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Abstract

The rapid development of microarray and other genomic technologies now enables biologists to monitor the

expression of hundreds, even thousands of genes in a single experiment.  Interpreting the biological meaning of the

expression patterns still relies largely on biologist's domain knowledge, as well as on information collected from
the literature and various public databases.  Yet individual experts’ domain knowledge is insufficient for large data

sets, and collecting and analyzing this information manually from the literature and/or public databases is tedious

and time-consuming. Computer-aided functional analysis tools are therefore highly desirable.

We describe the architecture of GeneNarrator, a text mining system for functional analysis of microarray data.

This system’s primary purpose is to test the feasibility of a more general system architecture based on a two-stage

clustering strategy that is explained in detail. Given a list of genes, GeneNarrator collects abstracts about them

from PubMed, then clusters the abstracts into functional topics in a first clustering stage.  In the second clustering

stage, the genes are clustered into groups based on similarities in their distributions of occurrence across topics.

This novel two-stage architecture, the primary contribution of this project, has benefits not easily provided by one-

stage clustering.

Keywords: Genes; Clustering; Text mining

Introduction

Rapid developments in genomic technologies such as

microarrays now enable biologists to simultaneously

monitor the expression of thousands of genes in a single

experiment.  Automated data analysis methods and soft-

ware tools are important for efficiently processing the re-

sulting large amounts of data.  Numerous algorithms and

tools have been developed for finding patterns in gene

expression and grouping genes with similar patterns.

Interpreting the biological meanings of the patterns,

however, still largely relies on human experts’ domain

knowledge, as well as on manual collection of previously

reported results. Human expertise works well when ex-

perts are available, as for specific domains and their rela-

tively modestly sized data sets. However, human exper-

tise can be expensive. It is also not always available. For

example systems biology research often depends on in-

terdisciplinary collaborations across multiple domains.
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That is in the nature of large, complex systems. Some of

the researchers might not be experts in even one domain,

students are often involved who are not domain experts,

and in any case it is unrealistic to expect even domain

experts to memorize functional details of thousands of

genes. The alternative of manually collecting and analyz-

ing them from the literature and public databases is te-

dious and time-consuming. Therefore, computer-aided

functional analysis tools are a critical need. To help meet

this need, this work contributes a novel two-stage cluster-

ing architecture for which, using a test implementation

called GeneNarrator, we demonstrate the feasibility.

Related Work and Motivation

Numerous system architectures for functional analysis

of microarray data, and the systems that demonstrate them,

have been reported in the literature.  In terms of the sources

of the functional information they rely on, they can be

grouped into two categories.

• Architectures that rely on curated lexicons, ontologies,

and other such functional annotation sources, such as

the Gene Ontology (Adryan and Schuh, 2004; Badea

2003; Joslyn et al., 2004; Kennedy et al., 2004; Pasquier

et al., 2004; Robinson et al., 2004; Smid and Dorssers,

2004; Khatri and Draghici, 2005; Masys et al., 2001;

and Kankar et al., 2002). Another well-know curated

resource is Reactome (http://www.reactome.org), and

there are others as well.

• Architectures that derive functional information from

MEDLINE and other text resources (Becker et al., 2003,

Chaussabel and Sher, 2002; Homayouni et al., 2005;

Kim and Falkow, 2003; Oliveros et al., 2000,

Raychaudhuri and Altman, 2003; Raychaudhuri et al.,

2002, Renner and Aszodi, 2000; Slaton and McGill,

1983; Glenisson et al., 2003; Chagoyen et al., 2006;

Shatkay et al., 2000; Mao et al., 2005).

These categories are further discussed next.

Using GO, a representative curated resource

The Gene Ontology (GO) is a controlled vocabulary for

describing genes.  Its development by a group of member

organizations started in 1998, and is coordinated by the

Gene Ontology Consortium.  The GO Consortium also

acts as a repository of gene and gene product annotations

contributed by member organizations, e.g., FlyBase, the

Saccharomyces Genome Database (SGD) and the Mouse

Genome Database (MGD).  This makes it a valuable source

of functional information for annotating microarray ex-

periments, and various groups have explored strategies

for using this information to functionally summarize gene

clusters. A review of ontologies for functional annotation

is provided by Khatri and Draghici, (2005).

Not all works in this category focus on GO. For ex-

ample Masys et al., (2001); Kankar et al., (2002) used

MeSH terms, the former also using EC numbers. The

above-mentioned works shared some limitations that re-

sult from attributes of GO and are also common in other

curated data sources.

• The GO itself, exemplifying the types of problems

common for such resources, is not static and mature.

As one consequence, its development is unbalanced.

While some branches are deep (up to 18 levels) and

contain very detailed concepts (e.g., GO:0000201 –

nuclear translocation of MAPK during cell wall bio-

genesis), the GO coverage in some areas of biology is

incomplete, for example in pathways (Mao et al., 2005)

and immunology (Joslyn et al., 2004).

• The GO is updated regularly, so keeping annotations

constantly compatible with the latest GO release is a

challenge. And, even the latest release of such a re-

source may not be up to date as there is a time lag

between when new data is available in the literature

and when it is annotated and placed into databases.

• GO annotations are mainly curated manually so, as

with other human-curated information sources, incon-

sistencies are endemic. Thus for example Badea, (2003)

had to correct numerous mistakes in the Proteome

HumanPSD database by hand before performing the

analysis.

• GO annotations are mainly available for well-studied

genes in a few model organisms.  Badea, (2003) could

find annotations for only 26% (39 out of 149) of the

genes of interest.  Analysis based on such incomplete

data can be risky.

Text-based functional analysis

One approach to overcoming limitations of systems re-

lying on controlled ontologies is to extract functional in-

formation from the texts in online literature databases such

as MEDLINE and its PubMed portal (http://

www.ncbi.nlm.nih.gov/pubmed/). Other keyword-search-

able literature resources like CiteXplore (http://

www.ebi.ac.uk/citexplore/) could also be used. Text analy-

sis can be deep or shallow. For example, the deep part of

the spectrum includes parsing, template matching, and

inference of causal relationships among biomolecules

based on the properties of individual sentences.
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Shallow analysis can lead to sophisticated annotation

systems that facilitate navigating in the biomedical litera-

ture by adding hyperlinks and related tools, like Whatizit

(http://www.ebi.ac.uk/webservices/whatizit/info.jsf),

iHOP (http://www.ihop-net.org/),  and WikiHyperGlossary

(http://bioinformatics.ualr.edu/HyperGlossary/hg/url).

Shallow analysis can also lead to fine-grained retrieval of

specific parts of documents, as with MedMiner, a tool that

retrieves individual sentences from MEDLINE (Tanabe

et al., 1999). But shallow methods can also feed into deeper

analyses of text collections. Often this starts with view-

ing texts as collections of words. Such methods are called

bag of words (BOW) approaches.

Texts are typically so complex and unstructured that deep

analysis can be cumbersome, especially for large quanti-

ties of text, as well as error-prone. These problems will

likely remain until the grail of full natural language un-

derstanding is finally reached at some unknown future

time. Interpretation errors will tend to propagate through

subsequent inferences, negatively impacting results.

Therefore it is useful for text mining system architectures

to robustly resist the effects of such text interpretation

“noise,” and shallow analysis is one strategy.

On the other hand, there are limitations to shallow analy-

sis methods as well. An obvious limitation is that the rich

information content in a text is not fully harvested. An-

other limitation is that the reliability of one text may be

much greater than that of another, because the quality of

some publications is much greater than that of others, and

this is hard to determine automatically. The least reliable

texts tend to be less likely to be included in major cor-

pora, which helps but does not fully address the problem.

A third limitation is that texts in different languages are

difficult to match with one another because translation is

needed first. Although potentially feasible, a translation

preprocessing step is not yet a component of most text

mining systems.

Bag-of-words based text analysis

Text-based functional analysis systems based on the

shallow bag-of-words paradigm can be divided into two

subcategories, those that make the assumption that genes

with similar expression patterns are involved in the same

functional pathways, and those that do not. The assump-

tion suggests that MEDLINE abstracts referring to a gene

in a cluster of genes with similar expression patterns have

significant properties in common that provide hints about

the cluster’s functional properties. Oliveros et al., (2000)

for example focused on the words in MEDLINE abstracts.

The significance of a word to a particular cluster of simi-

larly expressed genes was determined by a z-test against

its average frequency in abstracts relevant to any gene

cluster.

However, the assumption that similar expression pat-

terns necessarily mean genes are functionally related is

problematic.  For example, genes involved in different

pathways may have similar expression patterns in a par-

ticular experiment, and a single gene may participate in

several pathways.  In either case, the genes in a cluster

would tend to represent different pathways, making their

interpretation more difficult.  This motivates extracting

functional similarities without the assumption.  That in

turn means clustering based on something other than gene

expression profile.

Chagoyen et al., (2006) used non-negative matrix fac-

torization (NMF) to process sets of abstracts related to

specific genes.  The result was a vector characterizing a

given gene in terms of “semantic features,” which are

weighted, semantically relevant terms extracted automati-

cally from the texts.  The vectors of different genes can

then be compared in order to cluster genes into “function-

ally coherent” sets.  A limitation of this approach is that

the abstracts associated with a gene and processed into a

vector must be provided to the system.

Shatkay et al., (2000) developed a theme extraction sys-

tem for large-scale gene analysis.  A theme was derived

from a set of MEDLINE abstracts with similar term dis-

tributions.  The abstract set was obtained from a user-pro-

vided kernel document known to be about a particular

gene, but from that kernel the system obtained similar

documents from MEDLINE automatically, using a stan-

dard cosine-based similarity metric.  The resulting set was

then processed to extract “executive summary” terms de-

fining the theme of the abstract set and, hence, the gene

behind it.  Theme similarity between two genes was based

on the members shared by the themes of their two corre-

sponding abstract sets.  The final results included, for each

gene, a theme consisting of characteristic terms and a list

of the most similar genes.  A limitation of the system is its

dependence on the kernel documents, which the user must

provide.  For microarray experiments involving a large

number of genes, the time and effort required to identify

kernel documents might be prohibitive even when good

kernels exist.

The “literature profiling” system of Chaussabel and Sher,

(2002) also found gene clusters based on text clustering.

The system represented genes as vectors of keywords ex-

tracted from MEDLINE abstracts.  The vectors were then

clustered using a software package originally developed
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for gene-expression profiling.  The resulting clustergram

showed gene clusters with similar keyword profiles.  The

genes in a cluster were interpreted as functionally related.

This text clustering-based approach avoids a significant

limitation of the approach of Shatkay et al., (2000); Chagoyen 

et al., (2006) in that the burden of providing hand-selected 

documents is avoided (although they mention that providing

PubMed queries that produce good document sets can be

non-trivial).  However, literature profiling has its own limi-

tations.

• The algorithm was originally developed for gene ex-

pression clustering, not keyword clustering, and per-

formed poorly on high-dimensional vectors.  The au-

thors were forced to filter the keywords aggressively

to reduce the dimensionality, retaining just 101 out of

25,000 terms, a significant loss of information.

• The clusters were dominated by well-studied genes

with rich keyword profiles, because they were men-

tioned in many abstracts.  Newly discovered or less-

studied genes had only a few abstracts and so were

relatively neglected because of their sparsely popu-

lated profiles.

• The system only counted unigrams.  Thus functional

information in multiple-word terms was left unused.

For example, the meaning of “red blood cell” is diffi-

cult to capture from the separate words “red,” “cell”

and “blood” scattered among many other keywords.

Although the Chagoyen et al., (2006); Shatkay et al., (2000) 

Chaussabel, (2002) and Sher, (2002)  systems avoided the 

inherent  short- comings of assuming that genes with similar 

expression patterns are involved in the same functional pathways,

they still required facing the significant challenges of ef-

fectively extracting, processing and presenting functional

information from free text.

Glenisson et al., (2003) addressed this issue with an ap-

proach similar to the literature profiling of Chaussabel

and Sher, (2002) but with the following significant differ-

ences.

• Each gene’s functional description was collected from

the Saccharomyces Genome Database and the SWISS-

PROT database, supplemented with 20 MEDLINE ab-

stracts.  But this requires data availability, limiting the

analysis to well-studied genes.

• The functional descriptions were represented in a pre-

defined vector space of GO concepts.

Because of its reliance on GO, limitations of GO as dis-

cussed above apply to this system, e.g., its unbalanced

development and incomplete coverage. This tends to coun-

teract the objective of using the literature to obtain the

most comprehensive and up-to-date functional informa-

tion.

GeneNarrator

We created a new system architecture which addressed

limitations of the above-mentioned tools with an approach

based on two clustering stages.  The feasibility of this

architecture was tested by building an example system,

GeneNarrator, based on it. There are five requirements

which the architecture meets.

1. Intended application

The architecture is intended for functional interpreta-

tion of microarray experiments for which information

exists in the literature about the genes involved.  How-

ever, with modest modification, it should be adaptable to

proteomic and metabolomic data as well.

2. Input

Input should be as simple as possible — for example, a

list of gene names.

3. Source of functional information

Functional information should be obtained from

MEDLINE abstracts, since they are fairly comprehensive

and up-to-date.  Functional annotations in public genomic

databases tend to cover well-studied genes in model or-

ganisms, so depending on them would have made the ar-

chitecture inapplicable to less-studied genes or non-model

organisms.  Avoiding reliance on these sources also avoids

concerns about annotation errors and update delays.

4. Algorithmic constraints

The analysis should provide a summarized picture of

the thousands or even tens of thousands of MEDLINE

abstracts that may be collected for a given list of genes.

Text clustering is a natural choice, because it can divide a

large number of documents into groups based on topic

differences (usually based on similarities in word con-

tent).  The clustering solution should be designed to avoid

the pitfalls illustrated in some of the above-reviewed sys-

tems.

• Well-studied genes with many abstracts should not

dominate the clustering process to the relative neglect

of newly discovered or less-studied genes.

• Hierarchical clustering algorithms are more suitable

than flat ones.  Users rarely know beforehand how
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many clusters should be in the final result.  With hier-

archical clustering, the number of clusters is relatively

flexible, as branches can be merged after the analysis.

• The text-clustering algorithm of choice should perform

well in high-dimensional vector spaces.

• Multiple-word terms should be incorporated in text

clustering.  Many biomedical concepts are multiword

terms.  Breaking them down to unrelated single words

may adversely affect clustering results, because use-

ful information is lost.

5. Output of results

Results of an analysis should include a hierarchical struc-

turing of topics, the biological meanings of the topics,

and how many and what genes are in what topics.

The Algorithms, Architecture, and Implemen-
tation

Overview

A two-stage clustering approach was designed for

GeneNarrator to use to provide functional summarizations

of microarray experiments from information in MEDLINE

(Fig. 1).  The system is designed to take as input a user-

provided gene list, and automatically queries PubMed for

abstracts mentioning one or more of the genes.  Gene sym-

bols, official names, synonyms and gene product names

could potentially all be included to retrieve more relevant

abstracts.  PubMed uses a sophisticated query expansion

method to increase the recall of relevant records. How-

ever, increased recall in general tends to reduce precision.

This is an issue with most systems that use information

retrieval rather than hand-curated data sets as input. An

example of this specific to the gene annotation problem is

ambiguous gene names, which tend to occur most in the

most widely studied organisms. The precision will depend

heavily on the particular gene list.

The system is designed to group the pool of retrieved

abstracts into functional topics using a text clustering al-

gorithm.  Next, each gene is associated with the distribu-

tion of its occurrences across the set of topics, i.e., a vec-

tor stating its number of occurrences in the MEDLINE

records comprising each topic. Then, a second clustering

stage groups genes with similar distributions.

GeneNarrator, the name of the demonstration implemen-

tation, consists of six modules: DocBuilder, LongBOW

(BOW from “Bag Of Words”), CrossBOW, GeneSmith,

ArrowSmith (not related to the Arrowsmith system, http:/

/arrowsmith.psych.uic.edu/arrowsmith_uic/index.html),

and BOWviewer (Fig. 2). DocBuilder retrieves MEDLINE

abstracts that are related to at least one of the user-pro-

vided genes.  LongBOW performs several preprocessing

tasks on the abstracts, including discarding stopwords,

stemming, and detecting multiple-word terms.  CrossBOW

clusters the abstracts into a hierarchy of functional topics.

ArrowSmith extracts representative keywords from

CrossBOW’s output, and scores keyword-containing sen-

tences and abstracts.  The keywords and high-scoring sen-

tences and abstracts are intended to help in interpreting the

biological meanings of the topics.  GeneSmith calculates,

for each gene, a distribution describing its occurrences

Figure 1: Functional overview of GeneNarrator.
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across the topics, then clusters the genes with similar dis-

tributions.  BOWviewer is a GUI for navigating the hier-

archical topics, browsing the representative keywords, sen-

tences and abstracts, and comparing the topic distributions

of individual genes or gene clusters.  All modules were

implemented in Java, except CrossBOW which is in C.

 Details

Here we give additional details about the design of the

various modules of GeneNarrator, as it may be of interest

to future system builders.

Document retrieval (DocBuilder)

Given a file containing a list of genes, one gene per

line, the DocBuilder module retrieves MEDLINE abstracts

related to each of the genes via eUtils, which are the Entrez

Programming Utilities (National Library of Medicine

2004).  DocBuilder is designed to hold four submodules,

the querier, sampler, fetcher and parser.  The querier

embeds a gene name, together with its synonyms and gene

product names if provided, into a query which it sends to

PubMed using the eUtils ESearch function.  PubMed re-

turns a list of PMIDs.  A user may set an upper limit for

the number of PMIDs to be used in the subsequent pro-

cessing steps.  If the number of returned PMIDs exceeds

the upper limit, the sampler draws a random sample from

the list.  The returned or sampled PMIDs are recorded in a

gene-to-PMID map file for later use. The fetcher then re-

trieves the PMIDs’ full abstracts from PubMed using the

eUtils EFetch function.  Finally, the parser extracts the

titles and the abstracts from the retrieved abstracts, and

writes them to plain text files.  The submodules we built

for our demonstration system, GeneNarrator, were used

earlier in MedKit (Ding and Berleant, 2005), and PubMed

Assistant (Ding et al., 2006).

Preprocessing (LongBOW)

The LongBOW module preprocesses the MEDLINE

abstracts in order to get better clustering results.  The pre-

processing was designed to perform the following steps.

• Remove stop words, such as “that,” “is,” “you,” and

“of.”  A user-defined stopword list can replace the de-

fault stopword list.

• Perform stemming.  For example “regulation,” “regu-

lating,” “regulator,” and “regulates” are all stemmed

to “regulat.”  The stemming method is a Java imple-

mentation (http://www.tartarus.org/martin/

PorterStemmer/) of the Porter, (1980) stemming algo-

rithm.

• Detect and label multiple-word terms (MWTs).

Detecting and labeling MWTs is done in three passes

through the abstracts.  The first pass performs stopword

removal and stemming. Also, for each unique single-word

term (SWT), its df (document frequency, or number of

documents containing the term) and tf (term frequency, or

total number of appearances of the term in the entire docu-

ment set) are counted. The total number of tokens (words,

including stopwords, and punctuation marks) is also re-

corded.  After the first pass, a threshold value is used to

separate out SWTs that are significant, defined as having

a df above the threshold.

In the second pass, unique double-word terms (DWTs)

are counted.  A DWT is defined as two consecutive SWTs

Figure 2:  Architectural overview of GeneNarrator.
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without any intervening stopwords or punctuation. Both

constituent SWTs must be above the df threshold.  A

DWT’s observed count is tested against the null hypoth-

esis that two SWTs are next to each other by chance.  The

test is similar to the “t-test” of collocations described by

Manning and Schultze (1999).  Briefly, let the number of

occurrences of single-word term w
i
 in the entire docu-

ment (in this case, abstract) be n
i
, the total number of to-

kens (words and punctuation marks) in the document set

be N, and the number of occurrences of double-word term

w
1
w

2
 be n

12
.  Then the probability of an occurrence of w

1

being followed by w
2
 under the null hypothesis is p=n

2 
/

N, and the expected number of occurrences of w
12

 is

n
exp

=n
1
p.  We can construct an approximate binomial test

by 
12 exp

1 (1 )

n n
z

n p p

−

=

−
and use tables for z from many stan-

dard statistics texts to decide whether or not to reject the

null hypothesis.  DWTs for which the null hypothesis is

rejected are significant.

In the third pass, significant DWTs are evaluated in the

context of individual MEDLINE abstracts if their two

constituent SWTs are mentioned a similar number of times

in the abstract.  For example, an occurrence of “cell cycle”

would not be used as a DWT in a abstract that mentioned

the word “cell” 10 times, but the word “cycle” only once.

Even though “cell cycle” might appear more frequently

than expected by chance in the entire abstract set, it would

not be deemed a major subject in that abstract.  Formally,

given a significant DWT w
1
w

2
 with corresponding con-

stituent SWT term frequencies tf
1
 and tf

2
 in a abstract, and

a predefined threshold α > 1, the DWT is used if and only

if 
1 21 / / ,tf tfα α≤ ≤ where α is the sensitivity.  Too high

a sensitivity will tend to lead too high a vector space di-

mensionality, which will likely decrease the quality of the

clustering for typical data sets.  This study used an α value

of 3.0.

Finally, MWTs are detected if DWTs chain together.

Upon detecting a qualified DWT, LongBOW replaces the

space with an underscore character (e.g., cell_cycle).  This

trick enables CrossBOW to treat the DWTs and MWTs as

single words.

Text clustering (CrossBOW)

The CrossBOW module was modified from the open

source “Bow” toolkit (McCallum, 1996). Its clustering

algorithm, the Cluster-Abstraction Model (CAM)

(Hofmann, 1999), was designed specifically for text clus-

tering.  A CAM consists of a vocabulary, and many topics

that are automatically extracted and organized as nodes

in a hierarchical tree.  Each topic is defined by a vector of

probabilities P
t
.  Each probability in the vector is the like-

lihood of the topic containing a certain word from the

vocabulary.  Each leaf topic has a unique path to the root

of the tree.  The topics along the path are considered to be

different abstraction levels.  The closer to the root, the

higher the abstraction level.  There is a document bin for

each route.  This bin, like a topic, is also associated with a

vector of probabilities P
b
.  Each probability is the likeli-

hood of the bin producing documents from a certain ab-

straction level.  Finally, the entire model has a vector of

probabilities P
m
, each giving the likelihood of the model

producing documents from a certain bin.

Given a model, a set of documents can be generated by

iteratively picking a bin according to P
m
, picking an ab-

straction level (that is, a topic) according to P
b
 given the

bin, and producing words according to P
t
 given the topic.

Clustering a set of documents is equivalent to finding the

hierarchical topic structure and associated probabilities

with the maximum likelihood of generating that set of

documents.  Compared to other distance-based algorithms,

especially agglomerative clustering methods, CAM has

the following advantages (Rose et al., 1990):

• insensitivity to term-weighting methods and distance

(similarity) definitions,

• a statistically sound foundation,

• multiple levels of text clustering,

• representative keywords for topics, and

• efficient model fitting by annealed expectation maxi-

mization.

CrossBOW clusters a set of documents (in plain text

format) into a hierarchical topic tree.  Each document is

assigned to one and only one of the nodes (topics). The

branching factor and maximum depth of the tree are de-

signed as command line options. The modifications to

CrossBOW introduced for GeneNarrator include:

• recognition of multiword terms labeled by LongBOW,

and

• addition of a command line option to change the num-

ber of topic keywords in the output.

Interpreting the topic's biological meanings
(ArrowSmith)

Given the hierarchical topics and the representative topic

keywords generated by CrossBOW, the ArrowSmith mod-
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ule is designed to score the sentences and the abstracts

containing them.  Each topic-representative keyword is

assigned a keyword score.  For example, the binary scor-

ing method gives all representative keywords a score of

one.  Other scoring methods could assign different scores

to different keywords based on their probabilities or ranks.

A sentence's score is the sum of its keyword's scores, and
an abstract's score is the sum of its sentence's scores. The
representative keywords and the highest-scoring sentences

and abstracts define the inferred biological meaning of

each topic.

Gene-to-topic mapping and clustering (GeneSmith)

The GeneSmith module is designed to convert the ab-

stract set associated with a particular gene into a topic

distribution by straightforwardly counting how many ab-

stracts in the set fall into each topic.  It then clusters genes

based on the similarities of their distributions across top-

ics.  The clustering algorithm may be chosen as either k-

means or expectation maximization (EM) from the Weka

machine-learning workbench (Frank et al., 2004).

Result browsing (BOWviewer)

The BOWviewer module (Fig. 3) is a graphical user

interface built for browsing the results. It shows the topic

hierarchy (left), the representative keywords (top), high-

scoring sentences or abstracts for each topic (middle), and

other information.  Users can readily navigate through

the hierarchical topic tree.  They can browse topic key-

words, high-scoring sentences, and abstracts, and they can

annotate the topics with biologically meaningful com-

ments.  Users can also check the genes associated with a

particular topic (e.g. topic 7 in Fig. 3., lower middle), and

the topics and their strengths (lower right corner) associ-

ated with a highlighted gene in the gene list (lower middle

right).

Results

To validate the architecture we performed an experi-

ment on a list of 155 yeast genes (Table 1) manually se-

lected from ten pathways in the comprehensive yeast ge-

nome database (Munich Information Center for Protein

Sequences, 2006).  Care was taken in picking the path-

ways so that the overlap was low, though some overlap

was unavoidable.  The modules were run with the follow-

ing command line parameters.

DocBuilder:

• maximum number of abstracts per gene = 50

LongBOW:

• single word term df (document frequency) threshold

= 0.05

Figure 3:  BOWviewer user interface.
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• double word term p value = 0.025

• double word term tf (term frequency) ratio = 3.0

• default stopword lists

CrossBOW:

• branching factor = 2

• maximum branch depth = 4

• number of output keywords per topic = 50

ArrowSmith:

• scoring method = binary

• number of top-scoring sentences and abstracts = 25

GeneSmith:

• clustering algorithm = k-means

• k = 15

DocBuilder retrieved 2,819 abstracts from MEDLINE,

some of which covered two or more genes in the list.

CrossBOW was used to generate a topic hierarchy orga-

nized as a binary tree. It then assigned each abstract to

one of the 32 leaf nodes.  Each node was associated with

50 keywords, as well as 25 top-scoring sentences and ab-

stracts (helpful in grasping the node’s biological mean-

ing).  For example, the keywords for topic 0/0/0/0/0 (Table

2) strongly suggest proteolytic activities, which would be

expected for the genes from the ubiquitin-mediated pro-

teolytic pathway.  The majority of the topic’s MEDLINE

records (102 of 119) came from the pathway’s member

genes; and the genes contributed most of their MEDLINE

records (102 out of 138) solely to the topic.  Other genes’

abstracts were more broadly distributed among the top-

ics.  For example, some genes from the respiratory chain

pathway contributed their abstracts mainly to two or three

closely related topics (e.g. 1/0/0/0/0, 1/0/0/0/1 and 1/0/0/

1/0), corresponding to mitochondrial genome, mitochon-

drial protein biosynthesis and mitochondrial ATP biogen-

esis, respectively (Table 3).

The GeneSmith module clusters genes into groups based

on their topic distributions.  This is the second stage of

the novel 2-stage clustering process of our architecture.

For example, four of the genes listed in Table 3 (Q0045,

Q0105, Q0250, and Q0275) were assigned to the same

group because of their similar distributions in topics 1/0/

0/0/0 and 1/0/0/0/1.  Although Q0130 was from the same

pathway, it was clustered into another group because a

significant portion of its abstracts contributed to topic 1/

0/0/1/0.  Even though this topic is related to the above

two topics, the clustering algorithm (k-means) did not use

this fact.  The algorithm also seemed sensitive to details.

ID Pathway # of genes 

1 Sulfur amino acid biosynthesis 14 

2 Biosynthesis of sphingolipids 15 

3 Respiratory chain 40 

4 Pyrimidine metabolic pathway 8 

5 Krebs tricarboxylic acid cycle 15 

6 Cell cycle control of DNA replication 24 

7 Pre-rRNA processing pathway 24 

8 Ubiquitin-mediated proteolytic pathway 7 

9 Early steps of protein translocation into the endoplasmatic reticulum 5 

10 Vesicular protein transport in exo- and endocytosis 7 

Total 159 

Unique total 155 

Table 1:  Hand-picked genes from the Comprehensive Yeast Genome.

Representative keywords Contributing genes * Contributing groups 

proteasom, sug, rpt, atpas, ubiquitin, rpn, 

transcript, protein, gal, mts, tbp, proteas, 

cim, proteolysi, ufd, receptor, proteolyt, 

yta, tfiia, pa, channel, ms, 

regulatori_complex, cad, msug, conjug, 

famili, activ_domain, phosphoryl, 

transcript_activ, toa, cap, protein_degrad, 

nucleu, ubiquitin_protein, manduca, pre, 

nob1p, ubr, ism, fza, transcript_factor, 

bind_protein, muscl, gankyrin, die, nuclear, 

put_atpas, rna_polymeras_ii, hormone 

Gene (pathway) Citations Group Citations 

YGL048c (8) 38/50 (76%) 8 53/218 

YOR259c (8) 19/27 (70%) 11 46/890 

YKL145w (8) 19/22 (86%) 7 6/297 

YDL007w (8) 15/18 (83%) 9 4/287 

YDR394w (8) 6/14 (43%) 4 4/265 

YOR117w (8) 5/5 (100%) 2 3/457 

YKL216w (4) 2/29 (7%) 5 1/100 

YPR119w (6) 2/50 (4%) 0 1/199 

YLR079w (6) 2/50 (4%) 10 1/94 

 *Genes contributing only 1 citation to the topic were omitted.

Table 2: Representative keywords, and contributing genes and groups, for topic 0/0/0/0/0.
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For example, while a human expert would probably group

the six major contributing genes of topic 0/0/0/0/0 into a

single cluster, the algorithm assigned them into three clus-

ters (groups 7, 8 and 11 in Table 2), because their contri-

butions ranged from 43% to 100%.  Other clustering al-

gorithms and weighting methods might improve the sec-

ond clustering stage. Nevertheless, the system is robust to

noise introduced throughout the process in that the results

make sense despite that noise.

Discussion and Conclusion

Two-stage vs. one-stage clustering

The two-stage clustering approach, in which first

MEDLINE abstracts are clustered, and those clusters are

then used as input to the gene clustering stage, is a distin-

guishing feature of the architecture and its example imple-

mentation, GeneNarrator.  The two stage design overcomes

three significant drawbacks of basic single-stage cluster-

ing:

• the dominance of well-studied genes over less-stud-

ied genes,

• the dilemma of assigning less-studied genes to the right

clusters, and

• the difficulty of grasping clusters’ biological mean-

ings.

Some genes are well studied, with hundreds, even thou-

sands of hits in MEDLINE. Newly discovered and less

popular genes may have only a few hits.  In a basic one-

stage clustering design, each gene is represented by the

set of its abstracts. When directly compared, genes with

many abstracts will have a strong tendency to dominate

genes with only a few. This was vividly illustrated for

example by (Chaussabel and Sher, 2002) (figure 2). This is

a problem that needs to be addressed. The two stage de-

sign of GeneNarrator avoids this dominance problem be-

cause the number of abstracts for a gene does not trans-

late into a corresponding degree of influence in the ulti-

mate clustering of genes.  Consequently all abstracts count,

regardless of whether they discuss a gene with many other

abstracts or one with only a few. This is an advantage of

the two stage design as compared to a basic one stage

design.  Alternatively, a one-stage approach might be

adopted which does some form of averaging so that gene

representations do not expand without restriction as they

become more studied. For example, the semantic attribute

approach of Chagoyen et al., (2006) is in this paradigm.

Many genes, especially well-studied ones, are on record

as participating in multiple pathways.  Texts mentioning

such genes may therefore contain keywords indicative of

any of these pathways.  In a one-stage clustering design

an individual topic cluster dominated by well-studied

genes may therefore discuss multiple pathways. Further-

more, sets of pathways discussed in different topic clus-

ters may overlap.  This overlap can make assigning a less-

Topic* Representative keywords Description 

/1/0/0/0/0 

Q0045: 28/50 

Q0105: 16/50 

Q0130: 16/50 

Q0250: 14/50 

Q0275: 12/50 

cystein, trna, cystathionin, petit, cys, gene, sulfur, oah, methionin, 

enzym, mitochondri_genom, genom, lyas, plant, mitochondri_dna, 

clone, serin, shlase, str, atp, sulfhydrylas, ori, homocystein, exon, 

schizosaccharomyc_pomb, acetylserin, rho, acetylhomoserin, cyp83b, 

mitochondri, nidulan, cyp83a, cytoplasm, transposit, acetyltransferas, 

fungi, biosynthesi, pomb, met, aspergillu, ibs, beta_synthas, homolog, 

male, glucosinol, glu, sulphur, satas, synthas, sulphat 

Mitochondrial 

genome 

/1/0/0/0/1 

Q0045: 19/50 

Q0105: 30/50 

Q0130: 16/50 

Q0250: 28/50 

Q0275: 34/50 

mrna, pet, cox, translat, transcript, gene, mutat, cob, mitochondri, 

cbp, fumaras, cox2p, synthesi, rna, oxi, nuclear_gene, nuclear, mss, ai, 

cox1p, aep, box, respiratori, translat_activ, codon, ts, nam, cbs, fum, 

cytochrom, suppressor, bi, arg8m, utl, excis, mitochondri_gene, 

mitochondri_mrna, mss51p, protein, phenotyp, synthet, 

mitochondri_translat, translat_product, cox3p, pet111p, oxa, 

mitochondri_transcript, coxiii, pre_mrna, suv 

Mitochondrial 

protein 

synthesis 

/1/0/0/1/0 

Q0045: 1/50 

Q0105: 0/50 

Q0130: 14/50 

Q0250: 4/50 

Q0270: 1/50 

atp, oscp, atpas, oligomycin, beta_subunit, atp_synthas, cox5b, cox5a, 

oxygen, sector, residu, phosphoryl, oxid, coq, heme, adp, hap, cyc, 

amino_acid, cyt, membran, oli, mtatpas, imp, aerob, atpas_subunit, 

f1f, proton, mitochondri_atpas, enzym, atp_synthas_complex, 

amino_acid_substitut, atpas_activ, vb, yeast_atp_synthas, som, 

hydrophob, acid, uas, chromatographi, aminolevulin, lethal, bovin, viia, 

alpha_subunit, mgi, hem, qh, oxidas_subunit, 

mitochondri_atp_synthas 

Mitochondrial 

ATP 

biogenesis 

 *Other topics with 1 or 2 abstracts were omitted.

Table 3:  Topic distributions of some genes from the respiratory chain pathway.
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studied gene or other gene discussed in the context of a

single pathway to a cluster a dilemma.  On the one hand,

it must be assigned to at least one of the overlapping clus-

ters discussing its pathway.  On the other hand, it is prob-

lematic to assign it to any of those clusters, because mem-

bership in a multi-pathway cluster seems to suggest po-

tential relevance to more than one pathway.  In the two-

stage approach, this problem is less likely.  During the

first stage, text clustering may group abstracts into topics

containing more than one pathway, and one pathway may

end up in more than one topic.  But the second, gene clus-

tering stage permits assigning less-studied genes to indi-

vidual pathways, while well-studied genes can be assigned

to multiple topics simultaneously.

Finally, each topic cluster should be annotated, such as

with a list of representative keywords, sentences, etc.  From

a user’s perspective, it will typically be easier to grasp the

biological meaning of a gene cluster from keyword and

sentence annotations associated with it, if it contains truly

related genes.

Availability and Requirements

System developers may wish to incorporate two-stage

clustering and other aspects of the architecture discussed

in this paper into their own systems. Alternatively, the

code we developed is available to use as a starting point.

The official project Web site URL is http://

bioinformatics.ualr.edu/dan/genenarrator/.  Links are pro-

vided for downloading source code, a zip package, a

sample data set, and the user manual.  Linux is needed as

CrossBow requires it, however, other components can run

under other platforms.  One GB is required for moder-

ately-sized data sets (~500 genes/proteins/metabolites or

~10,000 MEDLINE abstracts).
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