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ABSTRACT
Prostate cancer is the most frequently diagnosed malignancy and the second primary cause of cancer-related mortality 

among males in the United States and other Western nations. Androgen Deprivation Therapy (ADT) has served as 

the primary treatment for prostate cancer for several decades; however, the disease ultimately advances after a 2-3 

years’ remission, resulting in Castration-Resistant Prostate Cancer (CRPC). Not withstanding progress in diagnostic 

techniques and therapeutic alternatives, resistance to treatment remains a considerable obstacle in disease 

management. This article examines the mechanisms of treatment resistance in prostate cancer and investigates 

different approaches to surmount these obstacles, including innovative treatment approaches as well as personalized 

medicine.
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INTRODUCTION
Prostate cancer is the second most prevalent cancer among 
males, with those over 65 years of age facing the greatest risk [1]. 
Approximately 1 in 8 men may receive a diagnosis of prostate 
cancer at some point in their lives. The risk of prostate cancer is 
elevated in African American males and Caribbean men of 
African descent compared to men of other races [2]. The five-
year survival rate for prostate cancer exceeds 98%, as over 70%
of patients are diagnosed at a localized stage. The primary 
treatment for localized disease is radical prostatectomy and 
radiation therapy [3]. Upon the emergence of metastatic disease, 
the prognosis is generally dismal, with a 5 years’ survival rate of 
merely 30% [4]. Prostate cancer relies on androgen receptor 
signaling for its sustained proliferation.

REVIEW OF LITERATURE

Androgen receptor signaling in prostate cancer

The Androgen Receptor (AR) signaling is essential for the 
normal functioning of the prostate gland and is also responsible

for the progression of prostate cancer. The principal androgen
hormones involved in the process are testosterone and 5α-
Dihydrotestosterone (DHT) [5,6]. Upon binding to androgen
hormones, the AR undergoes a conformational change,
dissociates from co-regulatory proteins, translocates to the
nucleus, dimerizes and subsequently binds to androgen response
elements. This leads to cellular proliferation, apoptosis,
migration, invasion and differentiation.

Throughout the progression from benign to malignant cells and
low-grade to high-grade malignancy, stromal cells undergo
structural and genetic alterations accompanied by a gradual
decline in AR expression. The etiology of this decrease in AR
expression remains unclear [7].

ADT constitutes the fundamental approach for the systemic
treatment of metastatic disease, with the therapeutic arsenal
having advanced considerably to incorporate chemotherapy and
novel antiandrogenic treatments for metastatic Castrate-Sensitive
Prostate Cancer (mCSPC). ADT may include Luteinizing
Hormone-Releasing Hormone (LHRH) agonists, LHRH
antagonists, or bilateral orchiectomy. In advanced disease,
treatment is contingent upon the disease volume and associated
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Figure 1: Definition of high risk/high-volume disease. MECHANISMS OF TREATMENT 
RESISTANCE

Androgen receptor gene amplification

Amplification of the AR gene, resulting in heightened AR 
expression, is a common cause of resistance to anti-androgens. AR 
gene amplification has been documented in 17%-57% of pre-treated 
metastatic CRPC (mCRPC), contingent upon the therapy used 
[14,15]. Isolated Circulating Tumor Cells (CTCs) from mCRPC 
patients exhibiting resistance to abiraterone or enzalutamide 
demonstrated AR gene amplifica- tion in 50% of cases [16].

Androgen receptor gene mutations

AR gene alterations manifest in 10%-20% of CRPCs, 
predominantly as single-base substitutions resulting from somatic 
mutations rather than germline mutations. Most of these mutations 
occur in the androgen receptor Ligand-Binding Domain (LBD), 
while others emerge in the N-Terminal Domain (NTD) and the 
DNA-binding domain [17]. Point mutations in the androgen 
receptor Ligand-Binding Domain (LBD) provide resistance to anti-
androgen therapies [18,19]. These changes modify the binding 
affinity of ligands, leading to varied activation by antiandrogens and 
steroids [20]. A meta-analysis conducted by Snaterse et al., indicated 
that the most frequent mutations in CRPC are L702H, W742L/C, 
H875Y, F877L and T878A/S [21]. The AR, F876L and F876L/
T877A point mutations convert Enzalutamide from an AR 
antagonist to an AR agonist, while the mutations AR, W741C, 
T877A, W741L, W741C/T877A, F876L, F876L/T877A and L701H 
can transform Bicalutamide from an AR antagonist to a powerful 
AR agonist, resulting in the reactivation of AR signaling [22].
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risk [8,9] (Figure 1). For individuals with high-volume and high-
risk disease, triplet therapy comprising ADT, chemotherapy and 
Androgen Receptor Signaling Inhibitors (ARSIs) is recommended. 
For some patients, doublet therapy combining ADT with any 
alternative medicines is preferred. ARSIs comprise abiraterone 
acetate, a specific inhibitor of steroid 17α-hydroxylase (CYP17A1) 
and androgen receptor antagonists such as enzalutamide, 
apalutamide and darolutamide. Recent studies indicate enhanced 
survival in mCSPC with doublet or triplet therapy [10-13] (Figure 
2).

Nonetheless, despite these considerable advancements, prostate 
cancer continues to be a predominant cause of cancer mortality 
worldwide. Prostate cancer is a highly varied disease and its 
growth over time results in the emergence of androgen 
deprivation therapy resistance, known as Castrate-Resistant 
Prostate Cancer (CRPC). CRPC is characterized by disease 
development despite androgen deprivation therapy and 
testosterone levels below 50 ng/dl. Multiple factors contribute to 
treatment resistance, including AR gene amplification, AR gene 
mutations, variable forms of AR, alternative signaling pathways 
and the tumor microenvironment.

Comprehending the mechanisms underlying treatment 
resistance is essential for formulating appropriate methods to 
address this significant challenge in prostate cancer care (Figure 
3).
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Figure 2: Treatment of metastatic Castrate Sensitive Prostate 
Cancer (mCSPC).

Figure 3: Mechanisms of treatment resistance in prostate 
cancer.



Alterations in Homologous Recombination Repair (HRR) 
pathways occur in about 20% of advanced or metastatic prostate 
cancer, resulting in compromised DNA repair [45]. Individuals 
with BRCA2 pathogenic variants demonstrate elevated serum 
PSA levels at diagnosis, a greater incidence of high Gleason 
tumors, increased risk of metastases and recurrence rates and 
enhanced resistance to prostate cancer therapies [46]. The JAK-
STAT signaling pathway is active in CRPC, promoting stem cell 
plasticity and the development of cancer stem cell phenotypes. 
In mCRPC with TP53/RB1 deletion and SOX2 overexpression, 
JAK-STAT signaling promotes lineage plasticity, fueled by 
resistance to AR-targeted treatments [47].

Tumor Microenvironment (TME)

The Tumor Microenvironment (TME) plays a major role in the 
emergence of resistance. The TME comprises fibroblasts, 
pericytes, immune cells, endothelial cells and vascular 
endothelial cells, all of which can engage with cancer cells in 
diverse and dynamic ways. The non-cellular components include 
the Extracellular Matrix (ECM), inflammatory mediators, 
chemokines and matrix enzymes which promote tumor growth 
and progression by altering intercellular signaling [48]. Cancer-
Associated Fibroblasts (CAFs) are among the most abundant 
elements in the TME, affecting the malignant phenotype at all 
levels. Prostate cancer has considerable variety. The interaction 
between prostatic epithelial cells and the tumor 
microenvironment generates complex changes in the adjacent 
stromal components, worsening disease severity, increasing 
metastatic potential and providing resistance to conventional 
therapy [49-51]. Neural tissue has been identified as an active 
component of the tumor microenvironment in prostate cancer. 
Perineural Invasion (PNI) is the most recognized type of cancer-
nerve interaction in prostate cancer. Research has demonstrated 
the significance of axonogenesis, neurogenesis and the 
perineural niche in creating a conducive microenvironment for 
the survival and proliferation of cancer cells [52,53].

Over-expression of multidrug transporter
ABCB1/P-glycoprotein (p-gp)

Multidrug transporter ABCB1 is an efflux transporter that 
reduces the intracellular levels of chemotherapeutic agents. The 
ineffectiveness of taxane therapy is often associated with the 
overexpression of ABCB1 which is mostly induced by taxane-
based treatment. Decreased ABCB1 expression was seen in 
prostate cancer tissue samples from chemotherapy-naïve 
patients, suggesting acquired resistance [54,55].

Sphingolipid gene aberrations

Sphingolipids are a class of lipids characterized by a sphingosine 
backbone, which regulates various biological processes, including 
cellular proliferation and inflammation. Research by Lin et al., 
established an association between the ceramide-Sphingosine-1-
Phosphate (ceramide-S1P) signaling axis and resistance to ARSI in 
mCRPC, particularly in cases with androgen receptor 
amplification [55]. Elevated circulating ceramide levels and 
anomalies in androgen receptors were associated with inferior 
clinical outcomes [55].
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AR mutations can be identified in CTCs with equivalent 
concordance to tissue biopsy [23].

Androgen receptor splice variants

The production of AR splice variants, which lack the LBD, 
represents an alternative mechanism of treatment resistance. At 
least 22 Androgen Receptor Variants (AR-Vs) have been 
identified, with AR-V3, AR-V7/AR3, AR-V9 and ARV567es 
now detectable in blood or tissue samples linked to CRPC 
[24,25]. AR-V7 is the most extensively researched variant and 
significantly contributes to treatment resistance. The 
mechanisms underlying the production of AR-Vs involve 
abnormal RNA splicing and intragenic rearrangements of the 
AR gene [26]. Numerous research has investigated the function 
of AR-Vs as prognostic and predictive biomarkers for resistance 
to AR-targeted treatments, including abiraterone and 
enzalutamide. AR-Vs are linked to advanced disease, reduced 
Progression-Free Survival (PFS) and indicate resistance to 
abiraterone and/or enzalutamide [27-34].

Androgen receptor independent signaling pathways

De-differentiation to AR-negative disease transpires during 
prostate cancer growth because of cellular rewiring processes and 
plasticity, mostly driven by mutations, particularly the 
concurrent loss of the tumor suppressors RB1 and TP53 [35,36]. 
The introduction of ARSI drugs such as enzalutamide and 
abiraterone lead to the increased prevalence of AR-negative 
tumors in patients with mCRPC from 11%-36% [37]. Some 
variants of AR-negative disease, encompassing Neuroendocrine 
Prostate Cancer (NEPC) and the double-negative subtype, are 
characterized by the absence of both AR and neuroendocrine 
markers [38,39]. The activation of the Wnt/β-Catenin signaling 
pathway has been shown to promote neuroendocrine trans-
differentiation. The prevalence of AR double-negative cancers 
has escalated from 5% to over 20% due to novel AR inhibitors 
through FGF signaling and Mitogen-Activated Protein Kinase 
(MAPK) pathway activation [39]. Labrecque et al., delineated five 
unique subtypes of mCRPC predicated on RNA expression of 
AR and dominant neuroendocrine markers: AR-high tumors, 
AR-low tumors, amphicrine tumors displaying both AR and NE 
marker expression, double-negative tumors and tumors 
exhibiting small cell and NE characteristics absent of AR 
expression [40].

The PI3K/AKT/mTOR signaling pathway is aberrantly regulated 
in all instances of advanced prostate cancer. The AR and PI3K/
AKT signaling pathways are regulated by a reciprocal feedback 
mechanism. Multiple studies have confirmed the role of the 
PI3K/AKT/mTOR signaling pathway in the development of 
treatment resistance and tumor progression [41].

Hypoxia and hypoxia-inducible factors HIF1a are linked to the 
development of resistance to androgen-targeted therapy and the 
advancement to CRPC. Androgen deprivation therapy under 
hypoxic settings increases androgen receptor independence and 
confers resistance to androgen/androgen receptor-targeted 
therapies [42-44].
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pathways is essential for the development of innovative, tailored 
antiangiogenic treatments in prostate cancer [67].

Immunotherapy

Utilizing the immune system to specifically target prostate cancer 
cells constitutes a potential strategy. Strategies may encompass 
cancer vaccines, immune checkpoint inhibitors and adoptive cell 
therapies that augment the body's capacity to combat cancer.

Sipuleucel-T (S-T), an autologous cellular immunotherapy, is a 
therapeutic cancer vaccine that demonstrated an increase in 
median overall survival for patients with mCRPC in a phase III 
trial [68].

Immune Checkpoint Inhibitors (ICIs) have demonstrated 
ineffectiveness in prostate cancer, which is regarded as an 
immunologically "cold" malignancy due to its highly 
immunosuppressive tumor microenvironment, reduced T-cell 
infiltration and diminished mutation burden [69]. A subset of 
patients exhibiting elevated PD-L1 tumor expression, CDK12 
mutations, high tumor mutational burden, or tumors 
characterized by high Microsatellite Instability (MSI) and 
Mismatch Repair Deficiency (dMMR) has recently shown 
remarkable responses to ICIs and/or their combinations with 
other agents [70]. Consequently, immunotherapy continues to 
be an attractive treatment modality for prostate cancer to 
enhance disease control [71]. Multiple phase 3 clinical trials are 
currently assessing the efficacy of pembrolizumab in conjunction 
with docetaxel, enzalutamide and olaparib [72].

Prostate-Specific Membrane Antigen (PSMA) has emerged as an 
optimal target for innovative prostate cancer treatment, either by 
the radiolabeling of PSMA ligands for radionuclide therapy or by 
using immunotherapeutic strategies to target PSMA. In a phase 
III trial, PSMA Radioligand Therapy (PRLT) demonstrated a 
survival advantage in mCRPC compared to optimal supportive 
care or standard treatment [73].

PSMA-targeted immunotherapy is categorized into four primary 
types: Antibody-Drug Conjugates (ADC), Chimeric Antigen 
Receptor T-cells (CAR-T), PSMA-directed vaccinations and 
bispecific T-cell redirected therapy. All these medicines are still 
undergoing clinical development; nevertheless, preliminary 
phase trials have demonstrated encouraging results [74-78].

Targeting signal pathways

Numerous small molecule inhibitors have been formulated to 
inhibit signaling pathways linked to the progression of CRPC 
(Table 1) [55,72,79].

The recent phase 3 CONTACT-02 trial (NCT04446117) has 
shown that the combination of cabozantinib and atezolizumab 
significantly improved PFS compared to second-line Novel 
Hormonal Treatment (NHT) in patients with mCRPC. The 
interim overall survival analysis in the intention-to-treat 
population likewise demonstrated an overall survival advantage 
in the cabozantinib group [80].
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Strategies to overcome treatment resistance

Strategies to overcome treatment resistance are:

Novel AR inhibitors: Darolutamide is an innovative androgen 
receptor inhibitor that antagonizes mutant androgen receptors 
(F877L and T878A), which confer resistance to enzalutamide and 
apalutamide [56]. Darolutamide received FDA approval in 2019 
to manage nonmetastatic CRPC [57]. Phase 3 clinical trials have 
demonstrated that darolutamide substantially extends metastasis-
free survival in high-risk nonmetastatic CRPC [58].

AR degraders: Due to the elevated stability of AR proteins in 
CRPC cells, the effectiveness of AR antagonists is diminished; 
nevertheless, AR degraders can mitigate this resistance [59]. The 
Proteolysis-Targeting Chimera (PROTAC) has evolved as 
a sophisticated method to degrade AR by exploiting 
the ubiquitin–proteasome system. At present, only ARV-110 
and ARV-766 have advanced to phase II clinical trials as 
AR PROTACs. ARV-110 (bavdegalutamide), an orally accessible 
AR PROTAC, is currently the most advanced PROTAC in 
phase II clinical trials for CRPC [60]. Phase II clinical data 
demonstrated its effectiveness in patients with T878X and 
H875Y mutations [61].

Combination therapies

Integrating therapies may enhance treatment efficacy and 
overcome resistance by simultaneously targeting multiple 
pathways.

Poly (ADP-ribose) Polymerase (PARP) inhibitors, including 
Olaparib and Rucaparib, combined with abiraterone or 
enzalutamide, have shown a survival benefit in mCRPC by 
improving progression-free and overall survival rates. Both are 
FDA-approved for the treatment of metastatic castration-resistant 
prostate cancer with deficient homologous recombination repair 
pathways [62,63]. Rucaparib is authorized for patients with 
BRCA1/2 mutations who have previously undergone ARSI 
therapy and taxane-based chemotherapy [64]. Olaparib has been 
authorized for an extended spectrum of HRR genes and does not 
require prior treatment with taxane-based chemotherapy [64]. 
Numerous clinical trials are presently examining the efficacy of 
new PARP inhibitors, both as standalone treatments and in 
conjunction with other drugs, in CRPC.

The combination of chemotherapeutic drugs, such as carboplatin 
with docetaxel, in patients whose disease has progressed on 
docetaxel monotherapy has demonstrated modest advantages. 
Approximately 20% of patients experienced delayed disease 
progression of about 3 to 6 months and a drop in PSA levels of ≥ 
50%; nevertheless, no level 1 evidence supports the utilization of 
platinum-based therapies in this context [65].

Angiogenesis inhibitors combined with chemotherapy demons- 
trated good outcomes in preclinical investigations; nevertheless, 
their success was only moderate [66]. A comprehensive 
understanding of angiogenesis and its regulatory signaling 

J Clin Trials, Vol.14 Iss.S31 No:1000001 4



Drug Target Phase NCT identifier

Samotolisib (LY3023414) PI3K 2 NCT02407054

Perifosine (KRX-0401) AKT 2 NCT00060437

Ipatasertib (GDC-0068) AKT 3 NCT03072238

Ridaforolimus (MK8669) mTOR 2 NCT00777959

Temsirolimus (CCI-779) mTOR 2 NCT00919035

Sapanisertib (MLN0128) mTOR 2 NCT02091531

Bevacizumab VEGF-A 3 NCT00110214

Cetuximab EGFR 2 NCT00728663

Dovitinib (TKI258) FGFR, VEGFR, PDGFR 2 NCT01741116

Cabozantinib (XL184) VEGFR, c-MET, c-KIT 3 NCT01605227

Masitinib (AB1010) KIT, PDGFR, FGFR 3 NCT03761225

Dasatinib (BMS-354825) SRC, c-KIT 3 NCT00744497

Opaganib Sphingosine kinase 1

In a phase III trial, Capivasertib, a selective inhibitor of
AKT1/2/3, combined with docetaxel, demonstrated an increase
in overall survival among patients with mCRPC [86].

Personalized/precision medicine

Prostate cancer is a diverse disease marked by considerable
genetic variability. Utilizing genomic profiling to identify
mutations and alterations in certain malignancies can facilitate
personalized treatment approaches. Concentrating on routes
based on genetic composition may improve outcomes in
resistant situations [87].

CONCLUSION
Treatment resistance in prostate cancer is a complex challenge,
necessitating a thorough comprehension of the underlying
mechanisms. Utilizing combination therapy, targeting the tumor
microenvironment and signaling pathways, adopting
personalized medicine and investigating innovative therapeutic
agents may enhance results for patients with treatment-resistant
prostate cancer. Continued research and clinical trials will be
essential in developing successful solutions to address this
intricate condition.
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