractable if no polynomial time algorithm can possibly be
devised for it. A problem in NP is NP-complete if every other problem
in NP can be expressed in terms of it by means of a polynomial time
algorithm. NP-complete problems are considered to be the hardest
problems, since if any problem in NP is shown to be intractable
then all NP-complete problems are intractable. However, if any NP-
complete problem can be solved in polynomial time, all problems in
NP become tractable (Beigel and Fu, 1998).

A non-deterministic computer can be simulated by a test tube of
DNA strands using the techniques of molecular biology to implement
operations on them. In theory, many otherwise intractable problems
can be implemented in polynomial time on such a DNA computer. In
fact, Adleman’s simulation of the Hamiltonian Path problem, known
to be NP-complete, has an execution time that is linear in the number
of vertices of the graph. This is the reason that DNA computation
has become a new focus of research in computer science. Following
Adleman’s success, polynomial time algorithms for other NP-
complete problems, such as SAT, Independent Set and 3-colorability
have been published. So far, however, a number of problems have
made the implementation of DNA algorithms impractical for all but
small instances of the problems.

Technologies for DNA Computation

DNA word sets

For generating sets non-interacting DNA sequences an algorithm

is developed that employs various thermodynamic models for
duplex stabilities and secondary structures prediction. DNA ‘word’
structure is used where individual ‘words’ of a typical given length are
concatenated into longer sequences. Word sets are generated and
their figures of merit are compared to sets as described previously in
the literature. This is followed by verifying the predicted hybridization
behavior using standard UV hyperchromism measurements of duplex
melting temperatures (Shortreed et al., 2005).

Markov chains

Various algorithms performing computations over Markov
chains have been developed. These determine sequence power
of the transition matrix of a Markov chain and their properties
of convergence. Some other algorithms help enable to estimate
this limit. These also allow the computation of a limit using DNA
computation. The states and the transition probabilities have been
encoded using strands of DNA for generating paths of the Markov
chain (Cardona et al., 2005).

Sequence complexity

It has been noticed that randomly generated oligonucleotide
populations serve as pools for selecting non-cross-hybridizing
sequences, for nanoscale self-assembly and biological and biomedical
applications, as well as for DNA computation applications. Various
nonlinear kinetic models are present for the complexity estimation
of large unknown polynucleotide populations. Models are used
to estimate the sequence complexity of the random 20 base-pair
population after in vitro renaturation experiments. The kinetic
behaviors of the random 20mers can also be evaluated with in vitro
thermal melting experiments (Garzon et al., 1999).

Sticker model

It is essentially easier creating an initial data pool covering
answers at first place followed by a series of selection process to
destroy the incorrect ones. The surviving DNA sequences are read
as the solutions to the problem. But, algorithms are limited to the
problem size. As the number of parameters in the studied problem
grows, the algorithm becomes impossible owing to the tremendous
initial data pool size. The solution sequences are built in parts to
satisfy one clause in a step, and eventually solve the whole Boolean
formula after a number of steps. The size of data pool grows from
one sort of molecule to the number of solution assignments (Yang
and Yang, 2005).

Traveling salesman problem

DNA encoding method can be used to represent numerical values
and a biased molecular algorithm based on the thermodynamic
properties of DNA. DNA strands are designed to encode real values
by variation of their melting temperatures. The thermodynamic
properties of DNA are used for effective local search of optimal
solutions using biochemical techniques, such as denaturation
temperature gradient polymerase chain reaction and temperature
gradient gel electrophoresis. The algorithm is applied to the traveling
salesman problem, an instance of optimization problems on weighted
graphs (Kim et al., 2005).

Molecular nanotechnology

Researchers have discovered DNA sequences and structures with
new functional properties for preventing the expression of harmful
genes. Bioinformaticians design rigid DNA structures that serve as
scaffolds for the organization of matter at the molecular scale, and

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 240

Review Article
OPEN ACCESS Freely available online

doi:10.4172/jpb.1000145

JPB/Vol.3 Issue 7

Journal of Proteomics & Bioinformatics - Open Access

can build simple DNA-computing devices, diagnostic machines and
DNA motors. The integration of biological & engineering advances
offers great potential for therapeutic & diagnostic applications
(Condon, 2006).

Cellular computing

Cells perform computation by reading and writing DNA using
processes that modify sequences at the DNA or RNA level. Two ciliated
protozoans of the genus Oxytricha had solved a potentially harder
problem using DNA several million years earlier. The solution to this
problem, which occurs during the process of gene unscrambling,
represents one of nature’s ingenious solutions to the problem of the
creation of genes. RNA editing can also be viewed as a computational
process offering a second algorithm for the construction of functional
genes from encrypted pieces of the genome (Landweber and Kari,
1999).

Autonomous DNA computation

A one-pot autonomous DNA computation machine is proposed
that is based on photochemical gate transition. Here, photoligation via
5-carboxyvinyldeoxyuridene (cvU) containing oligodeoxynucleotides
and photocleavage via carbazole - modified oligodeoxynucleotides,
were employed. The binary digit additions are carried out by one-
time irradiation at 366 nm in the single test tube. The fluorescence
readout by the DNA chip was in good agreement with the correct
answer of binary digit additions (Ogasawara et al., 2008).

Clustering approaches

Clustering is used for revealing a structure in highly dimensional
data and arriving at a collection of meaningful relationships in data
and information granules. DNA computation has also been used for
developing clustering techniques. This is very useful while dealing
with huge data sets, unknown number of clusters and encountering
a heterogeneous character of available data. It is shown the essential
components of the clustering technique through the corresponding
mechanisms of DNA computation (Bakar et al., 2008).

Application

Splicing system model of dna recombination

The Splicing System model introduced by Tom Head aims to be
a one pot computer with all the operations carried out in principle
by enzymes. Moreover, it has the theoretical advantage of being a
mathematical model with all the claims backed up by mathematical
proofs (Lee et al., 2004; Manca et al., 1999).

1. An alphabet is a finite nonempty set its elements are called
letters or symbols. * denotes the free monoid generated by the
alphabet  under the operation of catenation and juxtaposition.

2. The elements of * are called words or strings. The empty string
(the null element of *) is denoted by . A language over the
alphabet  is a subset of *. E.g. if  = {a, b} then aaba, aabbb
= a2b3 are words over  and the following sets are languages
over: L1 = {}, L2 = {a, ba, aba, abbaa}, L3 = {ap| p prime}.

3. The catenation of languages L1 and L2 is denoted by L1 L2 is
defined by L1 L2 = {uv | u Є L1, v Є L2} (Landweber and Kari,
1999; Maley, 1998).

4. A finite language can always be defined by listing all of its
words. Such a procedure is not possible for infinite languages
and therefore other devices for the representation of infinite
languages have been developed. One of them is to introduce

a generative device and define the language as consisting of all
the words generated by the device. The basic generative devices
used for specifying languages are grammars (Liu et al., 1998).

5. A generative grammar is an ordered quadruple G = {N, T, S, P},
where N and T are disjoint alphabets, S Є N and P is a finite set
of ordered pairs (u, v) such that u, v are words over N Ư T and
u contains at least one letter of N. The elements of N are called
non-terminals and those of T terminals, S are called the axiom.
Elements {u, v} of P are called rewriting rules and are written u
=>v. If x = x1ux2, y = x1vx2, and u => v Є P, then we write x
=> y and say that x derives y in the grammar G. The reflexive
and transitive closure of the derivation relation => is denoted
by =>*. The language generated by G is L {G} = {w Є T* | S
=> *w}.

6. Grammars are classified by imposing restrictions on the forms
of productions (Kulić, 1998). A grammar is called of type-0 if no
restriction (zero restrictions) is applied to the rewriting rules
and is called regular if each rule of P is of the form A→aB, A→a,
A,B Є N, a Є T. The family of finite languages will be denoted by
FIN_ the family of languages generated by regular grammars by
REG and the family of languages generated by type-0 grammars
by L0(Roweis et al., 1998).

Given an alphabet  and two strings x and y over, the splicing of
x and y according to the splicing rule r consists of two steps:

1. Cut x and y at certain positions determined by the splicing rule r
2. Paste the resulting prefix of x with the suffix of y respectively the

prefix of y with the suffix of x. Using the formalism splicing rule r
over  is a word of the form 1 # 1 $ 2 # 2 where 1, 1, 2,
2 are strings over  and #, $ are markers not belonging to .

3. We say that z and w are obtained by splicing x and y according to
the splicing rule r = 1 # 1 $ 2 # 2 and we write
(x, y) → r(z, w) if and only if
x = x1 1 1 x́ z = x1 1 2 y΄2
y = y2 22y2’ w = y2 21x1’ for some x1, x1’, y2,y2’ Є (Freund
et al., 1998; Frutos et al., 1997).

4. The words 11 and 22 are called sites of the splicing, while
x and y are called the terms of the splicing. The splicing rule
r determines both the sites and the positions of the cutting:
between 1 and 1 for the first term and 2 and 2 for the second.

5. The site 11 can occur more than once in x while the site 22
can occur more than once in y.Whenever this happens, the sites
are chosen non-deterministically. As a consequence, the result of
splicing x and y can be a set containing more than one pair (z. w)
(Ouyang et al., 1997).

6. How the splicing works can be illustrated by using it to simulate
the addition of two positive numbers, n and m. If an alphabet
= {a, b, c} is considered and the splicing rule r = a # b $ c #
a, then the splicing of x = an b and y = c am according to r yields
the words an+m and cb.

7. The splicing operation can be used as a basic tool for building a
generative mechanism, called splicing system.

8. If the classical notion of a set is used, we implicitly assume that
after splicing x and y and obtaining z and w, we may use again
x or y as terms of the splicing i.e. the strings are not consumed
by splicing. Similarly, there is no restriction on the number of
copies of the newly obtained z and w (Gibbons et al., 1997;
Csuhaj-Varjú et al., 1996).

DNA nanomachines
DNA has been explored as an excellent material for building

large-scale nanostructures, constructing individual nanomechanical

Citation: Tagore S, Bhattacharya S, Islam MA, Islam ML (2010) DNA Computation: Applications and Perspectives. J Proteomics Bioinform 3: 234-243.
doi:10.4172/jpb.1000145

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 241

devices, and performing computations (Pool, 1995). A variety of
DNA nanomechanical devices have been previously constructed that
demonstrate motions such as open/close, extension/contraction,
andmotors/rotation (Morimoto et al., 2007), mediated by external
environmental changes such as the addition and removal of DNA
fuel strands or the change of ionic composition of the solution
(Chee et al., 1996). The DNA walker could ultimately be used to
carry out computations and to precisely transport nanoparticles
of material. The walker can be programmed in several ways in this
direction. For example, information can be encoded in the walker
fragments as well as in the track so that, while performing motion,
the walker simultaneously carries out computation. Yin et al in the
year 2005 designed an autonomous DNA walking device in which a
walker moves along a linear track unidirectionally (Liu et al., 2000).
Sherman and Seeman in 2004 have constructed a DNA walking device
controlled by DNA fuel strands. Reif in the year 2003 designed an
autonomous DNA walking device and an autonomous DNA rolling
device that move in a random bidirectional fashion along DNA tracks.
Shin and Pierce in 2004 designed the DNA walker for molecular
transport. Recently, Yin et al in 2005 encoded computational power
into a DNA walking device embedded in a DNA lattice and therefore
accomplished the design for an autonomous nano-mechanical device
capable of universal computation and translational motion (Kaplan
et al., 2001).

Other models

The construction of unusual DNA molecules has a long history
(Seeman et al., 1996). Such molecules include knots (Du and Seeman,
1994), Holliday junctions (Fu et al., 1994) and octahedra (Zhang and
Seeman, 1994). The construction of such objects relies upon the
creation of branched DNA molecules known as junctions. Because
these objects do not occur naturally, they must be engineered in the
laboratory. In order to determine the specific sequences to assign
to components of branches (i.e. single strands of DNA) a technique
known as sequence symmetry minimization is used (Seeman, 1982).
This assigns sequences to various components such that when they
are placed in solution they hybridize to form the desired structure.
Winfree and coworkers in 1996 proposed the tendency of DNA
structures to self-assemble as a computational tool (Winfree et
al., 1996). They show that the self-assembly of complex branches
known as double crossovers. Although of great theoretical interest,
experimental investigations of the power of self-assembly are still at
a very preliminary stage. They also showed that, in principle, the two
dimensional self-assembly model is experimentally implementable.

DNA-based reversible gates

Due to the progress made in areas of nanotechnology, storing
information in terms of DNA computing-chips has been possible.
The use of reversible logic gates for synthesis of circuits in aspects
of quantum computing is being tried (Tumpane et al., 2007).
Furthermore, it has been seen that in this article, the reversible
logic is proposed to be simulated by using DNA molecules and bio-
chemistry operations: the input and the output of a reversible gate
or a reversible sequential circuit are both DNA sequences, and the
computing progresses correspond to the biochemistry operations.
These can also be used for designing the optimal reversible sequential
circuits, some new trends in DNA and quantum computing (Benenson
et al., 2003).

Conclusion and Perspectives
The apparent ease with which DNA hybridization can be

formalized made Adleman’s invention very attractive to researchers in
the fields of computer science and discrete mathematics. Numerous
architectures for DNA based computing have since been proposed.
There is no doubt that DNA will soon exhibit all sorts of eccentric
behavior that cannot be conveniently incorporated into formal
descriptions. Some researchers are therefore skeptical whether DNA
will ever follow bacteriorhodpsin on its (narrow) path to take on the
silicon competition. However, DNA may very well have potential for
soft computing applications that can tolerate or even benefit from
components which do not overly conform to formal rules.

You can use your DNA computer only to solve a specific problem
and you can typically use it only once, in one problem case. DNA
computers may solve problems with an alarmingly high error
rate. Instead of being “universal”, DNA computers are “instance”
computers: they are good at one instance of a problem, and one
problem type. If you set up a DNA computer to simulate a universal
computer that can be programmed easily, you still lose out against
the above trade-off, so it is probably a waste of time to try to build
Turing machines with any hope of utilising parallelism to speed them
up.

The advantages of DNA computers, at least for the time being, are
outweighed by the difficulties of using them to do anything useful.
There is more theory than practical success at the moment, though
they have enormous potential for applications in medicine, farming,
food and fingerprint recognition and forensic science. Conventional
problems are best handled by conventional computers; with DNA
computers, we need to think differently. One trick is to use molecules
to solve problems they are naturally good at solving. Thus DNA
computers are good at doing DNA-related things.

Another example is to make a fish-freshness sensor. You must
measure many compounds and assess odour and taste to tell if a fish
is fresh. This sort of problem is one that animals solve all the time,
so there is good reason to hope that DNA computers could be built
to do it, too.

The field of DNA computation remains alive and promising,
even as new challenges emerge. Most important among these are
the uncertainty, because of the DNA chemistry, in the computational
results, and the exponential increase in number of DNA molecules
necessary to solve problems of interesting size. Despite these issues,
definite progress has been made both in quantifying errors, and in
development of new protocols for more efficient and error- tolerant
DNA computation. In addition, new paradigms based on molecular
evolution viz. molecular systematics, mutationism etc. have emerged
from molecular biology to inspire new directions such as molecular
computers, which are capable of doing high performance computing
in DNA computation.

References

1. Aoi Y, Yoshinobu T, Tanizawa K, Kinoshita K, Iwasaki H (1999) Ligation errors
in DNA computation. Biosystems 52: 181-187.

2. Bakar RB, Watada J, Pedrycz W (2008) DNA approach to solve clustering
problem based on a mutual order. Biosystems 91: 1-12.

3. Beigel R, Fu B (1997) Molecular computing, bounded nondeterminism, and
effi cient recursion. Proceedings of the 24th International Colloquium on
Automata, Languages, and Programming.

4. Beigel R, Fu B (1998) Solving intractable problems with DNA computation.
Annual IEEE Conference on Computational Complexity.

5. Benenson Y, Adar R, Paz-Elizur T, Livneh Z and Shapiro E (2003) DNA molecule
provides a computing machine with both data and fuel. Proc Natl Acad Sci USA
100: 2191-2196.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2K-3XT0BGP-P&_user=10&_coverDate=10%2F31%2F1999&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1417265707&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersio
http://www.ncbi.nlm.nih.gov/pubmed/17669585
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.1595&rep=rep1&type=pdf
http://www.ncbi.nlm.nih.gov/pubmed/12601148

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 242

Review Article
OPEN ACCESS Freely available online

doi:10.4172/jpb.1000145

JPB/Vol.3 Issue 7

Journal of Proteomics & Bioinformatics - Open Access

6. Cardona M, Colomer MA, Conde J, Miret JM, Miró J, et al. (2005) Markov
chains: computing limit existence and approximations with DNA. Biosystems
81: 261-266.

7. Chang YJ, Hu CY, Yin LT, Chang CH, Su HJ (2008) Dividable membrane with
multi-reaction wells for microarray biochips. J Biosci Bioeng 106: 59-64.

8. Chee M, Yang R, Hubbell E, Berno A, Huang XC, et al. (1996) Accessing
genetic information with high- density DNA arrays. Science 274: 610-614.

9. Chen P, Li J, Zhao J, He L, Zhang Z (2007) Differential dependence on DNA
ligase of type II restriction enzymes: a practical way toward ligase-free DNA
automaton. Biochem Biophys Res Commun 353: 733-737.

10. Cho A (2000) DNA computation. Hairpins trigger an automatic solution. Science
288: 1152-1153.

11. Condon A (2006) Designed DNA molecules: principles and applications of
molecular nanotechnology. Nat Rev Genet 7: 565-575.

12. Cost GJ (2007) Enzymatic ligation assisted by nucleases: simultaneous ligation
and digestion promote the ordered assembly of DNA. Nat Protoc 2: 2198-2202.

13. Cost GJ, Cozzarelli NR (2007) Directed assembly of DNA molecules via
simultaneous ligation and digestion. Biotechniques 42: 86-89.

14. Csuhaj-Varjú E, Freund R, Kari L, Păun G (1996) DNA computation based on
splicing: universality results.

15. Dailey MM, Hait C, Holt PA, Maguire JM, Meier JB, et al. (2009) Structure-
based drug design: from nucleic acid to membrane protein targets. Exp Mol
Pathol 86: 141-150.

16. Darehmiraki M (2009) A new solution for maximal clique problem based sticker
model. Biosystems 95: 145-149.

17. Du SM, Seeman NC (1994) The construction of a trefoil knot from a DNA
branched junction motif. Biopolymers 34: 31-37.

18. Faulhammer D, Lipton RJ, Landweber LF (2000) Fidelity of enzymatic ligation
for DNA computation. J Comput Biol 7: 839-848.

19. Feldkamp U, Wacker R, Schroeder H, Banzhaf W, Niemeyer CM (2004)
Microarray-based in vitro evaluation of DNA oligomer libraries designed in
silico. Chemphyschem 5: 367-372.

20. Feldkamp U, Schroeder H, Niemeyer CM (2006) Design and evaluation of
single-stranded DNA carrier molecules for DNA-directed assembly. J Biomol
Struct Dyn 23: 657-666.

21. Feyen O, Lueking A, Kowald A, Stephan C, Meyer HE, et al. (2008). Off-target
activity of TNF-alpha inhibitors characterized by protein biochips. Anal Bioanal
Chem 391: 1713-1720.

22. Feynman RP (1961) There’s plenty of room at the bottom. In Miniaturization,
Gilbert, D. Ed.; Reinhold: New York, pp. 282-296.

23. Freund R, Păun G, Rozenberg G, Salomaa A (1998) Bidirectional sticker
systems. Pac Symp Biocomput. 535-546.

24. Frutos AG, Liu Q, Thiel AJ, Sanner AM, Condon AE, et al. (1997) Demonstration
of a word design strategy for DNA computation on surfaces. Nucleic Acids Res
25: 4748-4757.

25. Fu B, Beigel R (1999) Length bounded molecular computing. Biosystems 52:
155-163.

26. Fu TJ, Tse-Dinh YC, Seeman NC (1994) Holliday junction crossover topology.
J Mol Biol 236: 91-l05.

27. Garzon MH, Jonoska N, Karl SA (1999) The bounded complexity of DNA
computation. Biosystems 52: 63-72.

28. Gibbons A, Amos M, Hodgson D (1997) DNA computation. Curr Opin Biotechnol
8: 103-106.

29. Grover WH, Mathies RA (2005) An integrated microfl uidic processor for single
nucleotide polymorphism-based DNA computation. Lab Chip 5: 1033-1040.

30. Gu J, Purdom PW, Franco J, Wah BW (1997) Algorithms for the Satisfi ability
(SAT) Problem: A Survey. In DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society.

31. Halpin DR, Harbury PB (2004) DNA display I. Sequence-encoded routing of
DNA populations. PLoS Biol 2: E173.

32. Han A, Zhu D, Pan J (2008) DNA solution based on sequence alignment to the
Minimum Spanning Tree problem. Int J Bioinform Res Appl 4: 188-200.

33. Head T (1987) Formal language theory and DNA: an analysis of the generative
capacity of specifi c recombinant behaviors. Bull Math Biol 49: 737-759.

34. Henkel CV, Bäck T, Kok JN, Rozenberg G, Spaink HP (2007) DNA computation
of solutions to knapsack problems. Biosystems 88: 156-162.

35. Heyries KA, Blum LJ, Marquette CA (2009) Straightforward protein
immobilization using redox-initiated poly(methyl methacrylate) polymerization.
Langmuir 25: 661- 614.

36. Holland JH (1992) Adaptation in Natural and Artifi cial Systems. MIT Press:
Cambridge.

37. Hug H, Schuler R (2001) Strategies for the development of a peptide computer.
Bioinformatics 17: 364-368.

38. Hug H, Schuler R (2003) Measurement of the number of molecules of a single
mRNA species in a complex mRNA preparation. J Theor Biol 221: 615-624.

39. Ibrahim Z, Tsuboi Y, Ono O (2006). Hybridization-ligation versus parallel overlap
assembly: an experimental comparison of initial pool generation for direct-
proportional length-based DNA computation. IEEE Trans Nanobioscience 5:
103-109.

40. Kaplan PD, Thaler DS, Libchaber A (2001) Parallel overlap assembly of paths
through a directed graph. In Preliminary Proceedings of the 3rd DIMACS
Workshop on DNA Based Computers, pp. 127-141.

41. Kim JS, Lee JW, Noh YK, Park JY, Lee DY, et al. (2008) An evolutionary Monte
Carlo algorithm for predicting DNA hybridization. Biosystems 91: 69-75.

42. Kim JW, Carpenter DP, Deaton R (2005) Estimating the sequence complexity of
a random oligonucleotide population by using in vitro thermal melting and Cot
analyses. Nanomedicine 1: 220-230.

43. Kishi N, Ogino M, Saito I, Yoshimura Y, Fujimoto, K (2003) Photochemical
ligation of DNA “words” for DNA computation. Nucleic Acids Res Suppl 3: 183-
184.

44. Kulić IM (1998) Evaluating polynomials on the molecular level--a novel
approach to molecular computers. Biosystems 45: 45-57.

45. Landweber LF, Kari L (1999) The evolution of cellular computing: nature’s
solution to a computational problem. Biosystems 52: 3-13.

46. Leclerc E, Kirat K, Griscom L (2008) In situ micropatterning technique by cell
crushing for co-cultures inside microfl uidic biochips. Biomed Microdevices 10:
169-177.

47. Lee CM, Kim SW, Kim SM, Sohn U (1999) DNA computation the Hamiltonian
path problem. Mol Cells 9: 464-469.

48. Lee JY, Shin SY, Park TH, Zhang BT (2004) Solving traveling salesman
problems with DNA molecules encoding numerical values. Biosystems 78: 39-
47.

49. Li D, Huang H, Li X, Li X (2003) Hairpin formation in DNA computation presents
limits for large NP-complete problems. Biosystems 72: 203-207.

50. Li D, Li X, Huang H, Li X (2005) The surface-based approach for DNA
computation is unreliable for SAT. Biosystems 82: 20-25.

51. Li D, Li X, Huang H, Li X (2006) Scalability of the surface-based DNA algorithm
for 3-SAT. Biosystems 85: 95-98.

52. Li Y, Tseng YD, Kwon SY, D’Espaux L, Bunch JS, et al. (2004) Controlled
assembly of dendrimer-like DNA. Nat Mater 3: 38-42.

53. Lin CH, Cheng HP, Yang CB, Yang CN (2007) Solving satisfi ability problems
using a novel microarray-based DNA computer. Biosystems 90: 242-252.

54. Lipton RJ (1995) Using DNA to solve NP-complete problems. Priceton
University.

55. Liu L, He Y, Zhang Y, Ma S, Ma H, et al. (2008) Parallel scan spectral surface
plasmon resonance imaging. Appl Opt 47: 5616-5621.

56. Liu Q, Frutos AG, Thiel AJ, Corn RM, Smith LM (1998) DNA computation on
surfaces: encoding information at the single base level. J Comput Biol 5: 269-
278.

57. Liu Q, Guo Z, Condon AE, Korn RM, Lagally MG, et al. (2000) A surface based
approach to DNA computation. In Proceedings of the Second Annual Meeting
on DNA Based Computers, 206-216.

58. Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, et al. (2000) DNA computation
on surfaces. Nature 403: 175-179.

http://www.ncbi.nlm.nih.gov/pubmed/15982800
http://www.ncbi.nlm.nih.gov/pubmed/18691532
http://www.ncbi.nlm.nih.gov/pubmed/8849452
http://www.ncbi.nlm.nih.gov/pubmed/17196173
http://www.ncbi.nlm.nih.gov/pubmed/10841726
http://www.ncbi.nlm.nih.gov/pubmed/16770339
http://www.ncbi.nlm.nih.gov/pubmed/17853876
http://www.ncbi.nlm.nih.gov/pubmed/17269489
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3794&rep=rep1&type=pdf
http://www.ncbi.nlm.nih.gov/pubmed/19454265
http://www.ncbi.nlm.nih.gov/pubmed/18992786
http://www.ncbi.nlm.nih.gov/pubmed/8110967
http://www.liebertonline.com/doi/abs/10.1089%2F10665270050514963
http://www.ncbi.nlm.nih.gov/pubmed/15067873
http://www.ncbi.nlm.nih.gov/pubmed/16615811
http://www.ncbi.nlm.nih.gov/pubmed/18344017
http://www.ncbi.nlm.nih.gov/pubmed/9697210
http://nar.oxfordjournals.org/cgi/content/abstract/25/23/4748
http://www.ncbi.nlm.nih.gov/pubmed/10636040
http://www.ncbi.nlm.nih.gov/pubmed/8107128
http://www.ncbi.nlm.nih.gov/pubmed/10636031
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRV-46FMK05-H&_user=10&_coverDate=02%2F28%2F1997&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1418271412&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersio
http://www.ncbi.nlm.nih.gov/pubmed?term=an%20integrated%20microfluidics%20processor%20for%20single%20nucleotide%20polymorphism-based%20dna%20computation&cmd=correctspelling
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.2697&rep=rep1&type=pdf
http://www.ncbi.nlm.nih.gov/pubmed/15221027
http://www.ncbi.nlm.nih.gov/pubmed/18490262
http://www.ncbi.nlm.nih.gov/pubmed/2832024
http://www.ncbi.nlm.nih.gov/pubmed/16860927
http://www.ncbi.nlm.nih.gov/pubmed/19105717
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8929
http://www.ncbi.nlm.nih.gov/pubmed/11301306
http://www.ncbi.nlm.nih.gov/pubmed/12713944
http://www.ncbi.nlm.nih.gov/pubmed/16805106
http://www.ncbi.nlm.nih.gov/pubmed/17897776
http://www.ncbi.nlm.nih.gov/pubmed/17292083
http://www.ncbi.nlm.nih.gov/pubmed/9492954
http://www.ncbi.nlm.nih.gov/pubmed/10636025
http://www.ncbi.nlm.nih.gov/pubmed/17849187
http://www.ncbi.nlm.nih.gov/pubmed/10597033
http://www.ncbi.nlm.nih.gov/pubmed/15555757
http://www.ncbi.nlm.nih.gov/pubmed/14643488
http://www.ncbi.nlm.nih.gov/pubmed/16024166
http://www.ncbi.nlm.nih.gov/pubmed/16423447
http://www.ncbi.nlm.nih.gov/pubmed/14704783
http://www.ncbi.nlm.nih.gov/pubmed/17029765
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8878&rep=rep1&type=pdf
http://www.ncbi.nlm.nih.gov/pubmed/18936809
http://www.liebertonline.com/doi/abs/10.1089/cmb.1998.5.269
http://www.nature.com/nature/journal/v403/n6766/abs/403175a0.html

J Proteomics Bioinform
ISSN:0974-276X JPB, an open access journal

Volume 3(7) : 234-243 (2010) - 243

59. Liu W, Gao L, Liu X, Wang S, Xu J (2003) Solving the 3-SAT problem based on
DNA computation. J Chem Inf Comput Sci 43: 1872-1875.

60. Liu W, Shi X, Zhang S, Liu X, Xu J (2004). A new DNA computation model for
the NAND gate based on induced hairpin formation. Biosystems 77: 87-92.

61. Liu Y, Xu J, Pan L, Wang S (2002) DNA solution of a graph coloring problem. J
Chem Inf Comput Sci 42: 524-528.

62. Łoś M, Łoś JM, Wegrzyn G (2008) Rapid identifi cation of shiga toxin-producing
Escherichia coli (STEC) using electric biochips. Diagn Mol Pathol 17: 179-184.

63. Macko P, Whelan MP (2008) Fabrication of holographic diffractive optical
elements for enhancing light collection from fl uorescence-based biochips. Opt
Lett 33: 2614- 2616.

64. Maley CC (1998) DNA computation: theory, practice, and prospects. Evol
Comput 6: 201-229.

65. Manca V, Martín-Vide C, Păun G (1999) New computing paradigms suggested
by DNA computation: computing by carving. Biosystems 52: 47-54.

66. Marathe A, Condon AE, Corn RM (2001) On combinatorial DNA word design. J
Comput Biol 8: 201-219.

67. Melkikh AV (2008) DNA computation, computation complexity and problem of
biological evolution rate. Acta Biotheor 56: 285-295.

68. Mills AP, Yurke B, Platzman PM (1999) Article for analog vector algebra
computation. Biosystems 52: 175-180.

69. Morimoto N, Arita M, Suyama A (2007) Solid phase DNA solution to the
Hamiltonian path problem. In Proceedings of the 3rd DIMACS Workshop on
DNA Based Computers, Philadelphia, PA., pp. 83-92.

70. Na K, Jung J, Kim O, Lee J, Lee TG, et al. (2008) “Smart” biopolymer for
a reversible stimuli-responsive platform in cell-based biochips. Langmuir 24:
4917-4923.

71. Ogasawara S, Ami T, Fujimoto K (2008) Autonomous DNA computation
machine based on photochemical gate transition. J Am Chem Soc 130: 10050-
10051.

72. Ogihara M, Ray A (2000) DNA computation on a chip. Nature 403: 143-144.

73. Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal
clique problem. Science 278: 446-449.

74. Penchovsky R, Birch-Hirschfeld E, McCaskill JS (2000) End-specifi c covalent
photo-dependent immobilisation of synthetic DNA to paramagnetic beads.
Nucleic Acids Res 28: E98.

75. Penchovsky R, Ackermann J (2003) DNA library design for molecular
computation. J Comput Biol 10: 215-229.

76. Pool R (1995) A boom in plans for DNA computation. Science 268: 498- 499.

77. Rothemund PW (2000) Using lateral capillary forces to compute by self-
assembly. Proc Natl Acad Sci USA 97: 984-989.

78. Roweis S, Winfree E, Burgoyne R, Chelyapov NV, Goodman MF, et al. (1998)
A sticker-based model for DNA computation. J Comput Biol 5: 615-629.

79. Sakakibara Y, Suyama A (2000) Intelligent DNA chips: logical operation of
gene expression profi les on DNA computers. Genome Inform Ser Workshop
Genome Inform 11: 33-42.

80. Schmidt KA, Henkel CV, Rozenberg G, Spaink HP (2004) DNA computation
using single-molecule hybridization detection. Nucleic Acids Res 32: 4962-
4968.

81. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99: 237-
247.

82. Seeman NC, Wang H, Liu B (1996) The perils of polynucleotides: the
experimental gap between the design and assembly of unusual DNA structures.

In Proceedings of the Second Annual Meeting on DNA Based Computers. D/
MAC% Series in Discrete Mathematics and Theoretical Computer Science,
Providence, RI: American Mathematical Society.

83. Shortreed MR, Chang SB, Hong D, Phillips M, Campion B, et al. (2005) A
thermodynamic approach to designing structure-free combinatorial DNA word
sets. Nucleic Acids Res 33: 4965-4977.

84. Stryer L (1995) Biochemistry, 3d Ed, New York: W. H. Freeman and Company.

85. Su X, Smith LM (2004) Demonstration of a universal surface DNA computer.
Nucleic Acids Res 32: 3115-3123.

86. Tanaka F, Kameda A, Yamamoto M, Ohuchi A (2005) Design of nucleic acid
sequences for DNA computation based on a thermodynamic approach. Nucleic
Acids Res 33: 903-911.

87. Tominaga K, Watanabe T, Kobayashi K, Nakamura M, Kishi K, et al. (2007)
Modeling molecular computing systems by an artifi cial chemistry - its expressive
power and application. Artif Life 13: 223-247.

88. Tumpane J, Kumar R, Lundberg EP, Sandin P, Gale N, et al. (2007) Triplex
addressability as a basis for functional DNA nanostructures. Nano Lett 7: 3832-
3839.

89. Ulam S (1972) On some mathematical problems connected with patterns of
growth of gures. Essays on cellular automata, 219-231.

90. Von Neumann J (1966) Theory of Self-Reproducing Automata, University of
Illinois Press: Urbana, IL.

91. Wang L, Liu Q, Frutos AG, Gillmor SD, Thiel AJ, et al. (1999) Surface-based
DNA computation operations: DESTROY and READOUT. Biosystems 52: 189-
191.

92. Wang L, Rodriguez-Tomé P, Redaschi N, McNeil P, Robinson A, et al. (2000).
Accessing and distributing EMBL data using CORBA (common object request
broker architecture). Genome Biol 1: RESEARCH0010.

93. Wang L, Hall JG, Lu M, Liu Q, Smith LM (2001) A DNA computation readout
operation based on structure-specifi c cleavage. Nat Biotechnol 19: 1053-1059.

94. Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM (1987) Molecular
Biology of the Gene. (5th edn), The Benjamin Cummings Publishing Co.

95. Winfree E, Yang X, Seeman NC (1996) Universal computation via selfassembly
of DNA: some theory and experiments. In Proceedings of the Second Annual
Meeting on DNA Based Computers. D/MAC% Series in Discrete Mafbemafi cs
and Theoretical Computer Science, Providence, RI: American Mathematical
Society.

96. Wu H (2001) An improved surface-based method for DNA computation.
Biosystems 59: 1-5.

97. Yang CN, Yang CB (2005) A DNA solution of SAT problem by a modifi ed sticker
model. Biosystems 81: 1-9.

98. Yin Z, Zhang F, Xu J (2002) A Chinese Postman Problem based on DNA
computation. J Chem Inf Comput Sci 42: 222-224.

99. Zeng E, Mathee K, Narasimhan G (2007) IEM: an algorithm for iterative
enhancement of motifs using comparative genomics data. Comput Syst
Bioinform Conf 6: 227-235.

100.Zhang M, Cheng MX, Tarn TJ (2006) A mathematical formulation of DNA
computation. IEEE Trans Nanobioscience 5: 32-40.

101.Zhang Y, Seeman NC (1994) The construction of a DNA truncated octahedron.
J Am Chem Soc 116: 1661-l669.

102.Zhang ZZ, Zhao J, He L (2003) Progress in molecular biology study of DNA
computer. Yi Chuan Xue Bao 30: 886-892.

103.ZhiXiang Y, Fengyue Z, Jin X (2003) The general form of 0-1 programming
problem based on DNA computation. Biosystems 70: 73-78.

Citation: Tagore S, Bhattacharya S, Islam MA, Islam ML (2010) DNA Computation: Applications and Perspectives. J Proteomics Bioinform 3: 234-243.
doi:10.4172/jpb.1000145

59.	Liu W, Gao L, Liu X, Wang S, Xu J (2003) Solving the 3-SAT problem based on DNA computation. J Chem Inf Comput Sci 43: 1872-1875.
http://www.ncbi.nlm.nih.gov/pubmed/15527948
http://www.ncbi.nlm.nih.gov/pubmed/12086509
http://www.ncbi.nlm.nih.gov/pubmed/18382365
http://www.ncbi.nlm.nih.gov/pubmed/19015685
http://www.ncbi.nlm.nih.gov/pubmed/10021747
http://www.ncbi.nlm.nih.gov/pubmed/10636029
http://www.ncbi.nlm.nih.gov/pubmed/11535173
http://www.ncbi.nlm.nih.gov/pubmed/18787960
http://www.ncbi.nlm.nih.gov/pubmed/10636042
http://www.ncbi.nlm.nih.gov/pubmed/18348578
http://www.ncbi.nlm.nih.gov/pubmed/ 18613667
http://www.ncbi.nlm.nih.gov/pubmed/9334300
http://www.ncbi.nlm.nih.gov/pubmed/11071952
http://www.ncbi.nlm.nih.gov/pubmed/12804092
http://www.ncbi.nlm.nih.gov/pubmed/7725093
http://www.ncbi.nlm.nih.gov/pubmed/10655471
http://www.ncbi.nlm.nih.gov/pubmed/10072080
http://www.ncbi.nlm.nih.gov/pubmed/11700585
http://www.ncbi.nlm.nih.gov/pubmed/15388798
http://www.ncbi.nlm.nih.gov/pubmed/6188926
http://www.ncbi.nlm.nih.gov/pubmed/16284197
http://www.ncbi.nlm.nih.gov/pubmed/15181177
http://www.ncbi.nlm.nih.gov/pubmed/15701762
http://www.ncbi.nlm.nih.gov/pubmed/17567243
http://www.ncbi.nlm.nih.gov/pubmed/17983251
http://www.wjzeng.net/Ref/VonNeumann_TheoryOfSelfReproducingAutomata.pdf
http://www.ncbi.nlm.nih.gov/pubmed/10636044
http://www.ncbi.nlm.nih.gov/pubmed/11178259
http://www.nature.com/nbt/journal/v19/n11/abs/nbt1101-1053.html
http://wps.aw.com/wps/media/access/Pearson_Default/1028/1052890/login.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.144
http://www.ncbi.nlm.nih.gov/pubmed/11226621
http://www.ncbi.nlm.nih.gov/pubmed/15917122
http://www.ncbi.nlm.nih.gov/pubmed/11911690
http://www.ncbi.nlm.nih.gov/pubmed/17951827
http://www.ncbi.nlm.nih.gov/pubmed/16570871
http://pubs.acs.org/doi/abs/10.1021/ja00084a006
http://www.ncbi.nlm.nih.gov/pubmed/14577383
http://www.ncbi.nlm.nih.gov/pubmed/12753938

	Title

	Abstract
	Keywords
	Corresponding author
	Introduction
	History of DNA Computation
	DNA vs Silicon Micro-Processor
	Computational Complexity and Problems
	Mathematical models
	DNA logic gates
	SAT problems

	Computational Power of DNA
	DNA computers
	Data encryption standard
	Operability of DNA-based devices
	Non-determinism

	Technologies for DNA Computation
	DNA word sets
	Markov chains
	Sequence complexity
	Sticker model
	Traveling salesman problem
	Molecular nanotechnology
	Cellular computing
	Autonomous DNA computation
	Clustering approaches

	Application
	Splicing system model of dna recombination
	DNA nanomachines
	Other models
	DNA-based reversible gates

	Conclusion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AmerettoItalic
 /AmerettoNormal
 /AmerettoThinBold
 /AmerettoThinBoldItalic
 /AmerettoThinItalic
 /Calibri
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 72
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 72
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 150
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[Smallest File Size]'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines true
 /ConvertTextToOutlines false
 /GradientResolution 144
 /LineArtTextResolution 288
 /PresetName ([Low Resolution])
 /PresetSelector /LowResolution
 /RasterVectorBalance 0.750000
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [96 96]
 /PageSize [612.000 792.000]
>> setpagedevice

