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Abstract
Spermatogenesis refers to the developmental process of male germ cell formation from the spermatogonial stem 

cell to mature spermatozoa. The progression of male germ cells through the different phases of development, along 
with changes in cellular size and morphology, involves a coordinated change in their gene expression program at both 
the transcript and protein levels. It is well known that the stability, biological activity and cellular localization of proteins 
are regulated by post-translational modifications. In this review, we provide a brief update of current knowledge about 
the role of protein acetylation in mammalian spermatogenesis. Based on recent findings specific examples were cited 
to illustrate how these modifications are involved in controlling the different events that are important to the proper 
development of male germ cells.
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Spermatogenesis – A Complex Developmental Process 
in which Protein Post-Translational Modifications Play 
a Role

Spermatogenesis refers to the development of male germ cells 
from the spermatogonial stem cells to mature spermatozoa. The 
process can be divided into the mitotic, meiotic and postmeiotic 
(spermiogenic) phases. Spermatogonial stem cells, which are believed 
to be the ‘A single’ (As) spermatogonia, undergo self-renewal or 
expand mitotically to become ‘A paired’ (Apr), ‘A aligned’ (Aal), A1-4, 
intermediate and type B spermatogonia. Type B spermatogonia divide 
to become primary spermatocytes and enter a long meiotic prophase 
during which synapsis and recombination between homologous 
chromosomes occurs. Afterwards, two rounds of meiotic division 
take place to give rise to secondary spermatocytes, and subsequently 
round spermatids. The haploidic round spermatids undergo dramatic 
morphological changes, and transform into elongating and elongated 
spermatids, which are finally released into the seminiferous tubules as 
spermatozoa [1-5]. The complex nature of spermatogenesis is regulated 
and coordinated by induction of precise temporal expression of genes 
that are required for a particular phase of development [6-10]. It is 
evident that spermatogenic defects and male infertility occur when 
such temporal control is lost [11,12]. One of the unique features of 
spermatogenesis is the remarkable compaction of chromatin during 
the spermiogenic phase. The tight chromatin configuration leads 
to a cessation of gene transcription starting at the early elongating 
spermatid stage. To maintain the expression of gene products that are 
essential for completion of spermiogenesis, the mRNA transcripts of 
these genes are pre-synthesized and sequestered in specific cellular 
compartments until they are released for translation. As a result, the 
release and translational activation of these stored mRNA transcripts 
represents an additional modality for regulation of gene expression in 
male germ cells. 

The execution of cellular activities and transmission of intracellular 
signals are often mediated by a transient addition or removal of 
specific chemical tags on proteins. Phosphorylation, acetylation, 
methylation, sumoylation and ubiquitination are the most common 
post-translational modifications involved in the regulation of different 
aspects of protein function, such as protein stability and turnover rate, 
protein-protein interaction, activation or deactivation of enzymatic 
activities, and cellular localization of proteins. In this article, we will 
discuss specific examples of the significance of the role of protein 
acetylation in spermatogenesis.

An overview of Protein Acetylation
Protein acetylation involves the catalytic transfer of an acetyl moiety 

from acetyl CoA to a free amino-group of the target protein. Two types 
of protein acetylation processes occur in eukaryotic cells. The first is 
lysine acetylation, in which the ε-amino group of a lysine residue on a 
polypeptide accepts the acetyl moiety. Lysine acetylation is a reversible, 
post-translational modification involving the addition or removal of 
acetyl moieties mediated by lysine acetyl transferases and deacetylases, 
respectively. Lysine acetylation was first identified in histone proteins 
[13]. Since then, an increasing number of non-histone proteins, 
including gene transcription-related factors, metabolic enzymes and 
other cellular regulators, have been reported to be ε-acetylated [14-16]. 
In somatic cells, acetylated core histone proteins are often identified in 
euchromatin and their presence at gene promoters is associated with 
active gene transcription [17,18]. For non-histone proteins, lysine 
acetylation can positively or negatively affect their biological functions 
[14,15]. 

The second type of protein acetylation is the transfer of the acetyl 
moiety from acetyl CoA to the α-amino group at the N-terminus 
of a polypeptide. The enzymes that catalyze the reaction are called 
N-terminal acetyltransferases (NATs). In contrast to lysine acetylation,
protein N-terminal acetylation is irreversible and is a co-translational
process that takes place during the synthesis of a polypeptide [19].
Six NAT complexes (namely NatA to NatF) have been identified in
mammalian cells [20]. Among them, NatA is the most studied, and its
potential role in spermatogenesis is discussed in the following section.
It is estimated that up to 90% of mammalian proteins are α-acetylated
at their N-termini [21]. Certain amino acid residues are found to be
the preferred substrates for α-acetylation, but the specificity also varies
with the specific NATs involved [22].
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Biological Significance of Protein Acetylation in 
Spermatogenesis
Facilitation of histone displacement in elongating spermatids 

Since the early 1980s, studies of protein acetylation in mammalian 
spermatogenesis have focused on the acetylation of histones. During 
spermiogenesis nuclear histones are replaced by more basic transition 
proteins, and ultimately protamines to facilitate denser packaging of the 
paternal genome into the sperm head. It is estimated that approximately 
85% of the histones are displaced from the chromatin [23]. In rats, 
histone H4 is found to be hyperacetylated in elongating spermatids 
just before eviction of histones [24-26]. The close timing of the two 
events suggests an involvement of histone H4 hyperacetylation in the 
histone displacement process, which is experimentally documented 
by inhibition of histone removal from chromatin in the absence of 
H4K16 acetylation [27]. Indeed, recent studies have pointed out 
that histone H4 hyperacetylation plays the pivotal role in initiation 
of histone displacement, and the functional link between histone 
H4 hyperacetylation and histone displacement resides in the testis-
specific bromodomain protein Brdt. Brdt binds acetylated histone 
H4 through its bromodomains [28,29], and reorganizes acetylated 
chromatin in cell culture [28] and in round spermatid nuclei of the 
rat [30]. Specifically, the ablation of the first bromodomain of Brdt 
prevents histone displacement and genome compaction [31], and leads 
to sterility in male mice [32]. At the molecular level, Brdt interacts 
with Smarce1, a component of the ATP-dependent SWI/SNF family 
of chromatin remodeling complexes that function to destabilize 
histone-DNA interaction. In spermatid nuclei, the interaction 
between Smarce1 and Brdt is enhanced by histone H4 acetylation [30]. 
Meanwhile, Brdt can interact with itself [30,31]. Under conditions that 
promote histone acetylation, Brdt molecules interact in a head-to-
tail manner, which identifies its directional alignment and probable 
“polymerization” on chromatin [31]. These observations suggest 
hyperacetylated histone H4 may serve as the signal to attract Brdt, 
which further recruits chromatin remodeling complexes to promote 
nucleosome disassembly, and ultimately facilitates the eviction of 
histones. Additional immunohistochemical analyses indicate core 
histones, besides histone H4, are hyperacetylated at specific stages 
of spermatogenesis, and the pattern of histone acetylation is similar 
between the mouse and human. In general, acetylation of core histones 
is observed in mitotic spermatogonia. The level of acetylation becomes 
reduced in pachytene spermatocytes and round spermatids (step 1-8), 
peaks in elongating spermatids (step 9-12), and is undetectable in 
elongated spermatids from step 13 onwards [33,34]. It remains unclear 
whether all hyperacetylated core histones are involved in the histone 
displacement process. Additionally, the enzymes responsible for histone 
hyperacetylation have not yet been fully characterized. The human 
CHROMO DOMAIN Y (CDY) and mouse Cdy-like (Cdyl) proteins 
have been suggested as the acetyl transferases that acetylate histone H4 
preferentially [35]. The expression of Cdyl coincides temporally with 
histone H4 hyperacetylation pattern in elongating spermatids [35]. 
Interestingly, a reduction of histone deacetylase (Hdac1 and Hdac2) 
levels is also observed in elongating and condensing spermatids, and 
Cdyl binds the Hdacs and coenzyme A in a mutually exclusive manner 
[36]. These findings suggest that the acetylation level of histone H4 
may be regulated by a dynamic balance between the acetyl transferase 
activity of Cdyl and the histone deacetylases it recruits.

Regulation of nucleo-cytoplasmic trafficking

The Dazap1/Prrp (Deleted in azoospermia associated 1/Proline-
rich RNA binding protein) gene encodes a RNA-binding protein that is 

involved in RNA metabolic processes such as mRNA transport, splicing 
and translational stimulation [37-39]. Disruption of the Dazap1/Prrp 
gene leads to developmental and reproductive defects in mice [40]. 
Expression of Dazap1/Prrp is predominantly observed in the testis 
[41,42], in which its gene products display a dynamic expression 
pattern with respect to the stage of spermatogenesis. The cellular 
distribution of the Dazap1/Prrp protein is also dynamic: it is detected 
in both the nucleus and cytoplasm in late pachytene spermatocytes and 
round spermatids, but becomes exclusively cytoplasmic in elongated 
spermatids [43,44]. Shuttling of the Dazap1/Prrp protein between 
nucleus and cytoplasm is regulated by the acetylation of lysine residue 
150 of the polypeptide. The acetylated Dazap1/Prrp proteins reside 
in the nuclei. In contrast, non-acetylated Prrp proteins accumulate in 
the cytoplasm, and are predominantly localized in the mitochondria 
[45]. It is postulated that retention of Dazap1/Prrp in the cytoplasm is 
mediated by the action of deacetylase or a blockade of acetylation, and 
may function to confine the protein to facilitate translation of its target 
transcripts in elongated spermatids. At present, the enzymes responsible 
for acetylation/deacetylation of Dazap1/Prrp remain unidentified.

Regulation of RNA processing and translation efficiency

Mvh (now known as Dead box polypeptide 4, Ddx4) encodes an 
evolutionarily conserved ATP dependent DEAD-box RNA helicase 
that is implicated in regulation of the translation of mRNAs. In adult 
mice, Mvh protein is detected exclusively in the testis, and is localized 
in the chromatid body, a cytoplasmic perinuclear structure that exists 
in pachytene spermatocytes and round spermatids [46]. The presence 
of mRNAs and components of the RNA-induced silencing complex 
(for example, Dicer, Argonaute 2 and 3, miRNAs) [47,48] suggest that 
the chromatoid body is the processing center for RNA storage and 
translational repression in male germ cells. The interaction between Mvh 
and Dicer [48], and RNA binding protein HuR [49] further supports 
the involvement of Mvh in translational regulation. Accordingly, the 
loss of Mvh function leads to defective differentiation of male germ 
cells at a stage before the appearance of chromatoid bodies [50].

In a recent study by Nagamori et al. [51], Mvh is shown to be 
preferentially acetylated in male germ cells during stage IV to VI of 
the seminiferous epithelial cycle. The acetylation of Mvh occurs 
during the period that the cytoplasmic histone acetyl transferase 
Hat1 and its cofactor p46 become enriched in the chromatoid body. 
Further biochemical analyses reveal that Hat1 directly acetylates Mvh 
at lysine residue 405 in the presence of p46, which, in turn, leads to a 
reduction in the RNA binding activity of Mvh. Specifically, acetylated 
Mvh displays weaker association with Eukaryotic initiation factor 4B 
(eIF4B) transcripts, which leads, at later stages (stage VII to IX), to 
an increase in eIF4B translation in male germ cells. The acetylation of 
Mvh by Hat1 may serve as a molecular control to determine the timing 
of translation of RNA transcripts that encode products essential to 
later stages of spermatogenesis. Further identification and functional 
validation of mRNA transcripts that become translationally active upon 
Mvh acetylation will prove the universality of this modification process 
in meiotic and post-meiotic male germ cells. It will be important to 
identify the signal that regulates the mobilization of Hat1 and p46 to 
chromatoid bodies, and determine whether the RNA-binding activities 
of other chromatid body RNA-binding proteins are modulated by 
acetylation.

Protein N-terminal Acetylation: The Unexplored 
Territory?

As previously mentioned, NatA is the most studied NAT. NatA is 
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comprised of the catalytic subunit Naa10p (also known as Ard1a), and 
the auxiliary subunit Naa15p (also known as Narg1, Nat1 or NATH) 
that docks the NatA complex to ribosomes. Naa11 (also known as 
Ard1b) encodes an active retroposed version of the Naa10 gene; and 
it is predominantly expressed in the mouse [52] and human [53] 
testis. Naa11p is functionally equivalent to Naa10p in reconstitution 
of NAT activity in the presence of Naa15p. Interestingly, Naa10 and 
Naa11 display opposite expression patterns during spermatogenesis. 
The level of Naa10 is more abundant in pre-meiotic spermatogonia 
and becomes downregulated starting from meiosis. In contrast, 
Naa11 expression is upregulated starting in meiosis. Nevertheless, 
the translation of Naa11p is delayed until the appearance of round 
spermatids [52]. It seems that the autosomal Naa11 gene is induced 
to compensate for the loss of X-linked Naa10 as the sex chromosomes 
become inactivated during male meiosis; this implies the functional 
importance of NatA activity in the completion of spermatogenesis. 
On the other hand, the Naa10p-associated NAT activity may be more 
important in mitotic spermatogonia, and the Naa11p-associated NAT 
activity is essential for post-meiotic male germ cells. In this sense, the 
function of Naa10p and Naa11p may have evolved to mediate cellular 
events related to proliferation and differentiation, respectively. This 
postulation is consistent with the differential expression of human 
NAA10p and NAA11p in the human promyelocytic NB4 cell line upon 
differentiation [54], and the involvement of NAA10p in promoting 
cancer cell proliferation. An important discovery is the identification 
of lysine acetyl transferase activity by Naa10p alone [55-58], which 
indicates that the catalytic subunit itself is enzymatically active, and 
displays altered substrate specificity with respect to NatA. At present 
there is insufficient amount of information to explain when and how 
Naa10p would function as a lysine acetyl transferase in place of NatA, 
or whether both enzymatic activities co-exist in the same cell. The 
high degree of sequence homology between Naa10p and Naa11p [52] 
suggests a similar possibility for Naa11p in male germ cells. A thorough 
comparison of the testicular proteome in the presence and absence of 
Naa10p and Naa11p activities is therefore crucial to the identification 
of their endogenous substrates, and the elucidation of their functional 
roles in male germ cell development.

Future Direction
As illustrated in the select examples, protein acetylation is 

involved in male germ cell development by (i) serving as a signal to 
trigger histone removal in elongating spermatids, (ii) inducing the 
release of stored mRNA transcripts for translation at the appropriate 
time, and (iii) controlling the cellular localization of target proteins. 
The protein acetylation process, thus, works in a similar fashion as 
protein phosphorylation in the transduction of cellular signals and 
mediation of different biochemical activities. The importance of histone 
hyperacetylation and its displacement identifies the indispensable role 
of acetyl group-reading proteins in the completion of spermatogenesis. 
These proteins in turn represent potential drug targets for male 
contraceptive development. One example is the thienodiazepine 
inhibitor (+)-JQ1, a small molecule that competes for bromodomain 
binding and thus blocks Brdt from recognizing acetylated histone H4. 
Treatment of mice with (+)-JQ1 achieves complete male sterility by 
reducing the production, and impairing the motility, of sperm. The 
contraceptive effect of (+)- JQ1 is totally reversible and the subjects show 
no adverse health effects [59]. These findings, in principle, suggest male 
infertility can be induced by chemicals that block the reading of histone 
acetylation marks in male germ cells. It will be important to examine 
if small molecules that block male germ cell-specific histone acetyl 
transferases may demonstrate contraceptive effects as well. Despite 

progress in unraveling the biological significance of protein acetylation, 
our current knowledge of the importance of this modification process 
in spermatogenesis is limited to lysine acetylation. The presence of 
the other Nat complexes in the testis, and the existence of testis-
specific isoforms of their respective subunits have yet to be examined. 
Endogenous protein substrates of NatA in male germ cells remain to be 
identified. The availability of technologies for acetyl-proteome analysis 
[60], and in vivo gene silencing methodologies are expected to accelerate 
the identification of acetylated proteins from male germ cells and thus 
the elucidation of the functional role of NatA in spermatogenesis. 
Meanwhile, the association between the Ogden syndrome and genetic 
mutation of the NAA10 coding region [61] highlights the significance 
of protein acetylation in human development. Would male infertility 
be associated with genetic mutations of the NAA11 gene? Sequencing 
analysis of the NAA11 gene between infertile and normal male subjects 
should be pursued to show if such a functional link exists.
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