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Abstract

Disease and drugs can modulate the concentrations of hundreds of proteins in the blood which can be accurately

measured using contemporary proteomic methods. Nevertheless, it is common practice to reduce the plurality

of disease and drug effects by a few proteins for the pragmatic purposes of immunoassay development. The vast

majority of putative biomarkers discovered by this reductionist approach never reach the clinic for two reasons:

the prohibitive time and cost of assay development and the acute risk of a reduced protein panel failing when

validated on a broader cross-section of the population.

Global Proteomics is an alternate methodology where all blood proteins modulated by disease or drug are used

to resolve pharmacodynamic questions without the time, cost, and risk of developing an immunoassay. The

Global Proteomic approach was applied to an Alzheimer study where it was demonstrated that a large panel of

plasma proteins is predictive of disease severity (as measured by the Mini Mental State Examination).

Furthermore, a subset of this panel was shown to be modulated by disease treatment (donepezil), thereby providing

a means to quantify response to treatment. Finally, to establish that the Global Proteomics methodology has

broad utility, it was also applied to a Hypertension study, illustrating that a panel of plasma proteins can also be

derived that are correlated with disease severity (as measured by blood pressure). In particular, the Global

Proteomics methodology can readily distinguish patients responsive and non-responsive to hypertension therapies.

The Global Proteomics approach is based upon a bioinformatics analysis approach which clusters samples by

proteomic similarity and then uses a geometric representation of sample similarity to answer common

pharmacodynamic questions.
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Introduction

Blood-based biomarkers of disease and drug treatment

have been the focus of intense interest in recent years. It is

widely believed that most diseases and drugs modulate pro-

tein concentration in the blood.  Indeed, the promise of per-

sonalized disease treatment assumes the existence of (pre-

dictive) markers of drug response in blood. Biomarker strat-

egies are being widely adopted by the pharmaceutical in-

dustry (Mattingly and Saxberg, 2005) and play a central role in the 
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FDA’s Critical Path Initiative (FDA, 2004). Finally, and per-

haps most importantly, blood is the most accessible and least

invasive sample for biomarker and diagnostic assays.

Contemporary proteomic methods are able to accurately

measure the modulation of low abundance proteins in the

blood. Multiple studies demonstrate that proteomic platforms

have low sample to sample variation (CV ~ 14%) and high

correlation between proteomic measurements and actual

differential protein abundance in plasma (R2 ~ 0.99) (Roy

et al., 2004; Wiener et al., 2004; Silva et al., 2005). These

figures of merit approach the precision and accuracy of

ELISA technology. State of the art proteomic platforms rou-

tinely track 50000 plasma peptides reproducibly and accu-

rately (Roy et al., 2004; Follettie et al., 2006). Furthermore,

advances in protein and peptide separation technologies

coupled with mass and retention time fingerprinting meth-

ods for protein identification enable proteomic platforms to

identify plasma proteins at the ng/ml level (Conrads et al.,

2000; Strittmatter et al., 2003; Adkins et al., 2005; Chen et al.,

2005; Lekpor et al., 2007; Anderson and Anderson, 2002). These ad-

vancements allow proteomics to address the wide dynamic

range of protein concentrations in blood, estimated to be 10

to 12 orders of magnitude (i.e. the diameter of the sun com-

pared to the diameter of an orange) (Anderson and Anderson, 2002).

An excellent overview of the state of the plasma proteomics

can be found in the summary publication of the HUPO

Plasma Proteome Project wherein standardized plasma and

serum samples were analyzed by 18 participating labs using

a variety of proteomic platforms (Omenn et al., 2005).

Despite the availability of blood samples and proteomic

technologies for blood analysis, plasma biomarkers have not

had the widespread impact in drug development anticipated.

Recent publications have emphasized that plasma biomarker

assays are not reaching the clinic because of the daunting

post-discovery tasks of assay development and validation

(Aebersold et al., 2005; Cottingham, 2006; Anderson, 2005;

Rifai et al., 2006; Anderson and Hunter, 2006). Although disease

and drug may modulate the concentration of hundreds of

blood proteins, only a few proteins can be developed into an

immunoassay panel due to time and cost factors. Conse-

quently, this reductionist approach attempts to quantify the

widespread effects of disease and drug in blood using only

a few peptides or proteins. Furthermore, small peptide or

protein panels have an increased risk of failure when vali-

dated on a larger cross-section of the population. Unfortu-

nately, the time and cost of assay development will have

already been borne before it is known whether the panel

passes or fails the validation test. There are many examples

of the reductionist approach using SELDI technology

(Petricoin et al., 2002a; Gillette et al., 2005).  These biomarker

panels are anonymous peptides in that they are defined by

mass but not sequence. A well-known example of this ap-

proach generated a panel of peptides that distinguished ova-

rian cancer samples from healthy controls (Petricoin et al., 2002b).

Re-examination of the data revealed design flaws in this

study (Baggerly et al., 2004) which has had the positive ef-

fect of greater attention to study design in the proteomics

community (Coombes et al., 2005; Boguski et al., 2003).

Global Proteomics is an alternative methodology where

the proteomic analysis itself is the assay. This has three

important advantages over the reductionist approach. First,

the same technology is used for discovery and assay. Con-

sequently, there are no development costs in the Global

Proteomics approach. Second, there is no need to reduce

the set of all modulated proteins for the purposes of cost-

effective assay development. This ensures that the Global

Proteomics assay does not compromise on sensitivity and

specificity during the biomarker validation phase. Third, the

Global Proteomics assay provides system-wide mechanism

of action insights since the assay profiles the entirely of

detectable proteins modulated by disease and drug.

Figure 1:. The concept of the disease axis and disease severity.
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Geometric tools for visualization and quantitation are re-

quired to perform Global Proteomic assays. Specifically, a

clustering technique such as multidimensional scaling (MDS)

(Cox et al., 2001) or principal component analysis (PCA) is

applied to the proteomic dataset to obtain geometric rela-

tionships among the samples. This geometric positioning of

samples is based upon overall sample similarity and dissimi-

larity. Pharmacodynamic questions are then resolved by in-

terpreting the geometric relationships among sample groups.

To illustrate, consider the hypothetical clinical study pre-

sented in Figure 1.

Figure 1 presents a study with four sample groups: Nor-

mal, Disease, Group A and Group B where samples have

been geometrically clustered by similarity. The empty boxes

represent the geometric medians or centroids of the Nor-

mal and Disease groups. The line from the Normal centroid

to the Disease centroid is called the disease axis. The dis-

ease axis hypothesis is that the location of samples along

the disease axis correlates to disease severity. For example,

samples closer to the Normal centroid (i.e. closer to nor-

mality) are healthier than those closer to the Disease cen-

troid. Depending on the groups in the study, this permits

various pharmacodynamic interpretations of the data. For

example:

Dose Optimization: If Group A and Group B are two doses

of the same drug treatment then the dosage administered to

Group B is more efficacious since Group B samples are

closer to normality.

Compound Selection: If Group A and Group B are two

clinical compounds then the compound administered to Group

B is more efficacious since Group B samples are closer to

normality.

Patient Segregation: If 12 patients in a clinical study are

administered the same drug then those in Group B had a

better response to the drug than those in Group A.

Peptides that contribute most significantly to disease se-

verity can be readily obtained and standard mass spectrom-

etry (MS) techniques can be applied to identify proteins from

which these peptides are derived. These proteins can be

classified into biological processes, pathways, cellular loca-

tions, etc. using tools such as DAVID (Denis, 2003). This

enables drug mechanism of action and disease biology in-

sights. If desired, proteins or peptides can even be selected

for immunoassay or MRM (Multiple Reaction Monitoring)

development.

In this paper we introduce the Global Proteomics analysis

technique and apply it to an Alzheimer proteomic study with

33 healthy controls, 19 untreated, early stage Alzheimer

patients and 25 donepezil-treated, early stage Alzheimer

patients. Alzheimer's diagnosis and severity is performed

using a collection of tests including the Mini Mental State

Examination (MMSE) (Folstein et al., 1975). To date, there

is not an approved blood test for the diagnosis of Alzheimer's

disease. This is of considerable concern as an estimated

4.5 million Americans have Alzheimer's disease which has

more than doubled since 1980 and is expected to continuing

growing as the population ages (Hebert et al., 2003). Na-

tional direct and indirect annual costs of caring for individu-

als with Alzheimer's disease are at least $100 billion, ac-

cording to estimates used by the Alzheimer's Association

and the National Institute on Aging (Ernst and Hay, 1994).

The primary results include the discovery of 282 plasma

peptides that predict Alzheimer disease severity as mea-

sured by the Mini Mental State Examination (MMSE). Fur-

thermore, a subset of this panel is shown to be modulated

by disease treatment (donepezil) thereby providing a means

to quantify response to treatment. Along the way, novel vi-

sualization and data analysis techniques are introduced to

enable this new time and risk efficient approach to pharma-

codynamic biomarker development.

The final goal of this paper is to demonstrate that the

Global Proteomics methodology is applicable to many indi-

cations, not only Alzheimer's. To achieve this, Global

Proteomics was applied to a hypertension plasma study with

14 controls, 15 hypertensive patients responsive to treat-

ment and 10 hypertensive patients not responsive to treat-

ment. Results for the hypertension study demonstrate that

blood pressure and global proteomic disease severity are

highly correlated. Furthermore, the Global Proteomics ap-

proach clearly segregated responders and non-responders

to hypertension treatment.

Materials and Methods

Alzheimer’s Clinical Human Plasma

Patients meeting the National Institute of Neurological

and Communicative Disorders and Stroke - Alzheimer’s Dis-

ease and Related Disorders Association (NINCDS-

ADRDA) criteria for probable sporadic Alzheimer’s dis-

ease (AD) patients were recruited from the Sir Mortimer

B. Davis Jewish General Hospital (JGH)/McGill University

Memory Clinic, a tertiary care facility for the evaluation of

memory loss in Montreal, Canada.  All AD patients were

administered the Folstein Mini-Mental State Examination

(MMSE) and underwent comprehensive neuropsychologi-

cal testing by Memory Clinic neuropsychologists (Schipper).
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Healthy elderly controls aged 60 years and over were re-

cruited from JGH Family Practice clinics.  Healthy subjects

had no memory complaints and scored within one standard

deviation of age- and education-standardized normal values

on a series of memory and attention tests.  Clinical histories

for each patient were obtained after written informed con-

sent was obtained from all subjects or their primary

caregivers with approval by the Research and Ethics Com-

mittee of the JGH. After screening samples for age match-

ing and therapy regimens, 33 healthy (i.e. control) patient

samples, 19 untreated, mild-Alzheimer’s (early stage) pa-

tient samples and 25 donepezil-treated, mild-Alzheimer’s

(early stage) patients samples were analyzed using the Glo-

bal Proteomic method. Supplementary table 1 provides clinical

information for the 77 study samples.

Hypertension Clinical Human Plasma

Hypertensive and hypertensive-controlled patient plasma

samples were purchased from SeraCare Life Sciences

Inc.’s (Gaithersburg, MD, USA) line of BioRepository

(BioBank) Clinical Specimens. All specimens were collected

under strict adherence to relevant HIPAA, IRB and informed

consent procedures and were accompanied with demograph-

ics and basic medical histories. Samples were age and gen-

der matched and screened for hypertension mono-therapy.

In total, 14 healthy control samples, 15 hypertensive con-

trolled patient samples and 10 hypertensive uncontrolled

patient samples participated in the study. Controlled hyper-

tensive is defined to be diastolic and systolic blood pressure

below 90 and 140, respectively, whereas uncontrolled hy-

pertensive is defined to be above 90 and 140, respectively

(Chobanian et al., 2003). Treatment therapies included Ace

Inhibitors and Beta Blockers.

Study Design

Several general rules were employed to construct an un-

biased study design. First, healthy, untreated Alzheimer and

treated Alzheimer samples were interleaved during sample

processing and analysis.  Second, randomization or explicit

definition of the order of sample processing ensured that the

order in which the samples were processed at each step

was never repeated.  Third, a sufficient number of repli-

cates were analyzed to overcome processing bias and the

unforeseen loss of samples not passing quality control checks.

Samples to be compared were processed and analyzed on

the same instruments with the same lot of reagents, when-

ever possible.

The platform variation has been measured several times

with median coefficient of variation estimated to be 14.1%

(data not included). Both Alzheimer and Hypertension

samples illustrate median coefficient of variation across all

peptides measured in the 30% to 40% range depending on

the cohort. A power analysis indicates that at least 10 samples

per cohort are required to reliably detect 25% differences

among cohorts in the two studies.

Plasma Sample Preparation.

Rigid sample processing and analysis procedures includ-

ing quality control checks were controlled by a series of

standard operating procedures (SOPs).  The SOPs cover

every step of the sample processing and analysis, begin-

ning with shipment of samples.  To ensure sample integrity,

plasma samples were shipped on dry ice with a WarmMark®

temperature tag (VWR, Mississauga, Ontario, Canada) in-

cluded in the shipping container.  Upon reception, frozen

plasma samples were bar-coded, entered into the Labora-

tory Information Management System (Nautilus LIMS,

Thermo Electron, Woburn, MA) and stored at -80°C.

To begin the sample preparation, samples were thawed,

passed through 0.22   m filters and then transferred to 24-

well plates.  Several standard plasma samples are processed

with the study samples to monitor each step of the proce-

dure and ensure reproducibility.  Plasma samples were de-

pleted of high abundance proteins using the Multiple Affin-

ity Removal System™ (MARS, Agilent Technologies, Palo

Alto, CA) on an Agilent 1100 HPLC fitted with a refriger-

ated (4°C) autosampler and fraction collector (Bjorhall).

The depletion method was a modified version of the Agilent

MARS protocol (Sitnikov). Plasma samples were loaded

onto the column in 150 mM ammonium bicarbonate (pH

7.8) for 10 minutes, and the unbound proteins were col-

lected.  The column was then washed for three minutes in

Agilent buffer A.  Bound proteins were eluted over eight

minutes in Agilent buffer B.  The column was then re-equili-

brated in 150 mM ammonium bicarbonate (pH 7.8).

Depleted plasma samples were proteolyzed under dena-

turing conditions (8 M urea / 400 mM ammonium bicarbon-

ate, pH = 8.0) with endo-LysC (Princeton Separations,

Adelphia, NJ) (1:50, enzyme: total protein) for two hours,

and then diluted (4:1) and proteolyzed with trypsin (Promega,

Madison, WI) (1:50, enzyme: total protein) for an additional

16 hours.  Following proteolysis, the peptides were desalted

on a 10x10mm C18 HPLC guard column (Phenomenex,

Torrance, CA).  Buffer A was water/0.1% TFA, and buffer

B was acetonitrile/0.1% TFA.  After a two-minute wash in

2% B, the samples were eluted by a one-minute ramp up to

90% B.  The column was then re-equilibrated in 2% B.
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Following desalting, the samples were fractionated by SCX

chromatography using a 4.6x150 mm BioBasic column

(Thermo Electron, Bellefonte, PA).  The Agilent 1100

HPLC was operated at a flow rate of 800  l/min. The

mobile phase A was 5 mM ammonium formate/15% aceto-

nitrile, and mobile phase B was 1 M ammonium formate/

15% acetonitrile.  The gradient was developed by moving

from 2.5% to 75% B over the course of 20 minutes.  Prior

to injecting plasma samples, the system was verified by sepa-

rating a mixture of peptides.  The measured retention times

of two standard peptides must be within 6 seconds of the

accepted retention time.  Eight fractions were collected from

the separated peptides.  The fractionated samples were then

freeze-dried in bar-coded 24-well plates and stored at -80°C.

The distribution of fractions into 96-well plates for mass

spectrometry analysis was accomplished on a Multiprobe

II HT Plus (Packard, Meriden, CT) four channel liquid han-

dler.  Sample plates were then lyophilized and stored at -

80°C.

Liquid Chromatography-Mass Spectrometry (LC-MS)

The LC-MS system consisted of a CapLC (Waters,

Milford, MA) with a cooled autosampler and a QTOF Ul-

tima (Waters, Milford, MA) controlled by MassLynx ver-

sion 4.0 software.  Samples were reconstituted in 15   l of

water/10% acetonitrile/0.1% formic acid solution and in-

jected onto a reversed-phase (Jupiter C18, Phenomenex,

Torrance, CA) column.  For the reversed-phase HPLC sepa-

ration, buffer A was water/0.2% formic acid, and buffer B

was acetonitrile/0.2% formic acid.  The gradient started at

10% B and was ramped up to 60% B in 55 minutes.  After

holding at 60% B for two minutes, B was decreased to

10% for column re-equilibration before the next injection.

For LC-MS survey scans, the mass spectra were acquired

over 400-1600 Da at a rate of 1 spectrum/second.

Instrument performance was verified by injecting 5   l of

a peptide standards mixture.  Performance characteristics

were automatically generated by the platform.  The sensi-

tivity was recorded in terms of the number of multiply-

charged ions. The retention time and mass accuracy of

two peptides in the standard samples were also recorded.

Sample lists were generated by the LIMS and imported

into MassLynx.  Samples were injected sequentially by frac-

tion.  As data was acquired from the mass spectrometer, it

was automatically retrieved from the instrument computer

to a central database where it was registered. Registration

includes study name, sample number, fraction, and condi-

tion (e.g. healthy, disease, drug treated).  The raw data was

then converted into a three-dimensional isotope map format

containing m/z, retention time and intensity information.

Peptide Detection and Alignment

The first step in the LC-MS data analysis is peak detec-

tion, which is the process of detecting isotopic peaks (either

peptidic or non-peptidic) in the LC-MS data. Peak detec-

tion is automatically applied to every LC-MS analysis, rep-

resented as isotope maps.  Isotope maps are converted into

peptide maps by Savitzky-Golay smoothing in both the m/z

and retention time dimensions followed by peak fitting to a

four dimensional (m/z, retention time, charge and intensity)

peptide isotope model. This model utilizes the difference in

mass between peptide isotope peaks, retention time coinci-

dence of peptide isotopes and the expected intensity profile

of a peptide’s isotopes as a function of peptide mass.  The

peptide map output is a listing of the m/z, charge, retention

time and intensity of all peptides.

The peptide maps undergo normalization of retention time

and intensity to correct for analytical variability.  A dynamic

and nonlinear correction algorithm for normalizing retention

time across all LC-MS injections of a study is applied.  First,

a standard injection is selected by sorting all injections by

their overall retention time offset and selecting the injection

with median offset.  Then the retention times of all of the

other injections are normalized to the retention time of the

standard injection.  This software tool allows tracking be-

tween two or more LC-MS injections, independent of the

LC column or mass spectrometer, or the time of the analy-

sis.  This dynamic function is able to reduce the retention

time variability to less than seven seconds.

Intensity normalization is performed for each LC-MS in-

jection.  First, the intensity ratios of matched peptides are

determined and the median of the distribution of ratios is

calculated.  A standard sample of average median intensity

across all samples is selected. The intensities of all other

samples are then normalized to the median intensity.

Following normalization, peptides are matched across all

samples in a study.  Peptides are clustered according to

fraction, mass, retention time and charge using standard hi-

erarchical clustering techniques adapted to the proteomics

context.  The process of peptide clustering, or grouping, of

the same peptide observed in different samples across a

study enables the detection of peptides that are differen-

tially expressed.  Once peptide clusters have been formed,

a representative median mass and median retention time

are calculated to represent the peptide cluster.

Journal of Proteomics & Bioinformatics  - Open Access                
Review Article       JPB/Vol.1/October  2008

µ

µ

µ



J Proteomics Bioinform Volume 1(7): 315-328 (2008) - 320

 ISSN:0974-276X   JPB, an open access journal

Global Proteomics Data Analysis

The Global Proteomics method consists of the following

steps.

1. Unsupervised clustering of the samples is performed by

applying MultiDimensional Scaling (MDS) to the pep-

tide intensity data using Pearson correlation as the dis-

tance measure. The data is then reduced to three di-

mensions for visualization and subsequent data analy-

ses. Although we assume reduction to three dimensions,

any number of dimensions can be used.

2. For each study group, a group centroid is defined by

determining the median value in each of the three di-

mensions. For visualization purposes only, a group cen-

troid can be gravitized. For example, if study groups

overlap significantly in three dimensional space, samples

within each group can be moved a percentage distance

closer to the group centroid. However, all data analyses

and results are based on non-gravitized data.

3. The disease axis is the unique line that intersects the

Normal and Disease group centroids. It is oriented from

the Normal centroid towards the Disease centroid. For

each sample in the study, its disease severity is the dis-

tance from the Normal centroid to the closest point on

the disease axis to the sample (i.e. the projection of the

sample onto the disease axis). The disease severity pro-

file is the collection of disease severities for each sample

in a group or study.

4. Peptides that correlate to the disease severity profile

can be obtained by measuring the Pearson correlation

between each peptide expression profile in the study and

the disease severity profile and keeping those above a

specified threshold.

5. Peptides correlated to the disease severity profile are

submitted to mass and retention time fingerprinting

(Lekpor et al., 2007) with tolerances of 18 ppm and 7

min, respectively. The database searched is version 3.14

of the Human IPI Database (Kersey et al., 2004). False

Detection Rate (FDR) rates for mass and retention time

searches of full human IPI protein database have been

shown to be approximately 10% (Lekpor et al., 2007).

Only proteins with 3 or more peptide hits are retained.

Proteins identified are further filtered down to those as-

sociated to plasma, plasma membrane or extracellular

localizations by the Gene Ontology (Ashburner, 2000)

to focus on those proteins most likely to be secreted or

shed into the blood.

6. Clustering of identified proteins into pathways, biological

processes, etc. is performed using the DAVID online

service (Denis, 2003).

7. All False Detection Rates (FDR) calculations are ob-

tained using permutation tests on the raw peptide ex-

pression data by permuting samples independently of

group assignment (Benjamini and Hochberg, 1995).

Figure 2: The results of the global proteomic analysis of the Alzheimer Study. In both plots, the disease axis (dashed line)
runs from the centroid of the healthy patients to the centroid of the untreated Alzheimer patients (yellow circles). On the left,
the untreated Alzheimer patients (red) and the Healthy patients (green) are ordered along the disease axis. On the right, the
treated Alzheimer patients (purple) are ordered along the same disease axis.  The distribution of treated patients is shifted
toward the healthy centroid.
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Results

Visualization of Global Proteomics

Visualization of the global proteomic analysis of the healthy

(green), untreated Alzheimer (red) and treated Alzheimer

(purple) patients appears in Figure 2. The treated Alzheimer

patients are visually closer to normality (i.e. the healthy cen-

troid) than the untreated Alzheimer patients. Statistically,

the significance of this reversion to a healthier state has p-

value 0.02.

Disease Severity Profile

Using the normal controls as a reference, the disease se-

verity profile across the 19 Alzheimer patients was obtained

and matched against the 48429 peptides profiled in the study.

In total, 282 peptides matched the disease severity profile

with a Pearson correlation score of at least 0.75. To ensure

that a set of 282 correlating disease peptides would not oc-

cur by chance alone, 20 permutation tests were performed

resulting in a FDR estimate of 6.2/282 = 2.2%. The 282

disease peptides and the disease severity profile appear in

Figure 3. The distribution of all correlation scores appear in

Figure 4.

Figure 3: The disease severity profile (solid black line) for the 19 untreated Alzheimer’s patients. Profiles in color repre-
sent the 282 peptides with a Pearson correlation score of at least 0.75 to the disease severity profile. The FDR for this set
of 282 profiles is 2.2%.

Correlation to MMSE

To assess the relevance of the disease severity measure-

ment, it was correlated to the MMSE scores of the 19 AD

patients. The resulting Pearson correlation score is 0.75

which has p-value 0.00022 by the Student’s t distribution

test. This correlation appears in Figure 5. Note that MMSE

test is largely language-based and is known to be affected

by education level, sensory ability and first language. More

specifically, in a 331 patient study, MMSE scores were es-

timated to have a standard variation of 2.8 (Clark et al.,

1999). Hence, a Pearson correlation score of 0.75 given

the inherent variability in the MMSE scores is quite high.
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Figure 4: The distribution of peptide Pearson correlation scores to the disease severity profile. Scores close to -1 indicate
a high negative correlation, scores near 0 indicate no correlation and scores near 1 indicate high positive correlation.

Figure 5: The correlation of patient MMSE to disease severity as measured along the disease axis. The two disease
severity measures are highly correlated with significance 0.00022.
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Biological Significance

The 282 disease peptides were submitted to protein iden-

tification and the resulting proteins clustered into biological

processes using the online DAVID tool. DAVID clusters

proteins by biological process, cellular location, molecular

function, pathway, etc.

Genes associated with the processes listed in Table 1 ap-

pear in Table 2. Supplementary Tables 1 and 2 present the

raw protein identification results. Note that some genes

appear multiple times due to their participation in multiple

biological processes.

GO Terms Biological Process GO ID Number of Proteins 

Nervous system development GO:0007399 6 

Synaptic transmission GO:0007268 1 

Neurophysiological  process GO:0050877 5 

Neurogenesis GO:0022008 2 

Table 1: Genes associated with these biological processes appear in Table 2.

Gene Symbol Gene Name Biological Process 

UNC5C UNC-5 HOMOLOG C (C. ELEGANS) 
Nervous System 

Development 

PCDH18 PROTOCADHERIN 18 
Nervous System 

Development 

PARD3 
PAR-3 PARTITIONING DEFECTIVE 3 HOMOLOG (C. 

ELEGANS) 
Nervous System 

Development 

BDNF BRAIN-DERIVED NEUROTROPHIC FACTOR 
Nervous System 

Development 

COL4A4 COLLAGEN, TYPE IV, ALPHA 4 
Nervous System 

Development 

ADAM23 ADAM METALLOPEPTIDASE DOMAIN 23 
Nervous System 

Development 

CHRNB1 
CHOLINERGIC RECEPTOR, NICOTINIC, BETA 1 

(MUSCLE) 
Synaptic 

Transmission 

CRB1 CRUMBS HOMOLOG 1 (DROSOPHILA) 
Neurophysiological 

Process 

TYR TYROSINASE (OCULOCUTANEOUS ALBINISM IA) 
Neurophysiological 

Process 

GRIN2A 
GLUTAMATE RECEPTOR, IONOTROPIC, N-METHYL 

D-ASPARTATE 2A
Neurophysiological 

Process 

COL1A2 COLLAGEN, TYPE I, ALPHA 2 
Neurophysiological 

Process 

CHRNB1 
CHOLINERGIC RECEPTOR, NICOTINIC, BETA 1 

(MUSCLE) 
Neurophysiological 

Process 

UNC5C UNC-5 HOMOLOG C (C. ELEGANS) Neurogenesis 

PARD3 
PAR-3 PARTITIONING DEFECTIVE 3 HOMOLOG (C. 

ELEGANS) 
Neurogenesis 

Table 2: List of proteins assigned to the four biological processes in Table 1.
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Markers of Drug Efficacy

The global proteomics approach was also applied to as-

sess the effect of Alzheimer treatment with the drug donepezil

on 25 Alzheimer patients. The disease severity profile across

the 19 Alzheimer patients and the 25 Alzheimer treated pa-

tients was obtained and matched against the 48429 pep-

tides profiled in the study. In total, 75 peptides matched the

disease severity profile with a Pearson correlation score of

at least 0.75. To ensure that the set of 75 treatment re-

sponse peptides could not occur by chance alone, 20 per-

mutation tests were performed resulting in a FDR estimate

of 0/282 = 0%. The 75 treatment response peptides and the

disease severity profile appear in Figure 6. This set of 75

peptides is a subset of the 282 disease peptides.

Figure 6: The disease severity profile for the 19 Alzheimer patients and the 25 Alzheimer patients treated with
donepezil.

As donepezil is a clinically approved drug for Alzheimer’s

disease, it is expected that the plasma concentration of a

subset of the 282 disease peptides would be modulated by

treatment. This is indeed the case as illustrated by the 75

treatment response peptides and their FDR. Furthermore,

when the log ratio of the non-treated and treated patient

peptide abundances are compared, the distribution in Figure

7 is obtained. Testing against the null hypothesis that this

distribution is centered at 0 (i.e. no significant shift in pep-

tide intensity is observed due to treatment), the null hypoth-

esis is rejected with p-value 6.9E- Returning to the right

panel of Figure 2, the effect of the cholinesterase inhibitor

donepezil in terms of the disease axis can be seen visually.

The magnitude of reversion toward the healthy centroid is

significant but modest, which is consistent with the known

effect of cholinesterase inhibitors (Trinh et al., 2003).
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Figure 7: The distribution of the log ratios of untreated patient peptide abundances to treated patient peptide abundances
in plasma. This distribution is strongly skewed to the right indicating that the plasma concentrations of the proteins associ-
ated with the 75 treatment response peptides are shifted towards healthy plasma levels.

Figure 8: The Hypertension analysis as rendered by an unsupervised multidimensional scaling (MDS) analysis (left). Samples
are ordered from left (normal) to right (diseased) based on their proteomic similarity. Quantification of the disease axis
correlation to blood pressure is shown on the right. A high correlation (Pearson correlation = 0.86) exists between the 39
patient combined blood pressure values (systolic + diastolic) and their location on the disease axis. 1093 peptides were
found to segregate the responsive and non-responsive patients.
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Hypertension Study Results

To assess the accuracy of the Global Proteomic hyper-

tension disease severity measurement, it was correlated to

the combined diastolic and systolic blood pressure measure-

ments of the 39 patients in the hypertension study. The re-

sulting Pearson correlation score is 0.86 which has p-value

9.4e-10 by the Student’s t distribution test. This correlation

appears in Figure 8. Note that the treatment-responsive and

treatment-nonresponsive groups are clearly separated. 1093

peptides are primarily responsible for this segregation using

the same techniques used for the Alzheimer’s example above.

Discussion

The results of this work indicate that a blood-based ob-

jective measure of Alzheimer’s disease severity is achiev-

able. More generally, global proteomic techniques have broad

applicability to pharmacodynamic questions: Which dose is

better? Which compound is better? Which patients are more

responsive to treatment? By including calibration samples

in a study, quantitative classifications of samples can also

be made.

Importantly, the results of the Hypertension study dem-

onstrate that the Global Proteomics methodology can be

applied broadly to studies involving different indications and

drug treatments.

Disease severity (and drug response) can be measured

using the Global Proteomic method. More specifically, us-

ing a sufficiently large database of Alzheimer peptide pro-

files and healthy peptide profiles, new patients can be clas-

sified as Alzheimer or healthy based correlation to these

profiles. Such a diagnostic would likely required regulatory

approval through the recently implemented IVDMIA (In

Vitro Diagnostic Multivariate Index Assay) process. How-

ever, a more traditional diagnostic implementation using

MRM technology is discussed below.

The Global Proteomic approach described here is par-

ticularly well-suited to early stage (preclinical or R&D) ap-

plications where the investigator wants to determine if there

is drug response, disease stratification, patient stratification

and dosing optimization, among other questions. However,

Global Proteomics is not a quantitative assay that can be

used for applications such as a companion diagnostic for

drug therapy. The results of a Global Proteomics analysis

can justify the development of such an assay. For example,

the recent development of highly multiplexed MRM valida-

tion techniques (Stahl-Zeng et al., 2007; Anderson and Hunter,

2006) are well-suited to take the results of a Global

Proteomics analysis and create a quantitative clinical assay

appropriate for disease diagnosis. In this sense, Global

Proteomics is an efficient tool for identifying the peptides

and proteins in blood that are modulated by drug and/or dis-

ease and providing statistically significant results justifying

further validation work.
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