
The Environmental Cost of Air Pollution Due to Stubble Burning: Evidence
from New Delhi

Arti Agarwal*, Nachiketa Tiwari

Department of Design, Indian Institute of Technology, Kanpur, India

ABSTRACT
Objective: Stubble burning in North India has been a major contributing factor to the growing menace of air 

pollution in the National Capital Region (NCR) of India for the last two decades. Though the health aspects of air 

pollution due to stubble burning have been extensively studied, its economic costs due to environmental damage 

have not been studied holistically. We attempt to estimate these costs using Instrumental Variable (IV) Analysis. 

Methods: Using VIIRS Data from NASA, we count the number of field fires per day in Punjab and Haryana during 

the September-December harvesting season, called FIRECOUNT. We use FIRECOUNT as the IV to estimate the 

concentration of PM2.5 and PM10 due to stubble burning. This is then regressed against the Gross State Domestic 

Product (GSDP) of New Delhi to identify the effect of increase in PM2.5 or PM10 on the GSDP of New Delhi. 

Results: We find that field fires in North India contribute significantly to PM2.5 and PM10 concentration in New 

Delhi, and that an increase in PM2.5 by 100 percent is correlated with a decrease in the GSDP of New Delhi by 

approximately 1 percent.

Conclusion: This loss in GSDP can be in millions of Indian rupees and this externality has strong policy implications 

for lawmakers in New Delhi.
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INTRODUCTION
Stubble burning, or the practice of burning agricultural residue
like straw, leaves, and other vegetation after harvesting a crop, is
common all across India. The burning of stubble releases toxic
fumes into the air, which worsen the existing state of air
pollution in India. Stubble burning is one of the top
contributors to air pollution in India. Unlike wildfires and forest
fires, stubble burning is a seasonal phenomenon which is
undertaken by the farmers intentionally to get rid of the crop
residue in a cheap, speedy way.

Although stubble burning is a problem prevalent across India,
the National Capital Region (NCR), centred on New Delhi, the
capital city of India, is uniquely positioned to face some of the
worst air pollution in the country due to its geography,
meteorology and surrounding terrain. New Delhi is surrounded

by the states of Punjab and Haryana which have huge expanses
of agricultural land. Farmers in these states burn stubble after
harvest, starting October, and the toxic fumes and particulate
matter (PM2.5 and PM10) released as a result of these field fires
is carried by strong winds to the National Capital Region within
24 hrs, sometimes lesser. Low winds and higher humidity and
fog in the National Capital Region (NCR) during the fall and
winter trap the particulate matter and toxic gases close to the
ground, leading to thick layers of smog for almost the entire
winter season. It mixes with local air pollutants coming from
industries and transportation as well. As per estimates, up to 50
percent of the particulate matter in New Delhi during October-
December can be attributed to open field fires for stubble
burning [1].

This smog is made up of gases like carbon monoxide, sulphur
dioxide, nitrous and nitric oxides, ozone, PM2.5, PM10 and
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only the city of New Delhi is taken in the IV analysis for the
exclusion restriction to hold and because the city-level economic
data is available only for the city of New Delhi.

The purpose of this study is to estimate economic costs due to
air pollution from crop residue burning, and suggest policy
design to not only address this challenge but nudge and
incentivize innovation in this field. This study can be used
further by researchers as a model to address similar problems of
air pollution externalities in other regions around the world. We
develop the theoretical and empirical framework to tackle the
problem of air pollution externality. Since it’s not possible to
physically separate or demarcate between air pollutants based on
their source, we take an alternative route. This study solves that
problem by using an instrumental variable which is correlated
with the pollutant variable, and does not affect the observed
variable through any channel other than the pollutant variable.

The effects of air pollution on human health have been studied
extensively. An estimated 1.67 million deaths were attributed to
air pollution in India in 2019 [4], making up for 17.8 percent
deaths in the country. High PM2.5 and PM10 levels in Delhi
have been found to be associated with higher levels of
respiratory problems in children [5]. Both short-term and long-
term exposure to high levels of PM2.5 and NO2 were also found
to be correlated with higher infection rates and mortality rates
of COVID-19 [6]. As per a time-series analyses in Chennai, a
0.44 percent increase in daily all-cause mortality was seen per 10
pg/m3 increase in daily average PM10 concentrations [7]. A
study estimated the economic gains from lower levels of air
pollution during lockdown in Delhi in 2020 to be USD 64.3
million, leading to lower damages due to morbidity [8]. Another
study estimated the economic cost of air pollution due to health
impacts in Agra city to be USD 254.52 million in 2014 and
projected to be USD 570.12 million in 2020 [9].

We study existing literature on usage of econometric methods to
evaluate economic costs and air pollution levels. Instrumental
variable analysis [10] has been used to study atmospheric and
aerosol chemistry. The economic cost of air pollution in Greece
has been estimated using Cost-Of-Illness (COI) and Willingness-
To-Pay (WTP) methods [11]. The economic cost of air pollution
on health in Singapore was studied using damage function/dose
response approach [12]. The relationship between economic
growth, air pollution and life expectancy in Indonesia was
studied using the Autoregressive Distributed Lag (ARDL) model
[13]. The findings of all of these studies suggest that there is a
negative correlation between changes in air pollution levels and
change in economic output.

Discussions and debates around policies to control stubble
burning have so far involved the cost-benefit analysis of
mitigation [14]. Though this study elucidates how mitigation of
pollution is a viable option, it has not factored in the effect of
pollution externalities which directly affect economic output via
multiple channels. Causes that led to the widespread adoption
of paddy-burning in Haryana have been studied and identified
in a study [15]. As per the study, limitations imposed by
mechanized harvesting, falling groundwater levels, and high
labour costs were some of the reasons why farmers use stubble
burning to dispose of the agricultural residue, irrespective of
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traces of aromatic gases like benzene and toluene. The air 
quality in the National Capital Region (NCR) is as high as 500 
for most part of October-December. This is labelled as 
“hazardous” as per air quality guidelines and indicates serious 
illness like asthma, bronchitis and other lung problems as side 
effects [2]. People are advised to stay indoors. The citizens of the 
National Capital Region are held hostage to an air calamity 
every year, with no respite. A major political issue in North 
India, which involves the state governments of Punjab, Haryana, 
New Delhi and Uttar Pradesh, and the central government, the 
issue is as yet unresolved after more than a decade of policies 
and ostensible methods of redressal. The AQI in the winter of 
2022 in New Delhi and its satellite towns remains as high as 
500, often reaching 700. To put into perspective, the five days of 
“the great smog of London” in 1952 clocked an AQI close to 
500 for five days, which was considered an environmental 
emergency, leading to the Clean Air Act of 1956 in the UK. 
Whereas in NCR, an AQI of 500 and above has been recorded 
every year for more than a decade, with no policy able to check 
this phenomenon.

This phenomenon is a catastrophic example of air pollution as 
an externality. The farmers and residents of Punjab and 
Haryana burn stubble to reduce their costs of disposal of 
agricultural waste, while at the same time endangering the 
health and wellness of millions of citizens of National Capital 
Region (NCR). The environmental cost of this contribution to 
air pollution via stubble burning is essential to establish the 
non-viability of this practice on health, environmental and 
economic grounds. Our study solves this precise problem. By 
pinning a cost to the damage caused by the stubble burning 
fires, we make a cogent, plausible case for implementation of 
methods to stop stubble burning. The cost-benefit- analysis of 
any method that policymakers propose to curb stubble burning, 
must account for the entire economic cost of the phenomenon, 
rather than considering the costs purely due to health 
expenditure or loss of life. So far, no study has incorporated the 
externality of stubble burning as an environmental cost, and as 
such, many measures which could possibly help stop this 
practice have not been found to be cost-effective. While enough 
literature exists on the environmental costs of forest fires and 
wildfires, not enough literature is as yet documented on the 
environmental costs of open field fires due to stubble burning, 
especially as a heavy externality. Our study fills this lacuna in 
environmental and economic literature.

This paper estimates the economic cost of stubble burning in 
North-West India as externality for New Delhi, to add to the 
discussion on framing the right policies for addressing the 
challenge by state and central governments. We use 
Instrumental Variable (IV) analysis to estimate the economic 
cost to the city of New Delhi due to stubble burning alone, 
caused by air pollution. The instrumental variable is the daily 
count of number of field fires in the region of Punjab and 
Haryana, taken from NASA Active Fire Data [3]. The number of 
field fires is found to be correlated with the level of PM2.5 and 
PM10 in New Delhi. Then the Gross State Domestic Product 
(GSDP) of New Delhi is regressed against the PM2.5 parameter 
to estimate the effect of pollution on the GSDP of New Delhi. 
Instead of including the entire National Capital Region (NCR),

J Pollut Eff Cont, Vol.12 Iss.3 No:1000400 2



experience discomfort, mild illness or allergies etc, which lead to
less output by workers [25,26].

Worker Attendance: Air pollution can also affect the intensive
margin of labour. Attendance of workers is affected by their
health levels, which is affected by pollution levels. Higher levels
of air pollution can potentially reduce worker attendance.
Workers would be impelled to take more sick leave days, thus
lowering the total time spent on work. This would lead to lower
output by firms [27,28].

Capital Depreciation: Environmental effects like air pollution
can cause short-term or long-term damage to natural as well as
man-made capital. Machinery and equipment may face higher
wear and tear with higher levels of pollution. Natural resources
like tree cover, soil quality and water quality may also be
compromised. Thus, air pollution can contribute to faster
depreciation of all types of capital inputs, thus increasing the
investment required for renewing the capital, and lowering
economic output [29].

Direct Effects: The direct impact of air pollution on economic
output is also important, though often ignored. High pollutant
levels may directly interfere with certain industrial processes,
reducing their efficiency and productivity, leading to lower
outputs. The pollutants may react with certain substances and
materials, making air pollution a significant factor in reduction
of economic output.

Theoretical Model: To model the impact of air pollution on
economic output Y, we build on the theoretical model given by
Antoine Dechezlepretre, et al. [31] for evaluating the economic
cost due to air pollution. We consider the output for the city of
New Delhi, taking it as a closed economy. For the purpose of
this analysis, taking New Delhi as a closed economy does not
drastically alter our findings, since the practice of stubble
burning does not alter the GSDP of New Delhi via any price or
supply changes of goods ”imported” into New Delhi from
neighbouring states.

The overall output in a closed economy is given by Y=F (K,L,P)

Where:

Y is the total economic output,

K is the capital input,

L is the effective labour input,

P is pollution.

We take N as the number of representative households (which
are assumed to supply labour inelastically).

Each representative household is endowed with a total time t for
work. For simplicity, we ignore the effect of choosing leisure in
this model and assume the total time available for work, t, to be
the same for all households. Of this time t, the households
spend time h for labour, and s on sick leave, when they are not
capable of work. In this model, pollution is taken as exogenous
to the model [17].

Thus s=s(P) and t=h+s(P).
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farm size or variety of the crop. The study suggests that better 
management practices are required, as opposed to mere 
institutional reforms.

One study estimated that the share of biomass burning in the 
pollutant levels in the megacity Delhi is between 1 percent and 
58 percent [16], depending on the quantity of biomass burnt 
and meteorological factors like wind speed and thermal 
inversions. As per the National Clean Air Programme (NCAP) 
report by the Ministry of Forests, Environment and Climate 
Change (MOEFCC) government of India, open burning of 
agricultural residue in rural areas contributes about 7 percent to 
the total PM2.5 emissions in the country [17].

As per the Porter hypothesis, environmental regulations and 
policies that aim to reduce pollution levels may lead to 
technological innovations and thus further economic growth 
[18]. There is evidence to suggest that this is possible, and 
achievable through technological innovation. Best practices in 
paddy residue management have been identified [19,20], which 
are expected to not be an economic burden on the farmer and 
lead to reduction in stubble burning. The most viable methods 
to dispose of the paddy stubble have been pyrogenic conversion 
of rice straw [21], in situ management of the stubble through 
microbial biodegradation [22], and biochar production from the 
stubble [23] to name a few. These practices, if implemented via 
effective policies, can be a long-term solution to this problem.

Effect of air pollution on economic output

Air pollution can potentially impact economic output through 
multiple channels. Though the focus of the recent literature has 
been the empirical assessment of the impact of air pollution on 
the health of citizens, and the associated economic losses, it is 
important to also understand the theoretical underpinnings of 
this analysis. Our analysis looks at the economic impact of air 
pollution holistically, enumerating the various channels via 
which the economy is affected. Moreover, the impact of air 
pollution on the health as well is not merely due to life 
threatening diseases, but due to less serious but persistent illness 
and allergies as well, reducing the productivity of the labour 
force in multiple ways [10]. In a developing country like India, 
air pollution is not a mere environmental concern, but also a 
developmental concern as it affects the labour force 
participation and other factors of production. This 
understanding strengthens our argument of the need to mitigate 
severe air pollution due to crop residue burning.

Extensive margin of the labour workforce

Air pollution can contribute to reducing the extensive margin of 
the labour workforce via migration effects, mortality rates and 
birth rates. High levels of air pollution can contribute to higher 
level mortality rates and lower birth rates. It can also affect 
migration out of the region, due to high costs to health in the 
region. All of these effects lead to the lowering of the total 
number of workers available in the region [24].

Worker Productivity: High air pollution levels can lower the 
productivity of workers while they are at work. They may
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Simplifying,

The elasticity ψ of economic output with respect to effective
labour is given by;

Thus, combining equations (1), (5), and (6) and simplifying, we
get:

MATERIALS AND METHODS

Econometric Model

The objective is to evaluate the causal effect of air pollution due
to stubble burning in Punjab and Haryana on the economic
output of the national capital city of New Delhi.

In this study, we use regression analysis with instrumental
variable analysis to account for confounding effects of other
variables and reverse causality. The basic econometric model
that can be used to characterize the relationship between
economic output and air pollution levels due to stubble burning
at time t can be stated as follows:

Where:

Yt=Variable that denotes the economic output at time t,

β0=Captures the fixed effects of the city,

Pt=Pollution level at time t,

γt =Time-varying impacts on economic output in the region due
other factors,

εt=Error term.

In this model, a few constraints need to be addressed. First is 
the reverse causality of increase or decrease in economic output 
on air pollution levels. In the past it has been observed that 
when pollution levels in New Delhi are very high, policy 
interventions cause certain businesses and schools to shut down 
or reduce the working hours [32] reducing pollution from 
industries. This further causes reduction in road traffic and air 
pollution from vehicular emissions as well. All of these factors 
contribute to lowering of air pollution levels due to ambient 
effects. Thus, there is a reverse causality between economic 
output and pollution due to local factors. This can be 
characterized as follows:

Economic activity ↑ ⇒ Air pollution levels ↑
Air pollution levels ↑ ⇒ Economic activity ↓
Economic activity ↓ ⇒ Air pollution levels ↓

Due to this cyclical causality, a simple regression with pollution 
level, in spite of other controlling variables, is unlikely to give an 
unbiased estimate of changes in economic output. Therefore, to 
measure the impact of air pollution due to stubble burning, 
which is not a local phenomenon, we need to use a different 
methodology.

Instrumental Variable Analysis

To address this constraint, we use instrumental variable analysis 
[33]. Since the phenomenon whose causal effect we wish to 
estimate is the burning of crop residue in North-West India, it is 
ideal to take the number of field fires at time t as an 
instrumental variable. We call this variable as FIRECOUNT. 
Open field fires in north-western regions of Punjab and Haryana
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Since P potentially affects the mortality rate, migration rate and 
birth rate of the popula- tion, thus affecting the total number of 
households available for work, we have N=N(P).

The productivity of the workforce is defined as A=A(P).

Thus, the effective labour available for work is

L(P)=N(P)A(P)[t- s(P)]         (1)

We use this relation for labour in the equation for economic 
output. Thus:

Y=Y (K,L(P), P)                  (2)

Taking natural logarithms on both sides of the equation,

logY=log(Y (K, L(P), P))      (3)

Since logarithm is a monotonic transformation of the function 
Y, differentiation of Yon Left Hand Side (LHS) and Right Hand 
Side (RHS) of the equation w.r.t variable P will yield same 
results as differential of logY on LHS and RHS w.r.t P. Thus, the 
impact of a change in pollution on the economic output is given 
by differentiating the equation w.r.t P as follows,

4

Through econometric analysis, we estimate the sign and magnitude 
of the expression on the LHS.
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emit pollutants into the air, and the wind carries these
pollutants to the national capital city of New Delhi. The
number of fires at any given time t is a good indicator of the
concentration levels of pollutants present in the air. The
FIRECOUNT satisfies the requirements of an instrumental
variable, namely:

• Exclusion restriction: It affects the dependent variable
(economic output) only through the explanatory variable
(pollution levels in New Delhi).

• It is correlated with the explanatory variable (pollution levels
in New Delhi).

• It is not caused by the dependent variable (economic output
of New Delhi), and is thus exogenous, and as good as
randomly assigned.

FIRECOUNT, or the number of field fires in Punjab and
Haryana, can be safely assumed to have no effect on the Gross
State Domestic Product (GSDP) of New Delhi via any channel
other than air pollution. The fires are in different states, and
thus, are not correlated with or caused by economic activity in
New Delhi. FIRECOUNT does have a direct correlation with
the air pollution levels in New Delhi, as already found by
numerous studies and satellite information. As visible in Figures
1 and 6, the variation of PM2.5 in New Delhi with time and the
variation of FIRECOUNT in north-west India with time, both
follow the same pattern every year, for all stations.

First stage: Since the effect of wind speed cannot be ignored on
the concentration of pollutants in the air, wind speed is taken as
a control variable in measuring the effect of field fires. Other
control variables are meteorological parameters like Relative
Humidity (RH), Wind Direction (WD) and Air Temperature
(AT). Pollution levels are measured for PM2.5 or PM10 .

So, the first stage of the analysis (taking wind speed as a control
variable) would be:

HDI accounts for variation in changes in socio-economic
structures with time γt. We use the Gross State Domestic
Product (GSDP), GSDP per capita and Gross State Value Added
(GSVA) of New Delhi as measures of economic output Yt in the
model. The second stage is thus given by:

Where:

Yt=Economic output,

β0=Captures fixed effects,

Pt=Pollution level at time t (as evaluated from the first stage
regression),

Γt=Captures time-varying effects on economic output (control
variable),

Εt=Error term.

Reduced form

We use “Two Stage Least-Squares (2SLS)” to compute the
coefficient β1. To implement this, we first estimate the first
stage, and then compute the predicted values of the regressor:

Then we regress the economic output on the predicted values of
pollutant levels: In a large sample, the coefficient thus got will
be β1.

Due to a vast difference in the range of values in pollutant levels
and GSDP, a log- likelihood estimation method is most
appropriate for the analysis. Therefore, we instead use the log of
GSDP and pollution levels as variables in the regression.
Rewriting equation (12) to account for this change, we have:

The coefficient thus obtained, b_1, gives the elasticity of
economic output with respect to pollutant levels. A 1 percent
increases in the levels of the pollutant causes a b_1 percent
change in the economic output.

Air Pollution Data

For this study, air pollution data for nine years–from 2012 to
2021 was collected from fixed-site monitoring stations of the
central and state pollution control boards in New Delhi. Data of
24 hr averages for PM2.5, PM10, CO, NO2 and SO2 were
collected for five monitoring stations spread across the city:

Agarwal A, et al.

Where;

Pt=Pollution level at time t,

α0=Captures fixed effects,

FIRECOUNT=Total number of field fires at time t,

WSt=Wind speed at time t (control variable),

Θt=Error term at time t.

Second stage: A lot of variables affect the GSDP of a city: 
Economic and natural shocks, changes in world economic 
activity, changes in population demographics etc to name a few. 
It is important to control for these effects so as to be able to 
measure the effect of pollution levels on economic output 
without omitted variable bias. Since a lot of data of these 
variables is not available for the city of New Delhi, an index 
which is computed considering many such effects is instead used 
as a control variable-the subnational Human Development 
Index (HDI) for New Delhi by UNDP [34]. The subnational
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Anand Vihar, ITO, Mandir Marg, Shadipur and R. K. Puram.
For other monitoring stations, archival data for pollution levels
was not available. Thus, these monitoring stations were selected.
Since archival data of all the years for all the parameters was not
available for every monitoring station, the years for which the
data was available for each station was taken on a case-by-case
basis. Each monitoring station records data independently of all
other stations, and as such, the results from the analysis of the
data of each station are independent of other stations.

A plot of the variation of pollution levels of different pollutants
with time is seen in Figure 1. As stubble burning is a yearly
phenomenon which takes place from September to December
every year, the trend in increase in pollutant levels during this
period is clearly visible in the plot. The gaps in the plot are the
periods for which data for pollutant levels is not available. Time
variation of PM2.5 levels for the different monitoring stations is
seen in Figure 2. PM2.5 and PM10 concentrations were
measured in µg/m3, CO in mg/m3, NO2 in µg/m3 and SO2 in
mg/m3.

A correlation plot between the pollution parameters showed a
high correlation between PM2.5 and PM10 values. Mild
correlation was also observed between other pollutant values, as
seen in Figure 2. PM2.5 was found to be the most correlated
with FIRECOUNT values (Corr: 0.3), followed by PM10. Other
parameters had low correlation values with FIRECOUNT, and
as such, were not selected to be the endogenous variable. The
data for other parameters was also found to be not as well
documented as that for PM2.5 and PM10.

The relationship between FIRECOUNT and log (PM2.5) for
station 1 can be seen in Figure 3. The relationship between
FIRECOUNT and log (PM10) for station 4 can be seen in
Figure 4.

Since PM2.5 and PM10 were found to be highly correlated, the
two parameters are not used together in the regression, so as to
avoid the multicollinearity effect. Instead, the two parameters
are used as alternatives to measure the effect of fires on air
pollutant concentrations.

Figure 1: Variation in pollutant levels across time for station.

Crop residue fire data

To get the crop residue fire data, Active Fire Data by Visible
Infrared Imaging Radiometer Suite (VIIRS) taken by Earthdata
by NASA was obtained for the years 2012-2021 [3]. The data is
for the region of South Asia. We take the regions where crop
residue burning takes place as the region lying between the
latitudes and longitudes of 28.9 N and 34 N and 73 E to 77 E
respectively. The data for this region was filtered from the larger
dataset. Next, the number of fires for each day was counted for
this filtered region. This yields a daily count of fires in the
regions of Punjab and Haryana. Data for the months of
September-December was further filtered out, since those are
the months of interest when crop residue is burnt. This is the
data that is used in the regression analysis.

The variable FIRECOUNT gives the daily count of number of
open field fires thus obtained. The yearly repeating patterns and
variations in the number of field fires per day can be in Figure 6.

Figure 2: Regression of log(PM2.5) with FIRECOUNT for 
station 1.

Though FIRECOUNT does not reflect the intensity or extent of
the field fires, the variable was found to be acceptable due to the
averaging effect of small and big fires. Moreover, FIRECOUNT
values vary from as low as 1 and 2 per day up to a maximum of
8000 fires per day. Due to this broad range of values, the peak
season can be clearly identified in the data, usually in the
months of October and November. Thus, FIRECOUNT was
found to be a good variable to characterize the effect of stubble
burning in the region.

Weather Data

Weather data for New Delhi is obtained from fixed-site
monitoring stations of the central and state pollution control
boards in New Delhi. Data for Relative Humidity (RH), Wind
Speed (WS), Wind Direction (WD), Spectral Radiance (SR),
Barometric Pressure (BP) and Air Temperature (AT) was
compiled for 24 hr averages of values for the years (2012-2021).

Agarwal A, et al.

The objective of the study is to measure the effect due to stubble 
burning, and PM2.5 and PM10 both can be considered to be 
alternative variables for that effect. For some of the stations, 
PM10 data is missing for several months, and as such, PM2.5 is 
taken as the common variable for all regressions, and PM10 is 
used to verify the results, where the data is available.
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Figure 3: Regression of log (PM10) and FIRECOUNT for 
station 4.

2012-2021. Data for the months of September-December for
every year was used for the regression analysis.

On regressing PM2.5 with each of the weather variables as
control variables, not much difference was found on the
coefficient of FIRECOUNT. Thus, the other variables are not
significantly correlated with PM2.5. The main contributor to
the changes in the coefficient was Wind Speed (WS), which was
found to be negatively correlated with the pollution levels. This
is expected since high wind speeds cause the winds to carry away
pollutants from the capital city, thus lowering the pollutant
levels in the air. When wind speeds are low, pollutants stagnate
in the air above the ground, mixing with the fog and dust to
form a thick layer of smog above the ground, which is not only
harmful for health, but also reduces visibility on the ground.

Thus, Wind Speed (WS) was found to be the ideal control
variable upon preliminary evaluation of the available data.

Figure 4: Correlation plot of variables.

Human Development Index (HDI) for New Delhi is used as a
control variable. HDI for every year, from 2012 to 2019 is taken
from the Global Data Lab website [34]. The subnational HDI
was created by Global Data Lab using three sources: Statistical
offices (including Eurostat, the statistical office of the European
Union), the Area Database of the global data lab, and data from
the HDI website of the Human Development Report Office of
the United Nations Development Program. Thus, it can be
considered to be a robust measure of socio-economic effects on
the economy. It is reported as an index, with 0 ≤ HDI index ≤ 1.

Since pollutant concentration values will not be negative or
zero, and to account for the wide range of values in pollutant
concentrations and economic output, logarithm of pollutant
concentration was regressed against the logarithm of economic
output in the second stage regression (Figure 5).

Figure 5: PM2.5 (IN µG/M3) trend with time for the 5 stations.

As expected, the FIRECOUNT data was found to have zero
correlation with the economic data of GSDP, also seen in the
correlation plot in Figure 4. This further validates our
assumption that the exclusion restriction for the instrumental
variable holds for this study.

Data Processing and Analysis in Python

The air pollution data and weather data obtained from central
and state pollution control boards is 24 hr average data for the
pollutant parameters. The crop residue burning FIRECOUNT
data is counted for 24 hr periods, and is thus, a total count of
the number of fires in the 24 hrs on that date. The weather data
follows the pattern of the air pollution data, as it is from the
same source. But the weather data is not available for every
monitoring station in New Delhi. Thus, the weather data is
taken from a monitoring station in central part of New Delhi,
and assumed to be the same throughout Delhi, taking the
effects of micro-climates to be negligible. This is a reasonable
assumption since the variations in meteorological data across
New Delhi are small.

Though we take PM2.5 and PM10 as the explanatory variables
for pollution, the economic cost of air pollution due to crop
residue burning can well be due to other pollutants as well, and
the study estimates the cost due to all the pollutants (Figure 6).

Agarwal A, et al.

Economic data

The economic data for New Delhi was available as yearly values. 
The GSDP, GSDP per capita and GSVA values were taken from 
the New Delhi government portal [35], reported in INR crores 
at current prices. To control for variations in the economic 
output due to other socio-economic factors, the subnational
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Figure 6: FIRECOUNT trend with time.

The possibility of a lag between field fires and rise in pollutant
levels over New Delhi was considered. But it was found that the
lag between lighting a fire in northwestern regions and the
pollutants reaching the capital city is not more than 24 hours,
based on the wind speed and other meteorological effects.
Moreover, some of the fields are much closer to the city, whereas
some of the fields are further way. On average, the fields can be
considered to be within a 24 hr lag from lighting fires and rising
of pollutant concentration levels in New Delhi. Thus, the effect
of lag on the pollution data was taken to be negligible.

The economic data is reported by government and international
organizations yearly. No data for GSDP or GSVA of Delhi could
be found for any period shorter than one year. To merge this
data with the rest of the data, the daily pollution, weather and
FIRECOUNT data would have to be averaged yearly, or the
GSDP can be taken as constant for every day in one year.
Averaging the pollutant and other data would fail to capture the
trends and variations in the pollutant levels with time.
Averaging would remove all the variation of pollutant levels with
increase and decrease in FIRECOUNT. Moreover, it would
reduce the data to merely that of 9 years (six years for some of
the monitoring stations for which data is not available for every
year). This would not be sufficient to run a regression and arrive
at results with any level of accuracy. Thus, the GSDP and HDI
were instead taken as constant for every single day in a year, and
the entire dataset for every monitoring station was regressed as
discussed above.

We run two regressions (first stage and second stage) for each set
of variables (FIRECOUNT, PM2.5, GSDP and control
variables) for each of the 5 monitoring stations’ data. We then
check the results by replacing PM2.5 with PM10 and see if there
is a remarkable difference in values. We then again check the
results by replacing GSDP with GSVA and GSDP per capita.

And see if there is a remarkable difference in values reported. 
Thus, the reported results are a compilation of the results 
from 20 regressions, 4 each for the 5 monitoring stations.

RESULTS AND DISCUSSION
The results of the first stage regression show a consistent 
positive correlation between FIRECOUNT and PM2.5 
levels, and a negative correlation between WS and PM2.5 
levels. The same trend is observed for data across all the five 
monitoring stations. The values of the coefficients and 
standard errors for all the variables and intercept fall in the 
same range for all the five monitoring stations. The data of 
each of these monitoring stations is collected by sensors 
independent of other sensors, and the number of 
observations for each station is also different. Some of the 
stations are missing the data for certain years or months, and 
as such, the time period over which the data is available 
and used for each station is different. Nevertheless, the 
results for the regression fall within an acceptable range 
for all coefficients, and are statistically significant at the 
99.9 percent level.

The OLS for PM10 and FIRECOUNT yields similar 
results, with a slightly wider variation in the coefficients 
(than those obtained in the regression with PM2.5), but 
still within acceptable levels. The overall trend of all the 
values for all the monitoring stations is the same, and 
all are statistically significant at the 99.9 percent level.

The output of the first stage OLS is in keeping with the 
theoretical understanding of the phenomenon. The coefficients 
of FIRECOUNT fall in a narrow range and are 
statistically significant, so the predicted values of PM2.5 and 
PM10 levels can be taken as the pollution levels due to crop 
residue burning, and plugged into the second stage OLS 
regressions.

The second stage OLS results are in alignment with our 
theoretical framework to assess the impact of pollution 
on economic output. The coefficient for pollutant levels is 
negative, implying that the result of an increase in pollutant 
levels is a decrease in economic output. The results for the 
second stage regression for log (PM2.5) and log (GSDP) 
are statistically significant at the 99.9 percent level (Table 1-7).

First stage OLS for PM2.5 and FIRECOUNT

STN 1 STN 2 STN 3 STN 4 STN 5

Intercept 145.5626
(5.542)***

111.5125 (5.435)*** 106.2443
(4.713)***

119.6057
(5.226)***

106.6421
(4.810)***

WS -139.7994
(12.519)***

-103.4397
(11.500)***

-102.2080
(10.021)***

-118.2321
(11.113)***

-107.3008
(10.230)***

FIRECOUNT 0.0345
(0.004)***

0.0286
(0.003)***

0.0266
(0.003)***

0.0233
(0.003)***

0.0219 (0.003)***
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Table 1: First stage OLS for PM2.5 and FIRECOUNT.



No. of
observations

753 646 702 643 666

Standard errors in parentheses. *p<. 1, **p<.05, ***p<.01

The second stage OLS regression results yield a coefficient of
approximately -0.01 for log (PM2.5) as regressor for log (GSDP).
This implies that a 1 percent change in PM2.5 levels would
cause the GSDP to decrease by 0.01 percent. Thus, a 100
percent increase in PM2.5 levels would cause the GSDP of New
Delhi to decrease by 1 percent. During the peak stubble burning
season, high values of PM2.5, exceeding 500 µg/m3 are often
observed. Not only is this air toxic to breathe, this value of
PM2.5 concentration is almost five times or five hundred
percent of the PM2.5 values during the rest of the year (also
visible in the yearly variation of pollutant levels in Figure 5). As
per the relationship established from the OLS results, this could

cause up to 5 percent decrease in economic output of New 
Delhi, measured in GSDP at current prices. For context, 5 
percent of the GSDP of New Delhi is approximately INR 39,915 
crores (at current prices) for the year 2020-2021. This analysis is 
merely to illustrate how changes in air pollutant levels due to 
stubble burning can affect the economic output of New Delhi as 
per our findings. If the values of pollutants remain at high levels 
for long periods of time, they could potentially cause a higher 
decrease in GSDP in the coming years.

First stage OLS for PM10 and FIRECOUNT

STN 1 STN 2 STN 3 STN 4 STN 5

Intercept 270.4192 (9.659)*** 152.6973
( 7.026)***

144.2370
(5.735)***

193.1273
( 7.271)***

237.9926
(11.007)***

WS -220.7986
( 20.417)***

-115.3630
(14.519)***

-108.6652
(12.200)***

-156.9560
(15.363)***

-255.0205
( 24.338)***

FIRECOUNT 0.0487
(0.006)***

0.0326
(0.004)***

0.0367
(0.003)***

0.0356
(0.004)***

0.0430
(0.006)***

No. of
observations

624 473 702 646 244

Standard errors in parentheses *p<0.l, **p<0.05, ***p<0.01

To check the robustness of the findings, we run the second stage
regression again, changing the variables. Similar results are
obtained by replacing PM2.5 with PM10 and GSDP with GSVA
or GSDP per capita (Tables 3-7). In each regression, the
coefficients of log (PM2.5) and log (PM10 ) have a negative sign
and are in the same order of magnitude for all monitoring
stations. The coefficient of HDI also follows the same sign and
order of magnitude in each regression for all stations. The
results are statistically significant. Data from each monitoring
stations is independent of all other stations; as such, each

regression is an independent finding. Since the findings are 
consistent across all the variables, it is concluded that the results 
strongly suggest a negative impact of air pollution due to stubble 
burning on the economic output of New Delhi, and that the 
change in economic output corresponding to a one percent 
change in pollutant levels due to stubble burning is 
approximately -0.01 percent.

STN 1 STN 2 STN 3 STN 4 STN 5

CONST 2.2618*** (0.1321) 0.5434** (0.2614) 1.2584*** (0.2328) 1.3102*** (0.2137) 1.2871*** (0.2197)

HDI 21.3598*** (0.1681) 19.0148*** (0.3494) 16.5808*** (0.3105) 16.5515*** (0.2836) 16.5825***(0.2934)

log_PM25_fit 0.0112** (0.0044) 0.0092* (0.0047) 0.0086** (0.0037) 0.0129*** (0.0038) 0.0139*** (0.0035)

R-squared 0.9725 0.8824 0.8661 0.9001 0.8879
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Table 2: First stage OLS for PM10 and FIRECOUNT.

Table 3: Second stage OLS for log(PM25) and log(GSDP).



R-squared Adj. 0.9724 0.8818 0.8655 0.8996 0.8873

R-squared 0.97 0.88 0.87 0.9 0.89

No. observations 509 402 457 399 419

Standard errors in parentheses. *p<0.1, **p<0.05, ***p<0.01

Table 4: Second stage OLS for log(PM2.5) and log(GSDP per capita).

STN 1 STN 2 STN 3 STN 4 STN 5

CONST 0.0478 (0.1091) 1.5168*** (0.2136) 2.9905*** (0.1901) 3.0328*** (0.1746) 3.0139*** (-0.1794)

HDI 17.3226*** (0.1389) 15.3188*** (0.2855) 13.3282*** (0.2536) 13.3042*** (0.2317) 13.3296*** (0.2397)

log_PM25_fit -0.0092** (0.0036) -0.0076* (0.0039) -0.0070** (0.0030) -0.0106*** (0.0031) -0.0113*** (0.0029)

R-sq uared 0.9715 0.8794 0.8624 0.8972 0.8847

R-squared Adj. 0.9713 0.8788 0.8618 0.8966 0.8841

R-squared 0.97 0.88 0.86 0.9 0.88

No. observations 509 402 457 399 419

Standard errors in parentheses. * p<0.1, **p<0.05, ***p<0.01

Table 5: Second stage OLS for log(PM25) and log(GSVA).

STN 1 STN 2 STN 3 STN 4 STN 5

CONST -2.5885*** -1.5914*** 0.0296 0.0888 0.0621

HDI 21.6298*** (0.1630) (0.2848) 20.2625***

(0.3807)
(0.2663) 18.0664***

(0.3551)
(0.2449) 18.0328***

(0.3250)
(0.2515) 18.0686***

(0.3359)

log_PM25_fit -0.0123*** -0.0042 -0.0113** -0.0052 -0.0099** -0.0042 -0.0149*** -0.0043 -0.0159*** -0.004

R-squared 0.9747 0.8778 0.8546 0.8908 0.8778

R-squared Adj. 0.9746 0.8772 0.8539 0.8902 0.8772

R-squared 0.97 0.88 0.85 0.89 0.88

No. observations 509 402 457 399 419

Standard errors in parentheses. *p<0.1, **p<0.05, ***p<0.01

Table 6: Second stage OLS for log(PM10) and log(GSDP).

STN 1 STN 2 STN 3 STN 4

CONST 1.2066*** (0.2147) 0.7930*** (0.2411) 1.3176*** (0.2359) 1.3490*** (0.2094)

HDI 16.7654*** (0.2842) 17.2401*** (0.3198) 16.5653*** (0.3096) 16.5533*** (0.2760)
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log_PM10 _fit -0.0200*** (0.0055) -0.0167***(0.0063) -0.0167*** (0.0063) -0.0187*** (0.0054)

R -squared 0.9029 0.8956 0.8666 0.9017

R -squared Adj. 0.9024 0.895 0.866 0.9013

R -squared 0.9 0.9 0.87 0.9

No. observations 382 344 458 405

Standard errors in parentheses. * p<0.1, ** p<0.05, ***p<0.01

Table 7: Second stage OLS for log(PM10) and log(GSVA).

STN 1 STN 2 STN 3 STN 4

CONST -0.0298 -0.1393 0.0976 (0.2698) 0.1334 (0.2399)

HDI 18.2786*** (0.3257) 18.8231*** (0.3668) 18.0485*** (0.3541) 18.0352*** (0.3161)

log_PM10 _fit -0.0230*** (0.0063) -0.0832 (0.0071) -0.0192*** (0.0072) -0.0215*** (0.0062)

R-squared 0.8939 0.8861 0.8551 0.8926

R-squared Adj. 0.8934 0.8854 0.8545 0.892

R-squared 0.89 0.89 0.86 0.89

No. observations 382 344 458 405

Standard errors in parentheses. *p< .1, **p<0.05, ***p<0.01
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