
Journal of Proteomics & Bioinformatics  - Open Access                 
Research Article       JPB/Vol.1/September  2008

J  Proteomics Bioinform Volume 1(6) :287-292(2008) - 287

 ISSN:0974-276X   JPB, an open access journal

Range Charts for Agreement in Measurement Comparison Studies, With Application

to Replicate Mass Spectrometry Experiments
James A. Koziol1*, Anne C. Feng1,  Jingyi Yu2, Noelle M. Griffin2, Jan E. Schnitzer2

1Department of Molecular and Experimental Medicine, The Scripps Research Institute,

10550 North Torrey Pines Road, La Jolla, CA   92037
2Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego, CA   92122

*Corresponding author: James A. Koziol, Ph.D, Department of Molecular and Experimental Medicine, MEM216
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA   92037,

E-mail: koziol@scripps.edu; Tel: 858-784-2703; Fax: 858-784-2664

Abstract

It is important to investigate the reproducibility of raw mass spectrometry (MS) features of abundance, such

as spectral count, peptide number and ion intensity values, when conducting  replicate  mass spectrometry

measurements. Reproducibility can be inferred from these replicate data either formally with analyses of vari-

ance techniques or informally with graphical procedures, particularly, Bland-Altman plots on paired runs. In this

note, we suggest range plots to provide a suitable generalization of Bland-Altman plots to experiments with

more than two replicate runs. We describe range charts and their interpretation, and illustrate their use with data

from a recent proteomic study relating to label-free analysis.

Introduction

Bland and Altman (1986) introduced a useful graphical

procedure for comparing two methods of measurement of

a continuous biological variable. The Bland-Altman plot of

differences (ordinate) versus means (abscissa) of paired

measurements is simple and elegant, and has become a stan-

dard for agreement studies, especially when combined with

limits of agreement. Typically, 95% limits of agreement lines

are superimposed on the Bland-Altman plots; these provide

an interval within which 95% of differences between fu-

ture measurements by the two methods would be expected

to lie.

If one wishes to compare more than two matched mea-

surements, pairwise Bland-Altman plots can be shown. This

might prove cumbersome, however, with increasing num-

bers of measurements being compared. Bland and Altman

(1999; 2007) have proposed rigorous statistical methods for

such studies, devolving from formal analyses of variance of

the method comparison studies. Similarly, an informal graphi-

cal procedure is available from the quality control literature,

namely, Shewhart control charts for the range (Shewhart,

1939; Montgomery, 2001).  Conceptually, one plots the ranges

(ordinate) versus the means (abscissa) of the matched

samples for the range chart.

In this note, we describe range charts for multiply-

matched comparison studies, and illustrate some techniques

for imposing limits of agreement on the charts. We illustrate

this method with data arising from a recent study we had

undertaken, to investigate the reproducibility of raw mass

spectrometry features of abundance, including spectral

count, peptide number and ion intensity values, across rep-

licate 2DLC mass spectrometry measurements.

Reference intervals

In comparison studies of two methods, the limits of agree-

ment advocated by Bland and Altman can be interpreted as

reference intervals, and delineate the range within which

most differences between measurements might be expected

to lie. The reference interval is generally defined by the

range between two centile values of a population, centered

about the median value. For example, the standard limits of

a 95% reference interval would be the 2.5th and 97.5th

centiles. [See Altman and Bland (1994) for some discus-

sion of terminology regarding centiles, quantiles, and related

quantities].

There are many ways of constructing reference inter-

vals, as elegantly summarized by Wright and Royston (1999)
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and Bland and Altman (2007). We here describe two simple

nonparametric techniques, which make no assumptions about

the underlying distributions of the data comprising the range

charts, followed by a semi-parametric technique, related to

underlying normality.

Harrell-Davis

Harrell and Davis (1982) introduced an elegant distribu-

tion-free quantile estimator, which may be invoked to esti-

mate the centiles of an underlying distribution.

This approach is formulaically straightforward, but does

require computational capabilities involving mathematical

functions. For reference, we state Harrell and Davis's for-

mula in the Appendix.

Bootstrap

A second nonparametric approach utilizes the bootstrap

(Efron and Tibshirani, 1993), as an extension of the simple

approach of estimating empirical centiles directly from the

ordered observations. Draw, say, 1000 bootstrap samples

of the same cardinality from the underlying observations.

From each bootstrap sample, compute the desired empiri-

cal centiles, using interpolation if necessary between the

nearest two order statistics. Then, average the correspond-

ing empirical centiles over the bootstrap samples to estab-

lish the reference interval limits. This approach is

computationally involved, but formulaically simple.

Box-Cox transformation procedure

Box and Cox (1964) introduced a power function that

has been widely adopted to transform data to approximate

normality. In the present context, one would invoke the Box-

Cox procedure on the sample ranges, determine limits of

agreement on the Box-Cox transformed scale, and then

back-transform to the original range scale. There is some

computational complexity involved in finding the Box-Cox

transformation parameter [see Appendix], but determina-

tion of limits of agreement on a putatively normal scale is

straightforward.

An application

We illustrate range charts and reference intervals with

the following example. Yu and colleagues (2008) have un-

dertaken an extensive study of computational and statistical

considerations relating to proteomic analyses of label-free

mass spectroscopy (MS) data. We utilize one dataset from

their study, consisting of normalized spectral indices of 174

peptides found in normal liver tissue from three replicate

MS runs. Yu et al. (2008) investigate fundamental issues of repro-

ducibility and effects of normalization in this and other

datasets, and we make no attempt to recapitulate their analy-

ses here. Rather, our use of range charts is meant to be

complementary to their more comprehensive study.

In Figure 1, we give the range chart for the 174 repli-

cates. Clearly, variability increases with sample mean, an

important diagnostic from these plots. We may take a simple

log transformation (Bland and Altman, 1986; 1996) of the

spectral indices, with the intent to render the variance inde-

pendent of the mean. As shown in Figure 2, the log trans-

form goes far toward ameliorating the increasing variability

with mean in the original spectral data.

We turn next to the issue of tolerance intervals. In Table

1 we give the limits of the 90% and 95% tolerance intervals

for the original data as well as the log-transformed data, for

the three methods described earlier. That the Harrell-Davis

and bootstrap estimates are nearly coincident is unsurprising:

Sheather and Marron (1990) have noted the interconnec-

tion of the two methods. The Box-Cox method is some-

what deviant from the other methods, particularly in the

upper limits for the original data. Here, there are 14 values

(8.0%) exceeding 211, 7 (4.5%) exceeding 386 or 396, 5

(2.9%) exceeding 537, and 4 (2.3%) exceeding 887 or 889;

the nonparametric approaches appear to have coverages

nearer the desired levels of 5% or 2.5% than Box-Cox. We

comment that with the original data, Box-Cox was not alto-

gether successful in achieving normality: sample skewness

was reduced from 5.27 to 0.004 (target 0), but sample kur-

tosis was reduced from 33.32 to 3.59 (target 3). Further

correction for kurtosis might be desirable. In Figures 1

and 2 we have also superimposed the nonparametric two-

sided 90% tolerance intervals; again, the log transformation

seems quite suitable.

Discussion

Our motivation for investigating range charts was a com-

prehensive study we had undertaken, to investigate the re-

producibility of raw mass spectrometry (MS) features of

abundance, including spectral count, peptide number and

ion intensity values, across replicate 2DLC mass spectrom-

etry measurements. We found that typically raw features

were not very reproducible across replicates. We could verify

this formally via analyses of variance our search for an

informal graphical procedure led us first to Bland-Altman

plots, and then to range plots as an appropriate extension to

greater than two replicate runs. The range plots gave us

immediate indication that log transformation would amelio-

rate the increasing variability problem. We went on to de-

velop a more involved normalization technique which also

tended to work well with our experimental data.

The reproducibility of a proteomics experiment can be

viewed in two ways, 1) reproducibility in terms of the pro-
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Figure 1:. Range chart for

spectral index measures from

174 peptides, as determined

from three independent mass

spectrometry runs. Red lines

delineate a nonparametric

90% tolerance interval for fu-

ture determinations.

Figure 2: Range chart derived

from the log-transformed data

described in Figure 1, along

with nonparametric 90% tol-

erance intervals.
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Table 1:Tolerance Intervals for Replicate MS Data.

teins identified, i.e., are we identifying the same proteins in

replicate 2 as we did in replicate 1, and 2) reproducibility in

the relative quantity of these proteins detected across the

replicates, i.e., is the relative abundance of protein A the

same in replicate 1 as in replicate 2. In terms of protein

identification, Durr et al. (2004) previously showed that any

second replicate "shotgun" MS measurement will identify

30-40% of proteins not found in a single MS measurement

of an identical sample, inferring an approximate 60% over-

lap in protein identifications between replicate measurements.

This also demonstrates the requirement for multiple repli-
cate measurements in order to achieve significant cover-

age of the sample of interest; we refer the interested reader

to Koziol et al. (2006), where we give some practical guide-

lines for experimental design. Nevertheless, the Yu et al. (2008)

study clearly demonstrated [both formally and with range

charts] that the abundance features for these common pro-

teins are not very reproducible across replicate MS mea-

surements. As a result, normalization of these features (by

such method as developed by Yu et al., 2008) is required to

control for the variation, which in turn enhances the reproduc-

ibility of the replicates thus allowing their direct compari-

son.

Range charts are conceptually straightforward, and are

an economical way of  depicting levels of agreement among

multiple measurements. Compared to pairwise Bland-Altman

plots, one range chart summarizes the entire agreement

study; however, signed differences revelatory of system-

atic large or small values in one method compared to a sec-

ond method may be obscured.

There are various ways of establishing reference inter-

vals on range charts. We have focused on nonparametric

and semiparametric methods that are relatively easy to imple-

ment, and dispense with sometimes restrictive distributional

assumptions attending ranges. We mention in passing that

we also explored quantile estimation based on Edgeworth

and Cornish-Fisher expansions (Cornish and Fisher, 1937;

Stuart and Ord, 1987), but results were less satisfactory

than with Box-Cox. The distribution of the range with nor-

mally distributed random variables has been extensively stud-

ied, leading to parametric approaches to establishing refer-

ence intervals; see Montgomery (2001) for details. And,

one could plausibly impose one-sided limits of agreement

with range charts, in settings where upper limits of agree-

ment are of primary interest.

Original Data 

90% Tolerance Interval 95% Tolerance Interval 

Lower Limit Upper Limit Lower Limit Upper Limit 

Harrell-Davis  3.081  386.60  1.927  887.37 

Bootstrap  3.104  396.42  1.945  889.80 

Box-Cox  3.265  211.90  2.050  537.72 

 Log-Transformed Data 

Harrell-Davis  0.0769  1.0070  0.0608   1.1723 

Bootstrap  0.0772  1.0085  0.0608   1.1754 

Box-Cox  0.0713  1.0399  0.0604   1.1099 
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We remark that, with two matched measurements, the

range chart displays the absolute values of the signed dif-

ferences from the Bland-Altman plot. This relationship gen-

eralizes to our setting of three MS determinations, a conse-

quence of the mathematical identity: range{x1, x2, x3} = ½

( |x1 - x2| + |x2 - x3| + |x3 - x1| ), for any real numbers x1,

x2, x3. That is, the range of 3 observations [as in a range

chart] can be recovered from the pairwise differences [as

in the Bland-Altman plots], though not conversely.

In summary, reproducibility is an important criterion for

assessing proteomic experiments, and is an essential prop-

erty of validation. In this regard, range charts provide im-

mediate graphical representation of comparison studies,

from which unacceptable or untoward levels of variability

can be discerned. Range charts constitute straightforward

assessments of method comparison and agreement, and are

complementary to more formal assessments of agreement,

as described by Bland and Altman (1999; 2007).
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Appendix

The Harrell-Davis quantile estimator

Harrell and Davis (1982) introduced an elegant approach

to distribution-free quantile estimation from a sample of in-

dependent, identically distributed random variables X
(1)

, X
(2)

,

..., X
(n)

. The Harrell-Davis estimator of the pth quantile is

Qp = 
i

n

=

∑
1

Wn,i  X(i) 

where

Wn,i = Ii/n[p(n+1), (1-p)(n+1)] - I(i-1)/n[p(n+1),(1-p)(n+1)]; 

here, I
q
(α,β) is the incomplete beta function and

X(1) ≤  X(2) ≤ ... ≤ X(n)  are the observed order statistics

of the sample.
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The Box-Cox transformation procedure

Box and Cox (1964) proposed the power function

f(x,λ)  =  (x
λ − 1)/λ, λ ≠ 0,

=   log(x), λ = 0.

Box and Cox (1964) obtained a likelihood function for 

estimating the transformation parameter λ by assuming that the

transformed variable would be normally distributed for suit-

able λ. In practice, the maximum likelihood estimate
 $λ of

numerical maximization is not at all problematic.

λ,calculated from the Box-Cox likelihood function, is used

for transformation. The function f is continuous in λ at 0, so
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