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Shrimp Aquaculture
Shrimp culture is an ancient practice done in some countries from 

Asia and America since the 15th century. In Asia, fish and shrimp larvae 
entered coastal lagoons with the high tide. These animals were enclosed 
through a traditional art called tambaks and were reared to maturity 
[1]. In pre-hispanic Mexico, shrimp postlarvae and fish larvae were 
enclosed during high tides in coastal lagoons using wooden barriers 
called “Tapos”. Here, larvae were grown using the naturally available 
resources and were harvested when reached a suitable size [2].

Modern shrimp culture began in 1933 in Japan with the induced 
spawning and hatching of Marsupenaeus japonicus larvae. This 
method included the artificial rearing of larval stages up to postlarva 
using natural feed such as microalgae and Artemia nauplii [3]. This 
technology allowed the production of larvae in hatcheries instead of 
using larvae from the wild to stock grow-out ponds.

Shrimp aquaculture became a commercial activity since the 1950s 
in Asia [4] and the 1970s in America [5]. Semi-intensive shrimp 
farming developed thanks to a number of improved techniques for 
larval rearing and stocking ponds at higher densities, water fertilization 
and artificial diets [6,7]. As a consequence, shrimp aquaculture 
increased its production and economic importance. At present shrimp 
farming is done in several countries in Asia, America and Africa [5]. 
The importance of shrimp aquaculture lies in two main aspects: (a) it 
is a source of high quality protein for human consumption and (b) it 
provides employment and improves the economic status of people in 
low-income countries [8].

Despite the rapid growth of shrimp farming and its further 
expansion to other countries and regions, intensification of shrimp 
aquaculture has prompted stress factors that increased susceptibility 
to diseases [9,10]. Environmental stressors such as temperature or 
salinity fluctuations due to heavy rain or toxicity from industrial or 
agricultural pollutants have been related to development of disease 
and mortality [7,11]. Other factors involved in onset of disease include 
pond overcrowding, overfeeding, lack of nutritional requirements 

and poor water quality [12]. As a result, an increased appearance of 
infectious and/or opportunistic diseases caused by bacteria, viruses, 
fungi, parasitic protista and metazoa have been reported [7,13].

Infectious diseases

Infectious diseases currently represent the biggest threat to farmed 
shrimp production since they cause severe clinical signs and high 
mortalities. Viruses are the most damaging pathogens that affect farmed 
shrimp. Several viruses are considered a threat to the development of 
shrimp aquaculture because of their wide host range, pathogenicity 
and distribution [7,13-15]. Viruses that have caused severe epizootics 
and high mortalities in larvae, postlarvae and juvenile stages of shrimp 
include baculoviruses (monodon baculovirus [MBV], baculovirus 
penaei [BP], baculoviral midgut gland necrosis virus [BMNV]), parvo-
like viruses (infectious hypodermal and hematopoietic necrosis virus 
[IHHNV], hepatopancreatic parvovirus [HPV]), a dicistrovirus (Taura 
syndrome virus [TSV]), a ronivirus (yellow-head virus [YHV]), and a 
nimavirus (white spot syndrome virus [WSSV]) [13,16]. Features of the 
main harmful viruses are described below (Table 1).

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) 
- also known as Penaeus stylirostris densovirus (PstDNV) [17-19]
was first reported in batches of Litopenaeus stylirostris under super
intensive culture [20] and also in batches of L. vannamei [21]. This
pathogen rapidly spread to other countries in America (Mexico,
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Abstract
Shrimp culture has long been done in Asia and America to provide high quality food to people. Modern aquaculture 

uses advanced techniques to increase shrimp production but it also has enhanced the occurrence of infectious 
diseases. Disease is the main pitfall for the development and sustainability of shrimp aquaculture worldwide. In the 
last decade several methods and strategies have been developed and evaluated under experimental conditions in 
order to curb the negative impact of viral infections. Among these, RNA interference is the most recent tool against 
viral diseases in shrimp and it is deemed as a promising biotechnology to boost shrimp production. This paper gives 
a broad overview of the RNAi methods used to fight viral diseases in shrimp aquaculture compared to the antiviral 
effect of methods previously evaluated against viruses. It also gives examples of the use of RNAi to learn more 
on mechanisms of the shrimp defense response. The application of RNAi to fight or treat viral infections in shrimp 
aquaculture has yet to come and it depends on the efficacy of RNAi against several viral diseases, evaluation of 
environment and food safety and the development of cheap, massive delivery methods of RNAi molecules to shrimp 
farming facilities.
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Panama, Colombia, Ecuador and Argentina) [22-25], Asia (Indonesia, 
Malaysia, Philippines, Singapore and Thailand) [22,26] and French 
Polynesia [18]. Its genome is organized into three open reading frames 
(ORFs) encoding a non-structural protein, an unknown protein and a 
capsid protein, respectively [27]. IHHNV causes infection to several 
shrimp species [22,25,26] (Table 1). Clinical signs of IHHNV infection 
depend on the species age and size, being the early juvenile stages more 
susceptible to the disease. In L. stylisrostris, acute IHHNV infection 
displays reduced feeding and locomotion, behavioral changes during 
swimming and at the end animals sink into pond bottom and die [22]. 
In L. vannamei, acute IHHNV infection shows reduced growth rate and 
marked size differences within a pond population and causes deformity 
of the rostrum, antennae and/or cuticle which is known as the “runt 
deformity syndrome” (RDS) [28]. In P. monodon IHHNV infection 
apparently causes no clinical signs as no differences in size, weight 
or fertility was found between IHHNV-positive animals (determined 
by PCR and/or in situ hybridization) compared to healthy ones. No 
histological lesions (Cowdry-type A inclusion bodies) were observed 
in IHHNV-positive farmed animals [29,30]. This virus became the 
main pathogen both in shrimp fisheries and aquaculture in the 1980s 
in Mexico. It was estimated that its economical impact was between 
0.5 and 1.0 billion US dollars [21]. This virus is still present in wild and 
cultured shrimp in Mexico and other countries.

Taura syndrome virus (TSV) - This virus was first reported in 
shrimp farms near Taura river, Ecuador in 1992 and from this location 
its name was given. The TSV genome consists of a single, positive-sense 
RNA strand of around 10 kilobases long [31]. It is composed of two 
ORFs. The first one is 6740 nucleotides long and encodes a putative 
non-structural polyprotein with several domains such as a helicase, a 
protease and a RNA-dependent RNA polymerase. The second ORF 
encodes three structural proteins VP2, VP1 and VP3 and spans 3036 
bases from nucleotides 6947 to 9982. These ORFs are separated by a 
non-coding intergenic region of 210 bases [31]. Clinical signs were at 
first thought to be caused by chemicals used against banana pests in 
nearby plantations but in 1994 the viral etiology was confirmed [32]. 
Soon after its appearance, TSV spread to several countries in South, 
Central and North America as well as to Hawaii [33]. Since 1999 TSV 
was also detected in Asian countries such as Taiwan, Thailand and 
Korea which imported stocks of L. vannamei from South America [34-
37].

Several shrimp species are susceptible to TSV infection [22,35,37,38] 
(Table 1). It appears that shrimp from the genus Farfantepenaeus (F. 
aztecus and F duorarum) are resistant to TSV infection since no clinical 
signs or histopathological lesions were detected upon experimental 
infection [39]. Size and age are factors for increased susceptibility to 
TSV infection. In specific pathogen-free L. vannamei larger animals 
are more susceptible to infection and mortality than early juveniles [6].

TSV infection has three clinical stages: acute, transition and chronic 
[40]. In the acute stage (3-5 d after the onset of infection) animals 
display soft exoskeleton, melanized multifocal necrosis and expanded 
chromatophores in uropods and pleopods. This stage is related to late 
premolt or early postmolt. Here, animals become weak, with empty 
digestive tract and often die during molting (cumulative mortality = 
75-95%) [22,40]. Cellular lesions include pyknosis, karyorrhexis and 
necrosis in epithelia of cuticle, digestive tract, gills, antennal gland 
and haematopoietic tissues [41]. Animals in the transition stage (4-8 
d after onset of infection) showed a reduction in severity and number 
of cellular lesions and melanization is observed. These features indicate 
the onset of the chronic phase [40]. Here, surviving shrimp (8 d after 
infection) showed wound repair leading to regeneration of epithelial 
tissues in affected organs. Mortality ceased and surviving shrimp molt 
shedding the necrotized cuticle [40,41]. The economic impact of TSV 
during 1992 to 1996 was estimated between 1.2 to 2 billion US dollars 
[40].

Yellow-head virus (YHV) - This pathogen has up to six different 
genotypes which produce the yellow head disease and include 
the gill-associated virus (GAV) from Australia [42-44]. Due to its 
morphology YHV was first thought to belong to the granulosis-like 
virus (Baculoviridae). Later, its genome was determined to be a RNA 
molecule [45,46]. The complete genome is a single linear (positive 
strand) RNA molecule of 26652 nucleotides [46,47]. The genome is 
organized into four distinct ORFs. ORF1a has a 3C-like protease motif, 
whereas ORF1b has a “SDD” polymerase metal ion binding domain 
helicase. ORF2 encodes putative nucleocapsid proteins (g7 and g2) and 
ORF3 encodes putative surface glycoproteins (p18/20, p33 and g2.1). 
ORF4 is very small and it is located at the end of the genome with no 
known product [46].

Yellow head virus first appeared in Thailand and later it spread 
to other countries in Asia (Taiwan, Indonesia, Malaysia, China, 

Virus Year first 
Recorded

Location Shape Size (nm) Genome 
type

Genome size Transmission 
type

Susceptible species

IHHNV 1981 Hawaii, USA  Icosaedral 20 – 22 ss DNA 4100 - 4700 nt Horizontal / 
vertical 

Litopenaeus stylirostris, L. vannamei, L. occidentalis, vertical 
Farfantepenaeus californiensis, Fenneropenaeus chinensis, 
Penaeus monodon, P. semisulcatus, Marsupenaeus japonicus, 
Artemesia longinaris

TSV 1992 Ecuador Icosaedral 31 – 32 ss (+) RNA 10205 nt Horizontal L. vannamei, L. stylirostris, L. setiferus, P. monodon, 
Metapenaeus ensis, F. chinensis, L. schmitti

YHV 1990 Thailand Bacilliform 150 – 200
x 40 – 50

ss (+) RNA 26652 nt Horizontal /
Vertical

P. monodon, P. merguiensis, M. ensis, L. vannamei, L. 
stylirostris, L. setiferus, F. duorarum, F. aztecus, Palaemon 
styliferus, Palaemonetes pugio, Acetes sp.

WSSV 1992 Taiwan Bacilliform 210 – 380
x 70 – 67

ds DNA 292 - 307 kbp Horizontal /
Vertical

Farfantepenaeus aztecus, F. duorarum, L. stylirostris,
L. vannamei, L. setiferus, F. chinensis, F. indicus, F. 
Marsupenaeus japonicus, M. ensis, M. dobsonii, M. 
monoceros, P. monodon, P. penicillatus, P. semisulcatus, 
Parapenaeopsis stylifera, Solenocera indica, Trachypenaeus 
curvirostris

Legends: nm - nanometers; nt - nucleotides; ss - single-stranded; ds - double-stranded; (+) positive strand; kbp - kilo base pairs

Table 1: Features of the four main viral pathogens in shrimp aquaculture.
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Philippines, India), Australia and America (USA and México) 
[22,42,47]. Many shrimp species are susceptible to YHV both by natural 
infections and experimental challenges [22,47,48] (Table 1). Clinical 
signs include pale yellow body coloration, especially in hepatopancreas 
and gills in P. monodon. Other clinical signs include erratic swimming 
near pond shores and cumulative mortality up to 100% within 3 - 5 
d after onset of clinical signs [44]. YHV causes systemic infection 
and replicates in tissues and organs of ectodermic and mesodermic 
origin such as gills, digestive tract, lymphoid organ, connective tissues 
of nerves, eyestalk, hepatopancreas and muscle [49]. Cellular lesions 
include pyknosis and kariorrhexis in epithelial cells in gills, connective 
tissues and hematopoietic tissues [48]. The estimated losses caused by 
YHV from 1990 to 2007 are 500 million US dollars [47].

White spot syndrome virus (WSSV) - This is an enveloped, non-
occluded, bacilliform virus with a tail-like appendage at one end 
[50,51]. WSSV is one of the largest viruses infecting animals [52-54]. 
Its genome is also one of the largest recorded for viruses [55-57] (Table 
1). It contains between 531 and 683 ORFs encoding peptides from 51 
to 6077 aminoacids which represent 92% of the genetic information 
contained in the genome [55,56].

This pathogen was first recorded in Taiwan and soon after it spread 
to several countries in Asia and America. WSSV has a broad host range 
including several penaeid shrimp species, caridean shrimp, lobsters, 
crayfish, crabs and other decapod crustaceans [58].

Clinical signs include white spots in the inner surface of cuticle 
probably formed by accumulation of calcium carbonate due to 
dysfunction of epithelial cells [59,60]; reddish discoloration of the body, 
pleopods and uropods due to expansion of chromatophores [48,61]; 
reduced feeding, lethargy [52] and delayed clotting of hemolymph 
[62]. Cumulative mortality reaches 100% within 3-10 d after onset 
of clinical signs [63]. Histopathology shows hypertrophied nuclei of 
WSSV-infected tissues with intranuclear amphophilic inclusions and 
marginated chromatin [64]. Since it first appeared in 1992 the economic 
impact of WSSV on shrimp aquaculture is well over 8 billion US dollars 
[41] and currently remains the most damaging viral pathogen for the 
shrimp aquaculture industry worldwide.

Methods used to reduce impact of viral diseases

In the last 13 years several strategies have been developed and 
evaluated under experimental conditions to tackle the negative impact 
of viral diseases (particularly WSSV) in shrimp aquaculture. Evaluated 
products include:

Immunostimulants: These are products derived from bacteria 
(Bacillus sp. [65]), fungi (Saccharomyces cerevisiae, Schizophyllum 
commune see [65,66]), algae (Sargassum polycystum [67]) and herbs 
[68]. These organisms have cell walls containing substances such as 
peptidoglycans, b-glucans and/or lipopolysaccharides which activate 
both humoral (antibacterial activity, agglutinins, cytokine-like factors, 
modulators and clotting factors) and cellular (prophenoloxidase 
system, encapsulation, nodule formation and phagocytosis) defense 
responses in shrimp [65,69]. Immunostimulants are fed to experimental 
animals before and during WSSV challenge. Results showed that 
animals treated with these substances had reduced mortality compared 
to untreated controls [67,68,70,71]. Nonetheless, continuous use of 
immunostimulants may induce immunological fatigue to the shrimp 
[71,72] rendering this strategy ineffective and even damaging.

Natural or synthetic antiviral compounds: Plants and algae are 

known to have substances with antiviral properties and have been 
tested both in vitro and in vivo against human viral pathogens [73]. 
Some natural antivirals have been evaluated against WSSV in shrimp. 
Extracts with antiviral activity have been orally administered to shrimp 
before a WSSV challenge. Results of a diet supplemented with an 
extract of Spirulina platensis showed no antiviral effect but only a slight 
delay in mortality using a standardized oral inoculation procedure 
[74]. In contrast, an Indian plant extract from Cynodon dactylon 
supplemented to feed at 2% (w/w) showed 100% protection upon a 
per os WSSV infection [75]. The oral administration of a substance 
(bis[2-methylheptyl]phthalate) extracted from the Indian plant 
Pongamia pinnata before and during a WSSV challenge per os showed 
that treated animals had between 60 and 20% mortality depending on 
the concentration used (200-300 µg/g body weight, respectively) [76]. 
The only report on the use of a synthetic antiviral (cidofovir) against 
WSSV infection showed to be more effective than the Spirulina-
supplemented diet to reduce and delay mortality of treated shrimp 
upon an intramuscular WSSV challenge. Nonetheless, cidofovir did 
not prevent WSSV infection [74].

Inactive viral particles, recombinant viral proteins and virus 
neutralization: These strategies have been widely evaluated against 
WSSV in shrimp. The rationale lies in the fact that some shrimp 
surviving a WSSV outbreak may become resistant to a subsequent 
WSSV infection. This phenomenon was described as a “quasi-immune 
response” [77]. Later, several studies evaluated the protective effect of 
inactive viral particles [78,79] or recombinant viral envelope proteins 
to prime the innate shrimp defense system [80-83]. In addition, 
monoclonal and polyclonal antibodies directed against WSSV envelope 
proteins have been used to inactivate WSSV particles through virus 
neutralization assays [84-86]. Neutralized virions were then used to 
inoculate animals in order to induce protection upon a subsequent 
WSSV challenge. A virus neutralization assay evaluated three tenfold 
dilutions (10-1, 10-2 and 10-3) of a WSSV stock. Each dilution was mixed 
with an equal volume of a purified monoclonal antibody against WSSV 
VP28 and incubated at 28˚C for 2 h. A positive (WSSV) and a negative 
(saline buffer) controls were included. The WSSV-antibody mix (100µl) 
was intramuscularly injected in the second pleonite of shrimp (n=20 
per treatment). Control animals inoculated only with WSSV showed 
100% mortality at 7 d post inoculation (dpi). Shrimp given virus 
concentrations 10-1 and 10-2 neutralized with WSSV-antibody had a 
slight delay in mortality reaching 100% mortality at 11 dpi. Animals 
given the 10-3 WSSV-antibody concentration showed 20% mortality 
at 25 dpi. All surviving animals were WSSV-negative by PCR. These 
results indicated that antibody neutralization of WSSV was dose-
dependent [86]. In vivo neutralization assays had an efficacy of 50 - 85% 
shrimp mortality [84]. Recombinant subunit peptides displayed 20 - 
40% shrimp mortality depending whether WSSV challenge occurred 
between 3 and 21 d post treatment [80]. In other experiments mortality 
was 48% with VP292 (0.1 mg/g shrimp in 20 µl) [82] and between 30-
5% with VP28 (1mg/g shrimp in 20µl) as the recombinant peptides 
were administered twice during the experiment [78].

DNA vaccines: The strategy was first applied to shrimp by 
introducing foreign DNA into P. monodon eggs and embryos through 
electroporation. The rate of success was between 37 - 19% and survival 
of transgenic eggs into juvenile shrimp was 0.6% [87]. Another study 
done in M. japonicus delivered DNA to embryos using microinjection, 
electroporation and particle bombardment. Of these, microinjection 
was the most effective as high amounts of foreign DNA was delivered 
with this method [88]. The protective efficacy against WSSV using 
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plasmids encoding WSSV envelope proteins such as VP15, VP28, VP35 
and VP281 was evaluated in recent studies [89,90]. Delivery routes 
were intramuscular [89,90] and oral. The latter used an attenuated 
Salmonella typhimurium bacterium as a delivery vehicle and it was 
adsorbed into commercial feed [91]. Shrimp P. monodon treated with 
a vp28 DNA vaccine delivered intramuscularly showed 10% mortality 
when WSSV challenge occurred 7 d post vaccination (dpv). Mortality 
increased to 20, 80 and 95% when WSSV challenge was done at 14, 25 
and 50 dpv, respectively [90]. Another study used a plasmid containing 
the WSSV gene vp28 and it was injected to P. monodon at 7, 14, 21 and 
30 dpv. Mortality of treated shrimp at those time points was: 10, 24, 
33 and 44%, respectively [89]. Oral delivery of a plasmid containing 
the WSSV gene vp28 expressed in S. typhimurium showed protection 
against WSSV challenge in vaccinated crayfish Cambarus clarkii. 
Crayfish mortality at 7, 15 and 25 dpv was 17, 33 and 43%, respectively 
[91].

Invertebrates do not possess an adaptive defense system like 
vertebrates. Nonetheless some studies have indicated the presence of 
a specific defense response against viral infections. One work showed 
that some shrimp that survived a natural or experimental WSSV 
infection were more tolerant to a subsequent infection with WSSV. 
This result suggested the existence of a “viral neutralizing factor” [77] 
which could make possible the specific recognition of viral molecules 
and hence the ability to counteract infection.

Another hypothesis on the virus-specific defense response of 
shrimp was formulated in 1998 and since then it has been documented 
with experimental and field data. This hypothesis is called the viral 
accommodation concept [92] which states that many invertebrates 
including crustaceans can adapt to new viral pathogens to become 
asymptomatic carriers without displaying disease a few years after these 
viruses first appeared. The reason why viruses remain infectious and 
virulent but does not cause disease to tolerant animals is unknown. It is 
proposed that such a tolerance involves some sort of specific memory 
to prevent viral triggered apoptosis and it can occur in all life stages of 
a host species [92]. These concepts have opened the way to evaluate 
different strategies to protect animals using inactivated virus and/or 
recombinant envelope proteins that may block host cell receptors for 
viruses. Moreover, DNA vaccines encoding such viral proteins have 
also been developed and proved effective against viral challenges. 
These approaches have inappropriately been termed “vaccines” rather 
than antiviral treatments. More studies on this issue are needed to 
understand the defense mechanisms that induce viral tolerance.

Manipulating water temperature: Increasing water temperature 
at 32˚C before, just after or even until 18 hr post WSSV inoculation 
reduced virus replication and shrimp mortality (0-30%) compared 
to animals maintained at 27˚C (100%) [93,94]. The route of WSSV 
inoculation did not influence the protective effect of hyperthermia 
[95]. The beneficial effect of hyperthermia was significant even in 
periods of 18 h at 33˚C (0 - 40% mortality) [96]. Studies done in 
shrimp and crayfish have shown that although hyperthermia reduced 
virus replication, animals remain infected due to some replication 
as determined by competitive and real-time PCR [97,98]. Low water 
temperature is also effective to inhibit virus replication in species living 
in temperate or cold water regions. In shrimp M. japonicus, water 
temperature at 15˚C showed better inhibition of WSSV replication than 
33˚C [99]. Likewise, crayfish species such as Pacifactacus leniusculus 
Astacus astacus and P. clarkii maintained at temperatures of 4,10 or 
12˚C showed 0% mortality upon WSSV infection. In contrast, WSSV-

infected animals maintained at 22-24˚C had 100% mortality [100,101]. 
Although the mechanism for inhibition of virus replication is not 
known, it has been suggested that hyperthermia may induce apoptosis 
of infected cells [98] thus aborting virus replication. It has also been 
suggested that hyperthermia may impair the biochemical properties of 
enzymes essential for virus replication, thus inhibiting replication but 
the animals remain infected [93].

RNA interference (RNAi): This mechanism was first described 
in the nematode Caenorhabditis elegans [102]. Later it was found in 
several other organisms such as fungi, plants and animals. The first 
biological function established for RNAi was as antiviral in plants 
[103]. RNAi can become a useful biotechnological tool against viral 
infections both in humans and animals.

RNAi starts with the presence of RNA molecules such as double-
stranded RNA [103]. Upon entry, an enzyme called Dicer (a type 
III endonuclease) cleaves long dsRNA into double-stranded short 
interfering RNAs (siRNAs) [104]. The siRNA molecules are taken up 
by the RNA-inducing silencing complex (RISC) comprised by various 
proteins which unwinds siRNAs into single stranded molecules. The 
antisense strand remains attached to RISC and it is coupled to its 
homologous target mRNA to induce endonucleolytic cleavage. Long 
dsRNA molecules make it possible to produce various siRNA molecules 
targeting a single mRNA thus increasing effective gene silencing [104].

Evaluation of RNAi to control viral infections in shrimp 

Several studies with RNAi have been done to fight viral diseases 
in shrimp. These have shown the existence of two pathways of 
antiviral immunity in shrimp: a sequence-independent (innate) and a 
sequence-specific (RNAi-mediated) [105]. It has been recently shown 
that long sequence-independent dsRNA molecules activate the mRNA 
expression of the RNAi molecules Lv Sid-1 and Lv Ago-2 just like 
sequence-specific dsRNA molecules.

Lv Sid-1 is a transmembrane protein thought to serve as a channel 
for the systemic spread of siRNAs molecules throughout the animal 
[106]. Lv Ago-2 is an isoform of the Argonaute protein family. This 
is a core protein component of the RNAi silencing complex (RISC) 
which has two domains: PAZ and PIWI. PAZ has nucleic acid binding 
capability whereas PIWI has a RNAse H-like structure probably 
involved in the enzymatic mRNA cleavage function [106]. In shimp as 
in many other higher organisms the mechanisms involved in both the 
innate antiviral defense and RNAi activity are activated by the same 
molecular pathway to produce an efficient antiviral response [106].

Innate antiviral immunity: The first in vivo RNAi experiments 
done in shrimp (Litopenaeus vannamei) used non-specific dsRNA 
to inhibit TSV or WSSV infections. A sequence-independent, dose-
dependent antiviral state was induced against TSV or WSSV using 
dsRNA from immunoglobulin [Ig] heavy chain from duck or pig. 
Shrimp treated with unrelated dsRNA sharply reduced mortality (50-
75%) compared to untreated controls [107]. This result indicated that 
shrimp possesses an innate antiviral immunity. Other studies showed 
that using sequence-independent dsRNA induced a non-specific 
antiviral effect. A LacZ dsRNA molecule was intramuscularly injected 
to determine the antiviral efficacy of sequence-independent dsRNA 
against WSSV using a high infectious dose. Results showed an innate 
antiviral response which delayed shrimp mortality for up to 24 h but 
did not prevent infection or reduced shrimp mortality [108]. An in 
vitro study used a green fluorescent protein (GFP) dsRNA against YHV 
infection of lymphoid organ primary culture cells. Results showed that 
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cells treated with GFP dsRNA allowed virus replication but at lower 
levels than mock-treated cells [109]. Another work in vivo showed that 
treatment with GFP dsRNA reduced shrimp mortality to 50% whereas 
control animals showed > 90% mortality at 8 dpi [105]. Other study 
showed mortality between 13 and 33% of shrimp treated with GFP 
dsRNA and challenged with 1 or 2 LD50 of WSSV. In contrast control 
animals challenged with 1 LD50 had 45% mortality at 6 dpi whereas 
control shrimp challenged with 2 LD50 had 90% mortality by 3 dpi 
[110].

Specific RNAi antiviral immunity: Sequence-specific dsRNA 
has been used to inhibit virus replication in shrimp against TSV, 
IHHNV, YHV and WSSV. Studies done with dsRNA against a putative 
protease from TSV showed that sequence-specific dsRNA strongly 
inhibited TSV replication (11% mortality) in shrimp infected per os, 
while controls showed 100% mortality at 5 dpi [111]. Replication of 
IHHNV or HPV has successfully been inhibited with specific dsRNA. 
An amount of 1.5µg specific dsRNA against genes encoding structural 
or non-structural proteins showed a transient reduction of virus 
replication at 8 dpi [112]. The preventative and therapeutic effect of 
two dsRNA against IHHNV were evaluated. One dsRNA (433 bp) was 
directed against an ORF1/2 sequence whereas the other (436bp) was 
directed against ORF3 encoding a structural protein. Animals were 
treated with 2.5µg/g body weight 12h before intramuscular IHHNV 
challenge. Additional treatments were done at 3 and 6 d post virus 
inoculation. PCR analyses showed a high inhibition of IHHNV DNA 
in treated animals at 5, 8 and 10 d post challenge. In contrast, control 
animals showed high IHHNV DNA levels by 5 d post challenge [113]. 
The therapeutic effect of ORF1-2 dsRNA was evaluated at 12, 24 and 48 
h post IHHNV challenge and it showed a high inhibition of IHHNV 
DNA in animals treated 12 or 24 h post challenge and the antiviral 
effect lasted for 5 d [113]. The therapeutic effect of two combined 
dsRNAs directed against a non-structural and a structural genes of 
HPV was shown in animals naturally-infected with HPV. Upon four 
consecutive injections (0.8µg each) at intervals of 5 d it was shown that 
treated animals were cleared of HPV infection [114].

The efficacy of dsRNA to inhibit YHV infection was determined 

in vitro against sequences of genes encoding a helicase, polymerase, 
protease and the structural proteins gp116 and gp64. Results showed 
that higher YHV inbition was achieved using sequences targeting non-
structural genes [109]. An in vivo experiment using intramuscular 
injection of dsRNA against YHV protease showed 0% mortality of 
treated shrimp compared to > 90% mortality in controls at 10 d post 
challenge [105]. Another study presented the therapeutic effect of 
treating shrimp with 25 µg dsRNA against YHV protease at 3, 6, 12 
or 24 h post YHV challenge. Animals treated up to 3 h post challenge 
showed high survival (60%) in contrast to 100% mortality in untreated 
animals at 2 dpi. Detection of YHV cDNA by RT-PCR assay showed 
that animals treated 3, 6 or 12 h post YHV challenge had reduced levels 
of viral cDNA compared to untreated controls. This result indicated 
that YHV infection can be reversed if treated early with dsRNA [115].

Several studies on dsRNA have been done against WSSV since this 
is the most lethal pathogen in shrimp aquaculture. Different efficacies 
in inhibition of WSSV replication have been achieved using sequence-
specific dsRNA against various genes encoding structural and non-
structural proteins (Table 2).

The duration of the antiviral effect of sequence-specific dsRNA 
against WSSV has been determined to be short-term (up to 10 d after 
treatment). As time between treatment and WSSV challenge increased 
the antiviral efficacy was gradually reduced [108]. Therefore, methods 
to increase the duration of antiviral effect are required. It was shown 
that the continuous re-infection of treated shrimp extends the antiviral 
effect up to 30 d after challenge and significantly reduced shrimp 
mortality [108]. Other strategy used to enhance the duration of the 
antiviral effect is the repeated administration of dsRNA [113-116]. 
Continuous administration of dsRNA through feed may be a suitable 
way to increase the duration of the antiviral effect in cultured shrimp.

Specific RNAi antiviral immunity by siRNA: Works using siRNA 
to trigger a RNAi antiviral response have shown controversial results. 
Injection of siRNA (19 bp) against vp19 did not protect shrimp against 
WSSV challenge [111]. Another study used short (21bp) siRNA against 
WSSV vp28 or vp15 and they induced a significant reduction in shrimp 

Type Gene Administration route Concentration (µg) virus dose Mortality (%) duration (days) Reference

vp28 intramuscular injection 4 2500 SID50 13 10 [108]

vp28 intramuscular injection 5 4x10-8 15 10 [111]

vp28 intramuscular injection 6 1-2 LD50 0 7 [110]

vp28 oral (coated in feed) n.d n.d 63% 15 [139]

vp28 oral (chitosan nanoparticles) n.d n.d 32% 15 [139]

Structural vp281 intramuscular injection 6 1-2 LD50 20 - 47% 7 [110]

vp26 intramuscular injection 4 2500 SID50 21% 10 [108]

vp26 intramuscular injection 25 1x10-5 100% 30 [140]

vp24 intramuscular injection 25 1x10-5 37% 30 [140]

vp19 intramuscular injection 25 1x10-5 66% 30 [140]

vp15 intramuscular injection 25 1x10-5 37% 30 [140]

RR2 intramuscular injection 5 4x10-8 22% 10 [111]

Non-structural DNA pol intramuscular injection 5 4x10-8 56% 10 [111]

PK intramuscular injection 6 1-2 LD50 7% 7 [110]

Legends: SID50 - shrimp infctious dose 50% endpoint, LD50 - lethal dose 50% endpoint. N.d. not determined. RR2 - ribonucleotide reductase small subunit. DNA pol - DNA 
polymerase. PK - protein kinase.

Table 2: In vivo evaluation of dsRNA efficacy against different WSSV genes encoding structural and non-structural proteins.
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mortality compared to controls. Nonetheless, the same mortality 
reduction was achieved by injecting GFP-siRNA [117]. Another study 
used 21bp siRNA against WSSV vp28 in M. japonicus and showed 
that shrimp treated with 100 µl siRNA (6µM/shrimp) significantly 
reduced shrimp mortality (70%). Administration of a consecutive 
siRNA injection to infected shrimp every day for three days inhibited 
virus replication. At the end of the experiment no WSSV DNA was 
found, suggesting that siRNA could eradicate WSSV infection [116]. 
An in vivo experiment using five sequence-specific siRNA against 
WSSV: DNA polymerase, ribonucleotide reductase small subunit 
(rr2), thymidine kinase-thymidylate kinase, vp24 and vp28 showed 
a significant reduction in mortality at 6 d post challenge (50, 50, 66, 
33 and 33%, respectively). A vp28 siRNA sequence (21bp) with a 6bp 
mutation was used as a sequence-independent siRNA which failed to 
protect shrimp from WSSV challenge. This result indicates that only 
sequence-specific siRNAs are able to inhibit virus infection in shrimp 
[118]. It was recently demonstrated that siRNA molecules longer than 
50bp might be more efficient to silence target mRNAs [106]. The study 
done previously [111] failed to induce an antiviral response probably 
because the siRNA used was too short (19bp) and it may not be 
recognized by the mechanisms that take up dsRNA [106].

RNA silencing of shrimp endogenous genes involved in virus 
infection

RNAi has also been used to determine the function of various 
genes from shrimp that are involved in virus infection. This is done 
by silencing genes encoding certain proteins or enzymes of interest 
[119]. In shrimp a number of proteins involved in antiviral immunity 
have been studied by RNAi silencing, including: a toll-like receptor 
[120,121], rab7-like proteins which are involved in virus entry [122], 
a caspase-3 protein, involved in apoptosis [123] and the proPO system 
[124].

The innate system is the first defense line against pathogens 
which is activated by a number of molecules that recognize different 
pathogen-associated molecular patterns (PAMPs) [125] which include 
peptidoglycans, lipopolysaccharides, beta-glucans and foreign dsRNA. 
These in turn activate different defense responses [126]. In vertebrates, 
toll-like receptors (TLR) are involved in recognition of PAMPs and 
activation of defense responses against pathogens. Foreign dsRNA is 
recognized by TLRs involved in the activation of the RNAi antiviral 
response [125]. Recently a TLR has been found in P. monodon [127], L. 
vannamei [120] and F. chinensis [126]. The function of such a molecule 
in shrimp was investigated. Expression of Toll in shrimp challenged 
with Vibrio anguillarum was upregulated at 8 h post challenge [126]. 
Another study followed expression of Toll in L. vannamei and found 
that upon challenge with V. harveyi it was upregulated to a maximum 
at 24 h post challenge [128]. Toll silencing was done in animals using 
dsRNA (1 µg/g shrimp). Three days later shrimp were challenged with 
8000 CFU V. harveyi or WSSV and mortality was followed. Significant 
increase in mortality was found in animals challenged with Vibrio. 
Shrimp challenged with WSSV showed no difference in mortality 
compared to untreated controls [128]. These results agree with the 
findings of [127] where WSSV-challenged animals showed no Toll 
upregulation indicating that the TLR found in shrimp is not involved 
in antiviral defense response. Another work silenced Toll in shrimp L. 
vannamei and other animals were given sequence-independent dsRNA. 
Later (48h) both groups were challenged with WSSV. No differences in 
mortality were observed between these treatments.

A small GTP-binding protein was found in P. monodon [129] and 

later also in M. japonicus [122] and L. vannamei [130]. Rab proteins are 
involved in endocytic trafficking, phagosome formation, maduration 
and lysosomal degradation [122,131]. A Rab7-like protein has been 
found in shrimp to bind to WSSV VP28 thus it is involved in WSSV 
infection [129]. Silencing shrimp Rab7 has shown efficacy to inhibit 
viral infections. Animals treated with dsRNA against shrimp Rab7 and 
later challenged with either WSSV or YHV showed very low levels of 
WSSV mRNA or YHV mRNA, respectively [132]. Silencing shrimp 
Rab7 has been determined in vivo against various shrimp viruses. 
Silencing Rab7 effectively inhibited a Laem-Singh virus infection in 
P. monodon when treated before virus challenge or up to 24h after 
challenge [133]. Likewise, silencing Rab7 in L. vannamei (2.5µg/
shrimp) 48 h before TSV challenge greatly reduced TSV replication 
(90%) compared to untreated shrimp [130]. Moreover, silencing of a 
WSSV gene (rr2) and Rab7 endogenous gene from shrimp reported 
no enhanced inhibition of virus replication. Mortality values (≈ 95%) 
were similar between shrimp treated against WSSV rr2 and animals 
treated with combined dsRNA against WSSV rr2 and shrimp Rab7 

Figure 1: Shape, relative size and transmission electron microscopic view of 
virions of four major viruses infecting shrimp. (a) IHHNV; (b) TSV; (c) YHV; 
(d) WSSV. a, b and c were modified from [22] and d was modified from [58].
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gene [134]. In contrast, the combined silencing of a YHV protease and 
shrimp Rab7 gene (YHV dsRNA = 1.5 µg / shrimp; Rab7 dsRNA = 0.63 
µg / shrimp) by dsRNA enhanced virus inhibition and reduced shrimp 
mortality (10%) compared to animals treated only with YHV dsRNA 
(30% mortality) [135].

Another shrimp endogenous gene involved in WSSV infection is 
caspase-3. This gene encodes a protein that directs programmed cell 
death or apoptosis. Apoptosis may be a defense mechanism against viral 
infections by destroying infected cells thus limiting virus replication 
[136]. In crustaceans it has been hypothesized that virus-induced 
apoptosis provokes shrimp mortality [92]. Therefore, inhibiting virus-
induced apoptosis through silencing shrimp caspase 3 would reduce 
shrimp mortality [123]. An experiment was done silencing shrimp 
caspase-3 by injecting dsRNA twice. Upon a WSSV challenge with 
a high dose, shrimp treated with caspase-3 dsRNA displayed 100% 
mortality at 7 d post challenge but it was observed a delay in time of 
mortality. In contrast, shrimp treated with dsRNA against WSSV vp19 
had 5% mortality. Using a low WSSV dose, mortality was reduced in 
animals treated with caspase-3 dsRNA [123]. These results indicate that 
inhibiting caspase-3 failed to reduce shrimp mortality due to WSSV 
infection and it suggests that apoptosis may not be involved in shrimp 
mortality upon WSSV infection.

The proPO system is a major immune defense mechanism in 
shrimp. Upon activation, proPO triggers a cascade of reactions leading 
to phagocytosis, encapsulation, nodule formation and melanization. 
All these reactions are mainly directed against bacterial and fungal 
infections [137]. The effect of proPO on defense response against a 

bacterial challenge was determined by silencing a component of the 
proPO system in P. monodon. Shrimp were injected with 20 µg dsRNA 
each before challenge with 200,000 CFU V. harveyi. Mortality of proPO-
silenced shrimp was 100% whereas untreated shrimp challenged with 
Vibrio had 50% mortality at 5 d post challenge. This result shows that 
proPO is essential for antibacterial defense in shrimp [124].

Advances in massive delivery of RNAi molecules

RNAi is a promising tool against infectious diseases in human 
medicine, veterinary medicine and aquatic animal health. In nematode 
worms and shrimp the experimental efficacy of RNAi molecules has 
been done through injection. This administration method is not 
suitable for the massive delivery and/or continuous distribution of 
RNAi molecules to large populations of animals like those existing in 
shrimp hatcheries or grow-out ponds.

A number of works have addressed methods to produce massive 
amounts of RNAi and its delivery to a large population. The first 
report on delivery of dsRNA by feeding was done in 1998. Nematode 
worms were fed bacteria expressing sequence-specific dsRNA against 
three nematode endogenous genes. Animals displayed transiently-
induced gene interference observed as a distinct phenotype compared 
to controls. This result indicated that RNAi molecules can spread 
throughout the body of these animals and that RNAi molecules can 
cross the intestinal tissues and enter different cell types [138].

A few studies have evaluated the ability to produce RNAi molecules 
in large quantities and their massive delivery to shrimp by oral route. A 
work on RNAi synthesis in bacteria and its delivery to shrimp by oral 

Figure 2: Comparison of efficacy of different products evaluated to control WSSV infection under standardized experimental conditions. (a) Spirulina; (b) Cidofovir; 
(c) Hyperthermia (33˚C); (d) vp28 and vp26 dsRNA. Data from (a,b) [74]; (c) [93] and (d) [108].
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route was done in 2008. Molecules of dsRNA against WSSV vp28 were 
synthesized in RNAse III-deficient E. coli HT115 (DE3) transformed 
with a plasmid containing bidirectional T7 promoter and synthesized 
with T7 RNA polymerase [139]. Bacteria expressing vp28 dsRNA was 
harvested and inactivated with 0.5% formaldehyde for 15 min at 20˚C. 
Inactivated bacteria were used to coat feed at 108 cells per 2g pelleted 
feed and given to shrimp at 2% mean body weight per day for 5 days 
before oral WSSV challenge. Animals treated with bacteria expressing 
vp28 dsRNA showed 30% reduction of mortality compared to controls 
[139]. The efficacy of bacterially expressed dsRNA against WSSV genes 
vp15, vp19, vp24 and vp26 and their efficacy in vivo by oral delivery to 
shrimp were determined [140] (Table 2).

Other molecules such as long dsRNA (up to 500 bp) against YHV 
have also been expressed in bacteria using a hairpin-RNA expression 
vector [141]. This unexpensive approach produced up to 5 mg dsRNA 
per 130 ml bacterial culture. The dsRNA against YHV reduced 
mortality up to 65% compared to controls. A WSSV vp28 siRNA was 
produced in bacterial cells but inactivated bacteria was injected to 
shrimp. Results indicate that siRNA contained in inactivated bacteria 
was twice as effective (60 vs. 30% inhibition of mortality) compared to 
isolated vp28 siRNA intramuscularly injected to shrimp [142].

Another approach was to isolate the dsRNA produced in bacteria 
and using different macromolecules as delivery vehicle. Chitosan 
nanoparticles (0.2% w/v) containing 35 µg vp28 dsRNA, were adsorbed 
(100 µl) in 2g of pelleted feed. Animals were treated with feed coated 
with chitosan at 2% mean body weight for 5 days before oral WSSV 
challenge. Results showed that chitosan nanoparticles were more 
effective than inactivated bacteria to inhibit shrimp mortality [139]. 
Liposomes have also been evaluated to deliver RNAi molecules in 
vertebrates [143]. The main drawback of these macromolecules is that 
they are rapidly cleared by the liver and lack target tissue specificity. 
Other molecules used to deliver siRNA include cholesterol-conjugated 
siRNA and antibody-protamine bound siRNA [143]. Immersion of 
nematodes (Caenorhabditis elegans) into a solution containing dsRNA 
molecules was also evaluated as a delivery approach. Animals immersed 
in dsRNA solution showed a successful inhibition of an endogenous 
target gene giving the animals a lethal phenotype [144].

The need to produce high amounts of RNAi molecules and its 
massive delivery to an animal population is still in development. The 
use of RNAse III-deficient bacterial strains to produce RNAi molecules 
seems an efficient and cheap method to obtain massive amounts of 
these molecules. Different approaches to deliver RNAi to animals 
have been evaluated and many of them have proven effective. Feeding 
animals with RNAi-coated feed seems a promising method for the 
massive delivery to a large number of animals and to elicit an antiviral 
effect. More studies are required to optimize and enhance the efficacy 
of a massive RNAi delivery method.

Perspectives and Conclusions
Shrimp aquaculture is an important industry for many developing 

countries providing high quality food and generating jobs and revenues. 
Due to the appearance of infectious diseases the further development of 
shrimp aquaculture has been compromised. Effective control methods 
and strategies to curb diseases have been sought but so far no effective 
method has been successfully applied in the field.

Under experimental conditions several strategies and methods 
have been evaluated and have given different results. Some have been 
more effective than others to reduce infection and shrimp mortality. 

Nonetheless, it is difficult to compare the efficacy of different control 
methods since most of them have been done using undefined virus titers 
and with different experimental conditions. Recently, a standardized 
inoculation procedure has been developed in order to determine 
the exact amount of infectious doses of WSSV used in experimental 
challenges [145]. Using standardized virus inoculation procedures 
makes it possible to evaluate and to compare the efficacy of different 
products and strategies against viral pathogens (Figure 2).

The application of RNAi to control shrimp viral diseases in the 
field is a promising strategy. Large-scale production of RNAi through 
bacterial cells is a cheap, attractive method. This strategy coupled 
to massive delivery of RNAi molecules through feed either using 
inactivated bacterial cells expressing RNAi, or through macromolecules 
encapsulating or binding RNAi represents an easy and effective method 
to distribute RNAi in shrimp farming facilities such as hatcheries or 
grow-out ponds. More research is required to address issues related to 
environmental safety and food safety of RNAi-treated shrimp.
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