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Introduction
The residual risk of transfusion transmitted infection (TTI) had 

been decreased greatly since the donor screening methods, especially 
the nucleic acid testing (NAT), were introduced. NAT can shorten the 
period between infection and detection (window period) to several days 
after infection [1]. However, transfusion safety still faces challenges due 
to limitations of test sensitivity and more importantly the unexpected 
appearance of new pathogens. The newly discovered or re-emerging 
viruses such as West Nile virus, human parvovirus B19 and latest 
reported severe fever with thrombocytopenia syndrome bunya virus 
[2] in the donor blood endangered blood safety. Pathogen inactivation/
reduction (PI/PR) strategies provide last line of defence against various 
pathogens to secure transfusion safety.

PI/PR refers to any technology that inactivates or reduces all types of 
blood borne pathogens. Different methods were designed for different 
blood products such as plasma, platelets and red blood cells (RBCs). An 
ideal PI/PR is expected to inactivate all blood borne pathogens without 
damaging the quality of blood or blood products. Some common PI/PR 
methods include treatment with solvent/detergent (S/D), Methylene 
blue, Psoralens, Riboflavin. Some new technologies for PI/PR are under 
development. 

PI/PR by Solvent/Detergent (S/D) 
S/D technology is a combination of solvent and detergent. The 

most- commonly used protocol is: Treat blood sample with 1% tri-(N-
butyl)-phosphate (TNBP) and 1% Triton X- 100 for 4 hours at 30°C, 
then remove S/D reagents by vegetable oil extraction and subsequent 
reverse-phase chromatography on C18 resin. This method inactivates 
pathogen by disrupting the lipid enveloped membrane, so it can’t be 
used for blood components with cellular structure. The S/D treatment 
was first licensed by the US FDA in 1985 for use in the manufacture 
of an anti-hemophilic factor (AHF) concentrate [3], and then applied 
in coagulation factors and pooled plasma. S/D can rapidly inactivate 
different lipid enveloped virus, such as vesicular stomatitis virus 
(VSV) (virus titer reduction ≥ 7.5log), sindbis virus (≥ 6.9log), HIV (≥ 
6.2log), hepatitis B virus (HBV) (≥ 6log) and hepatitis C virus (HCV) 
(≥ 5log) [4]. However, S/D can’t inactivate non-enveloped virus, such 
as hepatitis A virus (HAV) and parvovirus B19. Various studies [5-7] 
showed that treatment of S/D could reduce the activity of coagulation 
factors (CFs), inhibitors, immunoglobulins and other plasma proteins 
by about 5-20%. S/D treatment is safe and the final S/D reagents 
removal step ensures the final product is non toxic. 

PI/PR by Methylene Blue 
Methylene blue (MB) is a phenothiazine compound that can be 

activated by visible light to generate reactive oxygen species (ROS), 
mostly singlet oxygen, through a Type II photodynamic reaction. These 
highly active molecules contribute to methylene blue’s pathogen-
inactivating activity [8]. The first MB treatment system was developed 
by the Institute Springe in Germany. The conventional MB treatment 
included white blood cell (WBC)-reduction filtration, MB Pill 
dissolution, illumination and MB removal. Because of cell filtration step, 

this method was only applied to single donor plasma. The PI/PR efficacy 
of MB treatment for lipid enveloped virus is significant for both double 
and single- stranded RNA and DNA viruses, but for the non lipid-
enveloped virus, the effect is inconsistent. Non-lipid enveloped virus 
like human parvovirus B19 could get a 4log or more reduction, while 
others like HAV are not affected by MB treatment [9]. Although MB can 
cross cell membrane by simple diffusion, its low concentration within 
cells makes it impossible to inactivate intracellular viruses, bacteria and 
protozoa. While it is effective for some pathogens, MB treatment affects 
the activity of some plasma proteins, such as CF VIII and fibrinogen 
[10,11]. MB PI/PR was licensed for use in Europe, Brazil, and Austria. 
The safety profile of MB PI/PR was validated by many studies, although 
allergic reactions to MB have been reported [12].

PI/PR by Psoralens 
Psoralen is a naturally occurring photoactive substance found in a 

number of plants. PI/PR by psoralen has been successfully developed as 
a commercial product- INTERCEPT system [13]. It utilizes amotosalen, 
a synthetic psoralen (formerly S-59-HCl) as active compound. The 
amotosalen contains a tricyclic molecule structure, thus it can pass 
cellular membranes and interact with nucleic acids freely. Upon the 
illumination of UVA light (300-400 nm), it forms covalent cross 
links to pyrimidines in RNA and DNA and blocks the replication and 
transcription of mRNA. After treatment, the residual amotosalen and 
photoproducts are absorbed by silicon which is fixed in the treatment 
set. The psoralens PR were proved effective against almost all blood 
borne pathogens, including viruses, bacteria and protozoa. This method 
was approved by several Europe countries and applied for plasma 
and platelets. Studies show that this treatment slightly influences the 
function of blood components without damaging the overall quality 
[14]. The toxicological studies and clinical trials demonstrated that this 
treatment is safe [15]. 

PI/PR by Riboflavin 
Riboflavin (vitamin B2) is present in food and natural products. 

Riboflavin combined with UVA (280-360 nm) was used to inactivate 
various pathogens. The UVA light can damage the nucleic acids of 

*Corresponding author: Dr. Limin Chen, Institute of Blood Transfusion, Chinese
Academy of Medical Sciences and Peking Union Medical College, Chengdu,
Sichuan, 610052 China, Tel: 86-28-61648530; Fax: 86-28-68169146; E-mail:
limin_chen_99@yahoo.com

Received September 02, 2013; Accepted October 08, 2013; Published October 
10, 2013

Citation: Yang C, Zeng P, Li Y, Li S, Duan X, et al. (2013) Last Line to Secure 
Transfusion Safety: Pathogen Inactivation/Reduction Methods in Blood Products-
Current Approaches and Perspectives. J Antivir Antiretrovir 5: 137-138. 
doi:10.4172/jaa.1000077

Copyright: © 2013 Yang C, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Last Line to Secure Transfusion Safety: Pathogen Inactivation/Reduction 
Methods in Blood Products-Current Approaches and Perspectives
Chunhui Yang, Peibin Zeng, Yujia Li, Shilin Li, Xiaoqiong Duan, Hong Yang, and Limin Chen*

Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, China

Journal of
Antivirals & AntiretroviralsJo

ur
na

l o
f A

ntivirals & Antiretrovirals

ISSN: 1948-5964



Citation: Yang C, Zeng P, Li Y, Li S, Duan X, et al. (2013) Last Line to Secure Transfusion Safety: Pathogen Inactivation/Reduction Methods in Blood 
Products-Current Approaches and Perspectives. J Antivir Antiretrovir 5: 137-138. doi:10.4172/jaa.1000077

Volume 5(6): 137-138 (2013) - 138
J Antivir Antiretrovir
ISSN: 1948-5964 JAA, an open access journal

pathogens directly. In addition, the riboflavin can intercalate between 
bases of DNA and RNA. Upon light exposure, it leads to a Type 1 
photochemical reaction and damages nucleic acids of pathogens 
irreversibly [16]. TERUMOBCT (a private company) developed a 
riboflavin PR system (Mirasol) for treatment of plasma and platelets 
[17]. The process of riboflavin PR is similar to other photochemical 
methods except no removal step for residual drug as the riboflavin is 
classified as a Generally Regarded as Safe (GARS) compound by the 
US FDA, and the toxicological assessment of its photoproducts shows 
that they are free of safety concerns. Like the INTERCEPT system, it is 
effective against a wide range of enveloped and non-enveloped viruses, 
Gram-negative and Gram-positive bacteria, parasites, although its 
ability to inactivate HBV and HAV is weak according to the result of 
standard in vitro assays for infectivity (TCID50). The reduction activity 
for the two viruses is 2.5log and 1.6log, respectively. The quality of the 
Riboflavin-treated products shows no significant difference compared 
with non-treated products [18].

In addition to pathogen reduction methods discussed above, there 
are some other PR methods under development. Physical methods such 
as heat treatment and Nanofiltration were applied in plasma fractions 
[19]. Harald et al. reported a method using short-wave ultraviolet 
light (UVC) to reduce pathogen in platelet concentrates by its direct 
interaction with nucleic acids [20]. Under the illumination of 0.4 J/
cm2 UVC, no bacterial growth was observed 6 days after treatment. 
Bradley et al. investigated a pressure cycling technology derived from 
the industrial applications of food and vaccine PR to inactivate model 
pathogens in plasma [21]. With 2 minute cycles of 275 MPa or 345 MPa 
at –5°C, the phage titer of Lambda phage was reduced 4.2log or 6.9log, 
respectively. Since they only choose one pathogen to investigate, the 
method needs further evaluation on efficacy and safety.

In general, each PI/PR method has its advantages and 
disadvantages. Some methods have strong ability to inactivate specific 
pathogens but no broad spectrum, while others can inactivate a wide 
range of pathogens but the reduction activity is low. Up to now, PI/PR 
in plasma is well developed with many choices, but PI/PR methods for 
cellular components is still under development, particularly methods 
tailored for the red blood cells (RBCs) and whole blood. A chemical 
method using a compound (S-303) based on a derivative of quinacrine 
mustard was developed to inactivate pathogen in RBCs [22]. However, 
the development of antibody against neoantigens in transfused 
subjects stopped it in Phase III clinical trials. Another method using 
ethyleneimine (PEN110) to target RBCs PR [23] was also stopped in 
Phase III clinical trials with the same reason. Luckily, the INTERCEPT 
system has started Phase III clinical trials for RBCs and R. P. Goodrich 
et al investigated the Mirasol system for whole blood [24,25]. With 
the development of new technologies, PI/PR will provide last line of 
defense to ensure transfusion safety.
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