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INTRODUCTION 

Vanadium is – next to molybdenum – the second-to-most abundant 
transition metal in sea water. Oxygenated sea water commonly 
contains 24-45 µM of vanadate H

2
VO

4
ˉ (and is thus – next to 

molybdenum – the second-to-most abundant transition metal 
in sea water) with the levels mainly fluctuating with the season. 
Depletion by about 60% can occur as reduction to VIVO2+ takes 
place which forms a sparingly soluble hydroxide, VO(OH)

2
, that is 

readily absorbed by particulate organic matter [1]. Consequently, 
the factors influencing the occurrence of vanadium are redox 
conditions (such as dissolved O

2
 and Fe2+, the presence of NH

3
 and 

S2 , and – of course – its uptake by marine organisms. Vanadate 
is mainly taken up by marine algae, the most prominent one being 
knotted wrack (also known as rockweed) Ascophyllum nodosum, 
(Figure 1), by ascidians and, to some extent, also by some Polychaeta 
fan worms [2]. The significance of vanadium as an essential element 
in these organisms will be addressed.

VANADIUM IN ASCIDIANS

In 1911, Henze discovered vanadium in the blood cells (the 
coelemic cells; singlet ring cells and vacuolated amoebocytes) of 
the Mediterranean sea-squirt (ascidian) Phallusia mamillata [3]. The 
vanadium compound present in these cells actually is hydrated 
vanadium in the oxidation states of (predominantly) high-spin +III, 
such as V3+(H

2
O)

x
; the counter ion commonly is H

2
SO

4
ˉ. Vanadium 

is taken up by the ascidians (Figure 2) in the form of vanadate. After 
uptake, it migrates – via phosphate channels – into the cytoplasm 
of the organism in the form of H

2
VO

4
ˉ. Concomitant reduction 

takes place, which apparently occurs in two steps, i.e. (1) reduction 
of vanadate (V) H

2
VO

4
- to oxidovanadium (IV) VO2+ by NADPH+ 

and (2) reduction of VO2+ to (hydrated) V3+ by cysteinylmethionine 
(CysMe) (Scheme 1) [4]. In addition, vanadium accumulating 
ascidians dispose of an enhanced capacity to metabolize glucose-6 
phosphate (G6P); the activity of G6P-dehydogenase is markedly 
elevated when compared to ascidians with low accumulation 
rates [5]. The intermittently formed VO2+ binds to the lysine NH

2
 

residues of the vanabins. Vanabins are lysine-rich polypeptides of 
about 10 thousand kDa, attaining a bow-shaped conformation, 
with four α-helices connected by nine disulfide bonds [6-8].
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Scheme 1:   (a) The step-wise reduction of vanadate (V) to vanadium 
(III). Cysteine-rich proteins (associated with the oligopeptide 
vanabin2) are involved in this process. (b) Section of vanabin2, 
illustrating the binding of VO2+ to a lysine residue.

The amount of vanadium accumulated by ascidians strongly 
differs. An extraordinary degree of vanadium – up to 350 mM 
and hence the about 107 fold of vanadate in sea water (~35 nM) 
– can be absorbed. In the intestinal lumen, the concentration 
can reach 0.7 mM. This particularly effective accumulation of 
vanadium, occurring in the greater part of the ascidians, apparently 
is supported by bacterial genera such as Pseudomonas and Ralstoni 
(in the tissues of the branchial sacs of the ascidians), and Treponema 
and Borrelia (in the intestines) [9-12] – a fact which is in line with 
the general ability of certain strains of bacteria from deep-sea 
hydrothermal vents (such as Pseudomonas vanadium-reductans) that 
reduce vanadate to vanadium in the +IV (and +III) state, using 
lactate as electron donor [13]. 
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Figure 1: Examples for algae that produce hypohalous acids: Left 
Corallina officinalis, right Ascophyllum nodosum, the alga where the vanadate-
dependent haloperoxidase was originally characterized by Vilter in 1983. 
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VANADIUM IN MARINE ALGAE 
Several species of macro-algae in the marine environment (Figure 
2) are able to catalyze the oxidation of the halide Xˉ (Xˉ = Iˉ, Brˉ, 
Clˉ) to hypohalous acid [14-17], as exemplified for the bromide 
oxidation in eqn. (1). The oxidant employed by these algae is 
hydroperoxide (H

2
O

2
, HO

2
ˉ); the oxidation is supported by heme-

type or by vanadate-dependent enzymes, viz. haloperoxidases. 
Pseudohalides, such as cyanide and thiocyanate (eqn. (2)) can also 
be substrates. By producing hypohalous acid, the algae protect 
themselves against parasite infestation, in particular fungi. A few 
other groups of organisms also oxidize halides to hypohalite, 
among these marine Streptomyces [18], bacteria and cyanobacteria 
[19,20]. In the latter case, chlorinated compounds are formed that 
function as antibodies.

Brˉ + H
2
O

2
 → BrOˉ + H

2
O		  (1a)

              Brˉ + H
2
O

2
 + H+ → HOBr + H

2
O	               (1b)

SCNˉ + H
2
O

2
 → OSCNˉ + H

2
O	               (2)

The production of volatile, highly oxidative hypohalous acids HOX 
by some macroalgae does also have implications for the climate, 
since – once released into the atmosphere – HOX is subjected to 
UV irradiation and forms radicals that contribute to the depletion 
of atmospheric ozone [21]; eqns. (3) and (4).

              CH
3
Br + hν → Br + CH

3
•  		 (3)

              Br• + O
3
 → BrO +O

2
		  (4)

The active site (Figure 3) in all of these algae contains vanadium in 
an essentially trigonal-bipyramidal environment, in close hydrogen 
bonding interaction with surrounding water molecules and amino 
acid residues, cooperating with the active center via hydrogen 
bonds.

During turn-over, the VHPOs are self-supporting in the sense that 
they only marginally change their coordination environment. In 
the course of the reaction, a peroxido intermediate is formed, 
in which the trigonal-bipyramidal arrangement at the vanadium 
centre is essentially retained. H

2
O

2
 docks to the vanadium centre as 

hydroperoxide in a monodentate fashion, followed by the releases 
of one or two proton to form a η2-peroxido and/or -hydro-peroxido 
intermediate. This intermediate undergoes a nucleophilic attacked 
by the substrate, such as bromide, and finally releases hypobromous 
acid. The several steps of this sequence are shown in Figure 4.
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Figure 4:  Activation of peroxide by the vanadium centre of the 
haloperoxidases (adapted, in part, from ref. [16]). The intermittently formed 
active hydroperoxido complex transfers a hydroxide to the halide X-. 
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Figure 2:   Schematic representation of the accumulation path of 
vanadium by ascidians (left) [8], exemplified here for Ascidia gemmata 
(right). Vanadate (V) enters the cell via phosphate/vanadate channels, 
supported by mutualistic bacteria. Vanadium binding sites are provided 
by lysine-rich polypeptides [6,9]. The blood cells storing V3+ are termed 
vanadocytes.
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Figure 3:  Section of the active centre of the bromoperoxidase from 
Ascophyllum nodosum, adapted and simplifies from ref [14]. 
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