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Introduction
Age-related macular degeneration (AMD) is the most common 

cause of blindness among the elderly in industrialized countries [1]. 
AMD is characterized by retinal pigment epithelium (RPE) dysfunction 
and sub-RPE drusen formation in the early stage. With time, it may 
progress to retinal cell atrophy, and/or choroidal neovascularization in 
the macula. Recent studies incorporating genetic and epidemiological 
data have made a credible argument for chronic inflammatory events 
playing a central role in the pathogenesis and development of AMD. 
Interferon-gamma (IFN-γ), a soluble cytokine associated with innate 
and adaptive immunity, is considered to be a pro-inflammatory 
factor. Recent studies point towards an emerging relationship between 
IFN-γ and mechanisms underlying the pathogenesis of AMD. Along 
with other pro-inflammatory factors such as IL-1 and TNF-α, IFN-γ 
functions synergistically to activate inflammatory components, 
including the complement cascade and recruit immune cells such as 
macrophages, microglia, NK and T cells [2-5]. In AMD eyes, these 
immune cells are present in areas surrounding the outer retina and 
drusen deposits [6-8], they can induce direct damage to photoreceptors 
[8,9], potentially leading to vision loss. Yet, the interaction of pathways 
activated by IFN-γ is complex and not fully understood. Also, the role 
of IFN-γ as a possible therapy target is still unclear. Herein, we will 
review the literature on IFN-γ in the outer retina with focus on its role 
as a potential target for therapy for chronic inflammatory diseases of 
the eye. 

Is IFN-γ a Possible Target for Treatment of AMD?
In our previous studies, we found that constituents of drusen such 

as amyloid beta and advanced glycation endproducts (AGE) are capable 
of activating the IFN-γ pathway [10,11]. AGE not only upregulated 
IFN-γ but also several of its downstream effectors including RSAD2, 
STAT1, CXCL10, and CXCL11 (Figures 1-3). Indeed, in postmortem 
human eyes, we found increased accumulation of RSAD2, CXCL10, 
and CXCL11 to be associated with the presence of drusen deposit 
[12]. Others have shown that in vitro stimulation of cultured RPE cells 
with IFN-γ led to polarized complement factor H (CFH) secretion 
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predominantly localized to the apical surface [13-15]. This localization 
has been proposed to form a CFH gradient that could maintain 
retinal homeostasis and suppress a pro-inflammatory environment 
surrounding the photoreceptors. CFH is also a chemoattractant for 
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Figure 1: Summary diagram of differentially expressed gene results obtained 
from a microarray study of human RPE cell response to in vitro stimulation 
with amyloid beta (0.3 µM, left oval) or advanced glycation endproducts (AGE, 
10 µg/mL, right oval). Amyloid beta and AGE are two known components of 
drusen, and results suggest that both induce proinflammatory responses, 
including IFN-γ signaling.
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monocytes [16]. In addition, when co-cultured with activated T cells, 
RPE cells produce an apical gradient of increased CCL7, CXCL9, 
CXCL10, and CXCL11 through T cell derived IFN-γ [5].

IFN-γ may be involved in AMD pathogenesis through macrophage 
polarization. Depending on the different microenvironment, 
macrophages can polarize into specific phenotypes, such as M1 or M2 

macrophages [17]. The M2 subtype is predominantly pro-angiogenic, 
facilitating tissue repair and tends to increase during the normal 
aging process [18]. In contrast, the M1 subtype is predominantly pro-
inflammatory and there is a pathological shift towards M1 subtype with 
the development of AMD. INF-γ can selectively promote polarization 
into M1 subtype [19]. M1 macrophages promote pathological 
inflammation through the secretion of proinflammatory cytokines such 
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Figure 2: Molecular network generated by Ingenuity Pathway Analysis (IPA) of highly significant gene changes in human RPE cells after in vitro stimulation with AGE 
(10 µg/mL). Colored symbols represent genes that were significantly highly upregulated (red) with decreasing relative levels indicated by lighter shades (pink and 
light pink) or downregulated (green) in our data set [11]. The white entries are molecules from the Ingenuity database, inserted to connect all relevant molecules in a 
single network. Solid lines indicate known direct physical relationships between molecules, while dashed lines indicate known indirect functional relationships. Note 
the chemokine, CXCL11, and RSAD2 (viperin) are shown to be highly upregulated in this network, and were also associated with drusen in postmortem donor eyes 
[12]. The top two functionalities identified by Ingenuity for this molecular network are “Interferon Signaling,” “Role of Pattern Recognition Receptors in Recognition of 
Bacteria and Viruses”.
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as IL-1β, IL-6, and TNF-α [20,21]. IL-1β is a strong proinflammatory 
factor. Along with IFN-γ, it synergistically increases the expression 
and secretion of IL-6, a potent inflammatory factor involved in the 
autoimmune and inflammatory disorders, in RPE cells [2]. Stimulation 
of human cells with IFN-γ potentiates IL-1β release and production 
[22].

Antibodies designed to block IFN-γ activity have been effective in 
the treatment of chronic inflammatory disorders such as rheumatoid 
arthritis and Crohn’s disease [23,24]. Antagonizing the IFN-γ pathway 
has been investigated in the context of AMD. Interferons are separated 
into three subtypes (type 1, 2, and 3) and differentiation between 
subtypes is based on the receptor through which they signal [25]. Type 
1 interferon comprises of large sub-categories in humans including 
IFN-α, β, ε, κ and ω [26]. INF-γ is the only member of the type 2 subclass 
[25]. More recently, IFN-λ has been discovered and it is currently the 
sole member of the type 3 subclass [27]. Type 1 interferon including 
IFN-α and β have anti-proliferative and anti-angiogenic effects and has 
an antagonistic role to IFN-γ [28-32]. In the 1990s, IFN-α and β were 
used in the treatment of AMD [33-35]. It was found that IFN-α has 
minimal long-term therapeutic benefit and this was postulated to be 
due to the generation of anti-IFN-α antibodies as a result of treatment 
[36,37]. The utility of IFN-β was found to be more promising as it 
promotes proliferation and repair of damaged RPE and regression of 
CNV in monkey AMD models. More studies on the effectiveness of 
IFN-β have been published in literature [38-41]. Taken together, these 
studies indicate the importance of IFNs in AMD pathogenesis.

However, the use of IFN-γ as a therapeutic target can be 
complicated since in lower concentrations, IFN-γ shifts from being a 
proinflammatory factor to a more anti-inflammatory one [42,43]. At 
low levels, IFN-γ impedes homing of naïve T cells and Th2 cells to 
target organ [44]. Th2 cells induce fibrosis thereby counterbalancing 
the destructive effects of Th1 cells, which promote apoptosis [45,46]. 
Thus in the pathology of AMD, blocking IFN-γ may reduce the 
protective effects of Th2 and consequently aggravating the destructive 
function of Th1 cells [20,47].

Is there any Beneficial Role of IFN-γ in Terms of 
Protective/Anti-inflammatory Effect?

The role of IFN-γ is complex, since IFN-γ is associated with both 
protective and destructive inflammatory processes. IFN-γ is classically 
considered as a pro-inflammatory factor, yet in recent years, multiple 
studies have found IFN-γ to mediate an immune-modulatory and 
protective function. For example, in human endothelial cells IFN-γ 
inhibits the angiogenic activity of VEGF through activation of STAT1 
pathway [48], down-regulating VEGF mRNA in a dosage-dependent 
manner [49]. This may help to inhibit excess angiogenesis process 
in wet AMD. Interestingly, another study suggests that IFN-γ is able 
to mediate VEGF upregulation in RPE cells through the PI-3K/Akt/
mTOR/p70 S6 kinase pathway, and is independent of STAT1 [50]. 
Therefore, IFN-γ associated STAT1 activation may be beneficial. 
Another piece of evidence comes from the study of IFN-γ up-regulating 
CFH expression in RPE cells [15]. CFH can keep the complement 
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Figure 3: The Interferon Signaling Pathway identified by Ingenuity software. This is one of the canonical pathways that contain statistically significantly more genes 
than expected by chance in the group of 41-up and 18-down regulated RPE genes in response to AGE stimulation in vitro. Red symbols represent the genes from our 
stimulation study, while the white symbols represent genes inserted by Ingenuity to connect relevant molecules into a single pathway. 
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cascade in check and prevent tissue injury from excessive complement 
activation [51]. CFH is transcriptionally upregulated by STAT1, but 
oxidative stress, one of the most important risk factors for AMD, 
can disrupt this process by acetylating FOXO3, which competes with 
STAT1 for binding to the CFH promoter [15,52]. It is also known that 
STAT1-deficient mouse are highly susceptible to autoimmune disorders 
[53] and given that AMD may be considered an autoimmune disease 
[54,55], preserving STAT1 activation by IFN-γ may be important in 
mitigating AMD progression. Furthermore, IFN-γ can tilt the balance 
toward STAT1 by deactivating STAT3. STAT1 and STAT3 are negative 
regulators of each other and activate distinctly different downstream 
pathways [56]. STAT1 plays a key role in inhibiting angiogenesis, while 
STAT3 induces the production of VEGF directly or indirectly through 
hypoxia-inducible factor 1α in tumor cells [57-61]. INF-γ deactivates 
STAT3 by promoting STAT3 dephosphorylation [62]. Topical IFN-γ 
is being investigated for as a means of treatment for macular edema in 
uveitis (http://clinicaltrials.gov/show/NCT00943982). 

IFN-γ further down-regulates the VEGF pathway through the 
up-regulation IL-1RA [42]. IL-1RA inhibits IL-1 receptor bindings 
to IL-1, and thus performs an anti-inflammatory function [42]. IL-1β 
is strongly implicated in the pathogenesis of chronic inflammatory 
diseases [63]. Indeed, human RPE cells treated with amyloid beta 
strongly upregulated IL-1β [10]. Aberrant auto-upregulation of IL- 1β 
leads to excessive inflammation and promotes angiogenesis through 
upregulation of VEGF [64]. IL-1β is capable of inducing reactive 
oxygen species (ROS) in RPE cells [65] and ROS triggers the release 
of IL-8, which recruits pro-inflammatory cells such as macrophages 
[10,65,66]. With macrophages present in drusen deposits of AMD 
eyes, it plays a key role in promoting neovascular proliferation [67,68]. 
In AMD models IL-1RA have been shown to be effective in reducing 
the degree of CNV formation, likely through the inhibition of IL-1 
pathways [69].

IFN-γ may also play a beneficial role by regulating Th17 cells. Th17 
cells have been characterized as a subclass of T cells and implicated 
in numerous autoimmune disorders including diabetes, autoimmune 
encephalomyelitis, autoimmune uveitis, and thyroiditis [43]. Recently 
Th17 cell specific cytokines, IL-17 and IL-22 are found to be elevated 
in serum of AMD patients, further implicating Th17 cells in the 
pathogenesis of AMD [70]. The upregulation of IL-17 is believed to 
be mediated by complement activation product C5a [70]. In AMD 
patients, C5a is elevated in serum and may be associated with AMD 
at risk gene variant, which regulates complement activation [51,71]. 
IFN-γ inhibits T cell differentiation into Th17 and in murine models 
of Th1 related autoimmune disorders, knocking out IFN-γ results in a 
more severe disease process. This worsening is believed to be mediated 
through Th17 cell [72-74].

Conclusion
In conclusion, IFN-γ plays an intriguing role in the pathogenesis 

of AMD. Certainly, several lines of evidence suggest that inhibition of 
IFN-γ may prevent inflammation-mediated responses that contribute 
to the progression of AMD. However, given the evidence suggesting its 
involvement in anti-inflammatory and neuroprotective mechanisms 
in a number of murine autoimmune disease models [31], it is still 
debatable whether therapeutic inhibition of IFN-γ pathways would 
help counteract the progression of AMD. Further characterization of 
the IFN-γ mediated immunomodulatory pathways that are involved in 
the pathogenesis of AMD is necessary.
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