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Last century has witnessed the emergence of Drosophila 
melanogaster as a premier experimental model organism and its 
exceptional contribution in field of genetics, developmental biology, 
behavioural studies, stem cell research and modelling of various fatal 
human neurodegenerative disorders. Drosophila, as a model organism 
not only confers the power of genetics on the manipulator but also 
offers several additional advantages that make it an attractive choice for 
use in widespread facets of the scientific genre. The large-scale genetic 
mutagenesis screens have made elucidation of genes involved in human 
disease pathways relatively rapid and less cumbersome. Moreover, 
completion of the Drosophila genome sequencing paved ways for a 
comparative genomic analysis approach, which has elucidated that 70% 
of human diseases causing genes have Drosophila homologues [1-4]. In 
addition, conservation of important biochemical and developmental 
pathways between noticeably distant fruit flies and humans further 
encouraged the scientific community to utilize Drosophila as a model 
organism to study the insights of human disease development and to 
design novel therapeutic strategies.

Human neurodegenerative diseases represent a group of illnesses 
which develop due to progressive degeneration of neuronal cells in 
distinct parts of brain [5]. Majority of such neurodegenerative diseases 
exhibit a common feature of an increased number of CAG nucleotide 
triplet repeats in their protein coding sequence which results in 
abnormally long polyglutamine [poly (Q)] tract in the encoded proteins 
[6]. Therefore, the diseases wherein the instigating protein encompasses 
such abnormal numbers of repeats are known as polyglutamine or poly 
(Q) diseases. Increased numbers of polyglutamine repeats exhibit germ 
line instability and tend to increase further with successive generations 
[7]. 

Extra glutamine residues in a mutated protein could acquire toxic 
properties through a variety of ways such as irregular protein folding, 
altered sub cellular localization and abnormal interactions with other 
cellular proteins [8]. Extended poly (Q) containing proteins often 
aggregate together to form nuclear inclusion bodies (IBs) and exert 
a dominant effect by interacting with other key cellular proteins such 
as transcription factors, molecular chaperons, proteasome subunits, 
cytoskeletal components etc., and sequester them in nuclear inclusion 
bodies [9-16]. The toxic effects of insoluble protein aggregates are 
therefore; exaggerate by the functional depletion of other normal 
cellular proteins owing to their sequestration by inclusion bodies. 
Although the exact mechanism of aggregate formation is still 
enigmatic, however, it is believed to be triggered by an altered beta 
pleated sheet-enriched structure of polyglutamine region which arises 
due to its abnormal length and facilitate aberrant clumping of these 
proteins with each other and also with other surrounding proteins 
[17]. Interestingly, additive role of normal repeat-length polyglutamine 
peptides in accelerating aggregation, nucleation and cytotoxicity 
of expanded polyglutamine proteins has also been reported [18]. 
Progressively, increasing loads of nuclear inclusions bodies lead to 
neuronal dysfunction and finally degeneration. Intriguingly, although 
the mutated protein displays a widespread expression in all types of 
tissues, however, disease manifestation is restricted only to the nervous 
system.

Human neurodegenerative disorders could be classified as per 
the location of protein aggregate formation. For instance, cytosolic 
aggregation pattern in case of Parkinson’s disease where the α-synuclein 
forms insoluble fibrils called Lewy bodies; nuclear aggregation of 
mutated Ataxins and Huntingtin proteins in cases of Spinocerebellar 
ataxia type 1 (SCA1) and Huntington’s disease respectively [19-
21], accumulation of neuroserpin inclusion bodies in endoplasmic 
reticulum (ER) in case of familial encephalopathy, and extracellular 
spaces in case of Alzheimer’s disease where beta amyloid and hyper 
phosphorylated tau proteins form major components of the senile 
plaques and neurofibrillary tangles respectively [6,9]. In addition to the 
aggregate formation, all these neurodegenerative disorders also share 
common features of late onset disease manifestation and progressive 
dynamic nature [22]. 

Several fatal human autosomal dominant neurodegenerative 
disorders such as Huntington’s disease, Spinocerebellar ataxia, 
Parkinson’s disease etc. have been successfully modelled and 
extensively studied in D. melanogaster [6,9]. The most common 
approach undertaken to express human disease genes in Drosophila 
involve two-component GAL4/UAS system [23]. This system is based 
on the fact that yeast GAL4 transcriptional activator binds to the 
Upstream Activating Sequence (UAS) enhancer element in order to 
drive expression of the gene present immediately downstream of UAS 
[23]. Tissue specific ectopic expression of any desired transgenes could 
be achieved by adopting the above strategy. Drosophila compound 
eyes have emerged as an excellent organ for modelling the human 
neurodegenerative diseases and to perform their in-depth cellular and 
molecular analysis. It provides an exceptional opportunity to study 
the disease progression through the entire life span of Drosophila, 
since a functional eye is not essential for viability. It was exquisitely 
demonstrated that the expression of truncated/full length protein of 
interest with 75 or 120 glutamines repeats result in length-dependent 
degeneration of photoreceptor neurons of adult Drosophila eyes which 
gradually depreciate with aging [24,25]. 

Following the initial success of human neurodegenerative 
disease modelling in Drosophila, attempts were made to model a 
verity of diseases using various mutagenesis/ transgenic approaches. 
Subsequently, this approach has emerged as valuable tool to decipher 
in-depths of human disease pathogenicity and to screen for genetic/ 
chemical modifiers and to design novel remedial strategies [6,9,24]. 
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Many of such disease models are readily available in several Drosophila 
stock centres. Indeed, Drosophila disease models have been used 
comprehensively to generate significant information regarding disease 
pathogenicity, identification of novel genetic modifiers and chemical 
compounds [26-28]. A large number of genetic modifiers have already 
been identified in case of Huntington’s disease alone, which could be 
categorized in several sub-groups as per their functional characteristics 
[6,9].

Taken together, Drosophila provides a powerful system to study the 
various aspects of human neurodegenerative diseases. However, given 
an excellent model and the wealth of tools available to study modified 
phenotypes of flies, the precise mechanism that causes disease toxicity 
still stands as a question mark. Therefore, genetic studies should be 
focussed on unravelling the molecular nature of the neurotoxic species 
for each disease type, and to decode the key neuronal functions which 
are being affected by the accumulation of toxic proteins. Moreover, in 
view of the conserved disease pathology in Drosophila and human, there 
is an urgent need to develop parallel comprehensive study plans for not 
only to decipher the mechanistic details of the disease pathogenicity 
but also to perform large scale screening for the candidate molecules 
and genetic modifiers to appraise their potential as the suppressor of 
disease phenotypes. Subsequently, the identified genes/molecules could 
be verified for their effects and reproducibility in higher model systems. 
The fruit fly has, thus, proved its worth in the field of neurobiology 
research and will continue to contribute significantly towards novel 
discoveries prove to be as fruitful as its name. 
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