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Introduction 
Pancreatic ductal adenocarcinoma (PDA) is the fourth leading 

cause of cancer death in the United States. Most patients with PDA 
have a poor prognosis that includes a median survival rate of less than 6 
months and a 5-year survival rate of 3-5% [1,2]. At the time of diagnosis, 
the disease is often discovered to be in its late stages, as more than 85% 
of patients have tumors that have metastasized [2]. The aggressive 
nature of PDA can be attributed not only to its metastatic and invasive 
properties, but also to its resistance to chemotherapy and radiation. 
Currently, surgery remains the only option to decrease mortality 
in PDA patients. However, PDA still remains an elusive cancer that 
requires further studies to understand its molecular mechanisms and 
investigate possible therapeutic options.

Genetic instability is a known hallmark of cancer. One protein 
implicated in the mitotic instability of cancer cells is the RAN small 
GTPase (RAN). RAN is a universal nuclear-cytoplasmic transport 
protein that alters between two conformations–RAN-GTP and 
RAN-GDP. Specifically, RAN-GTP is localized to the nucleus of cells 
whereas RAN-GDP is found exclusively in the cytosol. This GTP/GDP 
switch allows RAN to migrate across nuclear pore complexes and 
transport protein and mRNA along with it [3-10]. Any disturbances 
in RAN expression could therefore lead to the abnormal transport 
of tumor oncogenes such as Akt or NF-κΒ [10]. RAN has also been 
shown to play an active role in microtubule polymerization, mitotic 
spindle formation, and cytoskeleton organization during mitosis. As 
a result, dysregulation of RAN has been shown to cause aneuploidy, 
microtubule dysfunction, and disturbances in cell migration [11,12].

High levels of RAN in tumors have been associated with poor 
prognosis in renal cell carcinoma, breast cancer, and epithelial ovarian 
cancer [13-15]. RAN expression has also correlated with tumor grade, 

incidence of metastasis, and overall survival rates in renal cell cancer. 
Experimental silencing of RAN has been shown to decrease cell 
proliferation and cell adhesion in vitro [15].

Osteopontin (OPN) is an integrin binding glycoprotein that 
derives its name from its original discovery in the bone matrix [16]. 
However, OPN is present in a wide variety of tissues of the body and 
has been implicated in various pathologic states such as neoplasia 
and inflammation [17]. Elevated levels of OPN were found in gastric, 
hepatocellular, and breast malignancies [18-21]. Most importantly, 
OPN has been shown to promote inflammation and metastasis by 
binding to multiple integrins and ligands in the CD44 receptor family. 
This ligand-receptor interaction results in the activation of various 
effector molecules including Ras, Src, MAPK, Akt, NF-κB, and matrix 
metalloproteinases (MMPs) that contribute to cancer development 
[22,23].

Recent studies have implicated RAN in the prometastatic invasive 
functions of OPN. Specifically, overexpression of OPN in breast cancer 
cell lines increases RAN expression, whereas RAN blockade induced an 
OPN-independent decrease in the cell metastatic properties [15]. We 
have recently established that OPN plays a critical role in mediating the 
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proinflammatory and prometastatic effects of nicotine in PDA through 
inducing VEGF, MCP-1, and metalloproteinase MMP-9 [24-27].
However, the role of RAN in PDA and its relationship to OPN has not 
yet been elucidated. In this study, we analyze the expression of RAN 
in various pancreatic lesions, correlate its expression with OPN, and 
study their relationship in PDA cell lines.

Methods
Tissue acquisition

Histologically confirmed human invasive PDA samples (n=51) and 
benign lesions (n=7; IPMN, n=4; cystadenomas, n=3) were obtained 
from patients who underwent surgical resection at the Thomas 
Jefferson University Hospital between 2005 and 2011. Matching 
specimens from adjacent nonmalignant tissues were obtained and 
analyzed whenever available, allowing comparison to PDA (n=22). 
Tissue samples were either fixed in neutral formalin for histologic 
processing or incubated in RNA Later (Ambion) for RNA studies. All 
patients signed an appropriate informed consent for tissue acquisition 
and study. The study was approved by the Institutional Review Board 
at Thomas Jefferson University.

RNA extraction and real-time reverse transcription 
polymerase chain reaction (PCR)

Total RNA was isolated from PDA cells or pancreata using Trizol 
reagent (Life Technologies, Gaithersburg, MD). RNAs were quantified 
and input amounts were optimized for each amplicon. RAN, OPN 
and GAPDH (internal control) primers and Taqman probes were 
purchased by Applied Biosystems. Complementary DNA (cDNA) 
was prepared, diluted, and subjected to real-time PCR. Samples were 
measured in duplicates and the relative mRNA levels were presented 
as unit values of 2^[CT (GAPDH)-CT (Ran-OPN)], where CT represents the 
threshold cycle value defined as the fractional cycle number at which 
the target fluorescent signal passes a fixed threshold above the baseline.

Cell culture and treatment: Six PDA cell lines (AsPC-1, HPAF, 
MiaPaCa-2, Panc-1, PK-9, Hs-766T) were used to explore the basal 
levels of RAN and OPN. Eventually, two pancreatic cancer cell lines 
were used for the in vitro studies: MiaPaCa-2 and AsPC-1 (American 
Type Culture Collection, Manassas, VA). MiaPaca-2 cells, which express 
high levels of RAN and lower levels of OPN were used to explore the 
effect of knocking down RAN on OPN transcription, and the effect of 
overexpressing OPN on RAN transcription. In contrast, AsPC-1 cells, 
which express high levels of OPN and lower levels of RAN were used 
to explore the effect of knocking down OPN on RAN transcription, 
and the effect of overexpressing RAN on OPN transcription. Cells were 
cultured at 37°C and maintained in RPMI-1640 supplemented with 
10% fetal bovine serum in a humid atmosphere of 5% CO2/95% air.

Transient transfection: To understand the interactions and 
mutual regulation of OPN and RAN in PDA cells, pGEM4–2rcDNA 
plasmid containing the full-length cDNA sequence that encodes 
mouse OPN was a generous gift from Dr. David Denhardt (Rutgers 
University, New Brunswick, NJ), and pCDNA.3-RAN plasmid was 
a generous gift from Dr. Mohamed El-Tanani (Centre for Cancer 
Research and Cell Biology School of Medicine, Dentistry & Biomedical 
Sciences, Queen’s University, Belfast, Northern Ireland) were used 
for overexpression studies. Cells were×plated10 at a concentration 
of 25/ml. At approximately 80% confluence, cells were depleted in a 
medium containing 0.1% BSA for 18 h. Cells were transfected using 
cationic liposome reagent TransFast (Promega, Madison, WI), with 
10 µg of OPN or RAN cDNA or with the empty vectors. In addition, 

we performed parallel transfection experiments with a pGEM4- or 
pCDNA.3-enhanced green fluorescent protein (EGFP) plasmid and 
counted EGFP-expressing cells vs. total cell number to obtain an 
estimate of transfection efficiency (data not shown). We estimated our 
transfection efficiency at approximately 80%. After 3 h, the medium 
volume was increased to 2 ml. After 24 h, real time PCR was performed 
to compare gene levels in control and in OPN- and RAN-transfected 
cells.

siRNA sequences and constructs: Using GenBankTM sequence 
P62826 for human RAN and AK315461 for human OPN cDNAs and 
computer analysis software developed by Applied Biosystems/Ambion, 
candidate sequences in the RAN and OPN cDNA sequence for RNAi 
with no homology with other known human genes were selected and 
used during transient transfection experiments. Human mismatch or 
scrambled siRNA sequences (Applied Biosystems/Ambion; Austin, 
TX) possessing limited homology to human genes served as a negative 
control. Transfection was done with TransFast (Promega, Madison, 
WI) in AsPC-1 and Mia PaCa-2 cells as directed by the manufacturer. 
Cells were examined for RAN and OPN expression by real time PCR.

Statistical Analysis
The relationships between OPN and RAN were examined using 

Spearman rank correlation. Tumor data only were examined for the 
relationships between RAN and OPN with other covariates, such as 
vascular lymphatic invasion, perineural invasion, diabetes, obesity, T 
stage, smoking status, and BMI. Summary statistics were calculated 
for each of the categories of the dichotomous covariates, using the 
Wilcoxon test for statistical tests.

The predictive ability of RAN and OPN was examined using ROC 
curves. Two logistic models were used, one with the dichotomous 
outcome of tumor vs. normal, and another with the dichotomous 
outcome of tumor vs. benign. OPN and RAN at their medians were 
analyzed using the Kaplan-Meier method with median survival and 
log-rank tests. Cox-proportional hazards regression was used with the 
continuous variables and hazard ratios. Robust variance analysis was 
conducted using Stata 11.2 (StataCorp LP, College Station, TX); the 
remainder of the analyses was carried out using SAS 9.3 (SAS Institute, 
Inc., Cary, NC). All in vitro experiments were performed 4 to 6 times. 
Data were analyzed for statistical significance by ANOVA with post-
hoc student t test analysis. Differences were considered significant at 
P ≤ 0.05.

Results
Patient characteristics

An overview of the clinical patient data is summarized in table 1. 
The average age at the time of surgery was 67.5 years in the tumor group 
and 59.9 years in the benign group. The tumor group contained an equal 
number of males and females (51% and 49% respectively), whereas 
the benign group had a higher proportion of female patients (85.7%). 
BMI was also slightly lower in the tumor group when compared to the 
benign group (26.9 versus 30.9 respectively). The majority of patients 
with PDA presented at T3/T4 stage (81.4%) and showed evidence of 
both lymphatic invasion (83.9%) and perineural invasion (88.2%).

Expression of RAN and OPN in pancreatic tissues

RNA was extracted and cDNA was prepared from 51 PDA tissue 
specimens with matching adjacent tissue when available (n=22) and 
7 benign lesions (IPMN, n=4; cystadenomas, n=3). Real time PCR 
was done using RAN and OPN primers with GAPDH as the internal 
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control. The distributions of OPN and RAN were examined. OPN was 
found to be highly skewed and these distributions were improved by 
log-transformation; log-transformed OPN was used in all subsequent 
analyses where appropriate. RAN and OPN were significantly 
(P<0.0002) higher in the tumors when compared to normal adjacent 
tissue (Figure 1). Benign lesions, on the other hand, expressed 

significantly (p=0.0054) lower levels of RAN and OPN when compared 
to PDA tumor tissue. A Spearman correlation analysis of ln(OPN) 
vs. RAN for all tissue samples demonstrated a significant correlation 
between the two genes, suggesting that RAN and OPN may influence 
each other’s behavior (p<0.0001) (Figure 2).

Association with clinicopathological features 

The expression of RAN and OPN were studied in relation to 
survival, T stage, resected lymph node status, perineural invasion, 
smoking, diabetes, and obesity. A significant association was seen 
between increased RAN expression and perineural invasion (HR=0.79, 
95% CI 0.59, 1.07; p=0.0378.), while no other comparisons were 
significant. Although it did not reach statistical significance, a trend 
towards association between increased RAN and decreased survival 
was noted (p=0.107).

Predictive capability of RAN and OPN to distinguish tumor 
vs. non-tumor tissue

The predictive ability of RAN and OPN was examined using ROC 
curves. Two logistic models were used, one with the dichotomous 
outcome of tumor vs. normal and another with the dichotomous 
outcome of tumor vs. benign. Tables 2 and 3 and Figures 3A and 
3B present the areas under the ROC curve for RAN, ln(OPN), and 
ln(OPN)+RAN. Ln(OPN)+RAN was the best predictor among the 
two-the combined predictive value for ln(OPN)+RAN was higher in 
discriminating between tumor vs. normal adjacent tissue (77%) (Table 
2 and Figure 3A), and between tumor vs benign (89%) (Table 3 and 
Figure 3B).

Expression of RAN and OPN mRNA in different PDA cell 
lines 

After extracting mRNA from the following cell lines (AsPC-1, PK-
9, Panc-1, HPAF, MiaPaCa-2, Hs-766T), baseline levels of RAN and 
OPN mRNA were evaluated for relative comparison. A wide range 
of RAN and OPN levels was noted (Figure 4). AsPC-1 cells express 
the least amount of RAN while MiaPaCa-2 cells contained the least 
amount of basal OPN mRNA. The Hs766T pancreatic cancer cell line 

All PDAs 
(n=51)

Matched normal 
tumor-adjacent tissue (n=22)

Benign
(n=7)

Gender [n (%)]
Male 26 (51.0) 9 (40.9) 1 (16.7)
Female 25 (49.0) 13 (59.1) 6 (83.3)
Age (years) 
[mean (SD)]

67.5 (9.7) 68.1 (9.7) 59.9 (10.3)

BMI [mean (SD)] 26.9 (5.5) 27.3 (7.2) 30.9 (8.9)
Staging [n (%)]
T1/2 8 (18.6) 5(22.7)
T3/4 43 (81.4) 17 (77.3)
Lymph node status [n (%)]
Positive 41 (83.9) 17 (76.7)
Negative 10 (16.1) 5(23.3)
Perineural invasion [n (%)]
Positive 45 (88.2) 18 (85.7)
Negative 6 (11.8) 3(14.3)
Differentiation [n (%)]
Well 2 (3.9) 1(4.5)
Moderate 36 (70.6) 17 (77.3)
Poor 13 (25.5) 4(18.2)

Table 1: Clinical characteristics of patients and tumors. BMI body mass index, PDA 
pancreatic ductal adenocarcinoma. PDA tissue (n=51) and if available, adjacent 
normal tissue (n=22) was anazlyed for RAN and OPN expression. Benign tissue 
comprises IPMN without invasion (n=4), and cystadenomas (n=3).

Figure 2: Scatter plot illustrating RAN and OPN expression in all tissue types. 
The relationship between RAN and OPN was examined using Spearman rank 
correlation in PDA tumor tissue (n=52), normal adjacent tissue pairs (n=22) 
and benign IPMN lesions (n=7). A strong correlation was seen between RAN 
and OPN in all tissues with ρ=0.57 (p<0.0001).
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Figure 1: mRNA expression by tissue type. Expression of RAN and OPN 
genes in pancreatic ductal adenocarcinoma (n-51), adjacent normal (n=22), 
and benign tissue (n=7) as determined by real-time quantitative PCR. The 
y-axis is the logarithmic relative mRNA expression normalized to expression 
in the tumor sample. Relative amount of mRNA in each target gene was 
calculated as 2^[CT (gene of interest)-CT (GAPDH)], normalized using GAPDH as the 
internal control. The box plots show the interquartile range (IQR), median 
(bar in box), maximum and minimum values, and outliers outside 1.5×IQR. 
Columns labeled with an asterisk indicate statistical significance (p<0.05) in 
the level of mRNA expression compared to tumor. RAN and OPN expression 
is significantly higher in PDA tissues versus matched adjacent tissues and 
benign tissue (p<0.01).
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contained the greatest amount of both RAN and OPN. We chose the 
two cell lines MiaPaCa-2 and AsPC-1 to conduct the following gain- 
and loss-of function studies.

OPN over- or under-expression does not affect RAN transcription 
Previous studies on breast cancer cells implicated RAN as a downstream 
effector of OPN [15]. Here, the relationship between these two 
genes in PDA cell lines was explored. Transient transfection of OPN 
plasmid significantly increased OPN transcription, but had no effect 
on RAN gene expression (Fig 5A). When we used OPN siRNA, OPN 
transcription was significantly reduced after 24 h, but had no effect on 
RAN transcription (Figure 5B). Interestingly, when we over expressed 
RAN in AsPC-1 cells, OPN transcription was significantly increased 
(four-fold) (Figure 6A). When RAN was knocked down using siRNA, 
OPN gene expression levels were significantly reduced (75% reduction) 
(Figure 6B). These data show that in PDA cells, RAN acts upstream of 
OPN to regulate its transcription.

Discussion
The RAN small GTPase has classically been described as a Ras-

associated protein involved in the nuclear-cytoplasmic transport of 
proteins and in the formation of the mitotic spindle [5-8]. Recently the 
focus on RAN has shifted to abnormalities arising from its dysregulation 

and subsequent genetic instability and cancer progression [3,4]. To our 
knowledge, this study is the first to investigate the expression of the 
RAN small GTPase in PDA. The significant elevation of RAN and OPN 
in PDA lesions when compared to normal adjacent tissue and benign 
tissue strongly implies that these proteins are involved in tumorigenesis 
and perhaps the progression from low to high grade dysplasia.

Here, we introduce RAN and OPN as novel tissue biomarkers 
for PDA. ROC analysis of RAN and OPN demonstrated a 77% 
accuracy when the predictive value of both markers is used together 
to distinguish between PDA and normal adjacent tissue, and an 89% 
accuracy in distinguishing between tumor and benign tissue. Hence, 
these two proteins have the potential to serve as useful markers in 
differentiating neoplastic pancreatic pathology. Although there are 
limited studies on the use of RAN as a biomarker, one group analyzed 
RAN expression in squamous cell carcinoma of the lung and found 
significantly increased levels of RAN in tumor tissue when compared 
to normal adjacent tissue. RAN also correlated with lung cancer stage, 
giving further support to its possible role as a tissue biomarker [28]. 
Many studies have considered OPN as a possible biomarker for many 
cancers. In gastric cancer, high levels of OPN have been associated with 
increased proliferation, increased stage, and metastasis [18]. Another 
study observed that OPN levels became elevated in the serum of 
patients one year before the diagnosis of hepatocellular carcinoma [29]. 
Similar results in pancreatic, prostate, and breast cancers, as well as in 
gliomas have further corroborated OPN as an important biomarker for 
identifying malignancy [30-36].

Metastasis is the most significant contributor of death due to 
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Figure 4: Basal levels of RAN and OPN mRNA expression in available 
pancreatic cancer cell lines (HPAF, AsPC-1, PK9, HS766T, MiaPaCa, and 
Panc) as determined by real-time PCR. The greatest amount of RAN and OPN 
expression was seen in the Hs766T cell lines. The least amounts of RAN and 
OPN expression were seen in AsPC-1 and MiaPaCa respectively.

ROC 95% ROC CI OR 95% OR CI p-value
RAN 0.73 (0.61, 0.85) 2.68 (1.60, 4.47) 0.0002
ln (OPN) 0.74 (0.63, 0.85) 1.85 (1.38, 2.48) <0.0001
ln (OPN)+RAN 0.77 (0.66, 0.88)

Table 2: ROC values for tumor samples compared to matched adjacent normal 
(non-tumor) pancreatic tissue; 95% CI and OR are shown. RAN and OPN isoforms 
are overexpressed in tumor tissue relative to adjacent to normal expression.

ROC 95% ROC CI OR 95% OR CI p-value
RAN 0.84 (0.72, 0.97) 2.68 (1.34, 5.35) 0.0054
ln(OPN) 0.83 (0.61, 1.00) 2.54 (1.37, 4.74) 0.0032
ln(OPN)+RAN 0.89 (0.76, 1.00)

Table 3: ROC values for tumor samples compared to benign pancreatic tissue; 95% 
CI and OR are shown. RAN and OPN isoforms demonstrated a strong association 
with the presence of malignancy (ROC=0.84, 0.83 respectively). Combining RAN 
and OPN slightly increased the predictive value for malignancy (ROC=0.89).
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cancer in a host. Although we found no significant correlation between 
RAN and OPN expression and venous/lymphatic invasion, there was 
a significant association between RAN expression and perineural 
invasion. Perineural invasion is a poorly understood process by 
which cancer cells metastasize to nerves and their surrounding neural 
sheaths [37]. Although metastatic spread via neural invasion is often 

overlooked, PDA has among the highest rates of perineural invasion 
when compared with other malignancies. Out of 51 PDA patients in 
our study, 45 (88%) showed evidence of perineural invasion. Perineural 
invasion has been associated with decreased survival and pain in 
PDA patients [38]. It has been hypothesized that the extremely high 
rates of perineural invasion in PDA may be attributed to prominent 
neurotropic effects on PDA cells and the proximity of the pancreas to 
prominent nerve plexuses (such as the plexuses at the celiac axis and 
the superior mesenteric artery). The molecular mechanisms mediating 
perineural invasion have implicated several important cytokines–NGF 
(nerve growth factor), BDNF (brain-derived neurotrophic factor), 
TGF-α (transforming growth factor), and EGFR (epidermal growth 
factor receptor) [37,39]. Many of these molecules promote the activity 
of MMP-2 and MMP-9, two important metalloproteinases that not 
only promote perineural invasion, but also have been shown to be 
downstream effectors of OPN [40,41]. High levels of RAN showed 
strong association with reduced survival although it did not reach 
significance (p=0.107). Nonetheless, the interaction between RAN and 
the various cytokines responsible for perineural invasion may be an 
interesting avenue for exploration in the future.

Although the mechanism by which invasion is regulated by RAN 
has not been resolved, a previous study in breast cancer cell lines has 
implicated OPN as coordinating with RAN to enhance metastatic 
and invasive potential (15). We were intrigued to notice that contrary 
to prior studies in the rat mammary cell lines, altering OPN levels 
in PDA cells did not significantly alter levels of RAN. Instead, the 
opposite was found–altering RAN produced corresponding changes 
in OPN expression. Furthermore, data from our lab have shown that 
overexpressing RAN also induced a significant (p<0.05) stimulation of 
the expression of CD44, a cell surface receptor for OPN (unpublished 
observation). This association suggests that in addition to increasing 
OPN, RAN may also support transcriptional activity of this OPN 
receptor that allows Ras, Akt, and other oncogenes to become more 
active [22]. An extremely strong correlation between OPN and RAN 
expression in human pancreatic tissue specimens further suggests that 
these two proteins are intimately related. Nonetheless, the signaling 
pathways involved in the RAN-mediated regulation of OPN are yet 
to be studied. Furthermore, whether RAN directly impacts OPN 
transcription by activating its promoter or via stimulation of other 
signaling pathways known to activate or deactivate OPN is currently 
unknown. Studies to answer these questions are currently ongoing in 
our laboratory.

In conclusion, the high expression of RAN and OPN mRNA 
in human PDA tissue suggests that these two genes may serve as 
important discriminating biomarkers between benign and malignant 
pancreatic pathology. The strong association between increased RAN 
and perineural invasion further suggests a novel role for this small 
GTPase in the aggressive nature of PDA. Finally, the strong correlation 
between RAN and OPN in pancreatic tissue and the hypothesis of OPN 
as a downstream effector of RAN is unique and can provide a novel 
therapeutic target in PDA patients.
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