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Abstract

Snake venoms are a mixture of hydrolases which produce complex pathogenesis such as bleeding, dermo/
myonecrosis, inflammation and coagulation disorders. The toxicity of venoms cannot be attributed to only one
component. It is well known that venom components present antagonist activities, while some of them work
synergistically. Binding to their intra- and extra-cellular or molecular targets, leads these components to generate
severe disturbances which might concern several systems through complex mechanisms. Some of these
mechanisms are still not yet elucidated. Thus, some of these components can act at different steps of blood
coagulation by activating or inhibiting several molecular or cellular targets thereby inducing blood disorders. Despite
their effects, it is well established that some of components from snake venoms present beneficial effects when
acting alone as purified entity. Appropriate treatments of snakebite victims need a complete understanding of the
pharmacological roles of the different venom components. Thus, this review emphasizes the toxicological relevance
of snake venoms mainly those of Viperidae and their components as pharmacological bioactive tools.
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Introduction
Snakes are the most feared venomous animals in the world due to

their induced morbidity and mortality worldwide which represent
5,400,000 bites over 2,500,000 fatalities followed by about 125,000
deaths [1]. However, some retrospective studies reported that the
incidence, mortality and long term disability due to snakebites were
shown to be much higher [2-4]. They are poikilothermic and
carnivorous reptiles, they are very abundant in hot regions of the
world [5]. Snakes belong to the phylum of vertebrates and class of
reptiles; they form with the Saurians, the order of Squamates which are
divided into four families: Elapidae located in southeast of Asia, in
central and southern America and Australia. Hydrophidae distributed
in Asia [6]. Crotalidae are found in North America as well as in South
Asia. Viperidae are more abundant in Europe, Southeast of Asia and
very common in Africa. This family was represented by more than 250
species which are adapted to environmental conditions; it appeared 25
million years before. Snakes represent the most venomous animals,
their venoms are complex mixtures of molecules that induce diverse
effects on the human systems (hemorrhage, edema, myonecrosis and
bleeding disorders) (Figure 1) [7,8].

Due to the richness, heterogeneity and synergistic or antagonistic
action of different components, the mechanisms of all these effects are
not yet all fully understood. Envenoming induced by snakebite is
characterized by local tissue damage involving hemorrhage, blistering,
myonecrosis and inflammation. The inflammatory response has
relevance in the evolution of tissue damage; it is associated with
edema, pain, leukocyte infiltration and release of several mediators.
Pathogenesis induced by snake venoms is multi-factorial and complex;
it is characterized by local and systemic alterations.

Figure 1: Pathophysiological effects induced by snake venoms.

The induced symptoms after bites vary in humans, depending on
the amount of inoculated venom, bite site, age, weight and response of
each bitten patient. Several studies reported clinical symptoms in
relationship with the biochemical variability of venom composition
which leads to tissue damage causing failure of various vital organs.
Death can occur few days or several weeks after snake bite.

Snake Venoms and their Relevant Components

Venoms
Snake venoms are rich bio-resource of biologically active

compounds, but only one percent of these molecules have been
characterized; therefore, many of the bioactive components remain to
be explored. These biomolecules present diverse activities which could
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also be used as tools mainly for medical research or diagnosis [9-11].
Identification and characterization of toxic compounds present in
snake venoms are the main step not only to understand the
pathophysiological changes observed after bites, but they can also be
useful to improve the treatment after snake bites.

Components
Secreted proteins represent the major components of snake

venoms, they are encoded by poly-adenylated mRNA of venomous
glands (12S and 20S) [12]. These proteins have diverse biological
activities, some of them are hydrolytic enzymes which help snake in its
digestion, and some others are able to induce metabolic dysfunctions
of the prey and/or to kill it [13]. In addition to secreted proteins, other
components are also found in the venoms, such as lipids,
polysaccharides, nucleotides, nucleosides, free amino acids, riboflavin,
serotonin and histamine. Pharmacological active substances of the
venoms are enzymes and low molecular weight peptides. Some of
these enzymes may contribute to the toxic activity of the venoms [14].
Main targets of isolated enzymes from snake venoms are cell
membranes, vascular wall and blood coagulation cascade [15,16].
Snake venoms and mainly those of Viperidae contain also molecules
that act on the four interconnected blood systems as producers of
inflammatory mediators, (i) coagulation system, (ii) fibrinolysis, (iii)
complement and (iiii) kinin system (Figure 2) [17].

Figure 2: Involvement of SVSPs and SVMPs in hemostatic
disturbances [9-11,20,21,24,25].

Proteinases
Knowledge of the combined effects of different components of

venom leads to the better understanding of the observed symptoms in

snake envenomation [18]. Proteolytic enzymes are particularly
involved in the pathogenesis of tissue necrosis, hemorrhage and
bleeding disorders. Proteinases isolated from viper venoms represent a
heterogeneous group of enzymatic proteins of 15 and 100 kDa [19].
Some of these proteinases act on blood coagulation factors and can be
pro-coagulant or anti-coagulant since they may exert activating or
inhibiting effects of plasma factors. They are also endowed with
fibrino(geno) lytic activities as well as thrombin and plasmin. Venom
proteases are divided into two broad classes of enzymes: Snake Venom
Serine Proteases (SVSPs) and Snake Venom Metalloproteinases
(SVMPs) [20-23]. The structure of these enzymes is stabilized by
disulfide bridges [20-22,24]. These enzymes are able to hydrolyze
natural substrates such as casein, hemoglobin and fibrinogen as well as
synthetic substrates [25].

Snake Venom Serine proteases (SVSPs): Serine proteases are
abundant in snake venoms, they have been identified in venoms
mainly from the subfamily of Crotalinae (Agkistrodon, Crotalus,
Lachesis, Trimeresurus), Viperinae (Cerastes cerastes, Cerastes vipera
and Bitis gabonica) and Colubrinae (Dipholidus typus) [25].
According to their effects on the hemostatic system, they can be
classified as kallikrein-like which lead to the release of bradykinin or as
fibrinogenases [26,27]. Most of these proteases affect several targets of
hemostasis, platelets, plasma coagulation and fibrinolytic system [25].
They are called "Thrombinic enzymes from snake venom" or Snake
Venom Thrombin-Like Enzymes (SVTLEs). SVSPs (20 to 100 kDa)
present preserved a common domain which consists in a catalytic triad
of three basic amino acid histidine (His 57), serine (Ser 195), hence the
name "serine protease" and aspartic acid (Asp 102), each of these
amino acids play a key role in the catalytic activity. SVSPs target
mainly the coagulation cascade and act as potent platelet aggregating
molecules and/or as exogenous plasma factors (Figure 2) [28]. Several
proteolytic enzymes are purified from snake venoms; among them
those purified from Cerastes cerastes venom as α, β-fibrinogenases
based on their ability to hydrolyze the fibrinogen such as the
procoagulant proteinases and fibrinogenases (RP34, afaâcytin and
CC3-SPase). Afaâcytin, RP34 and CC3-SPase displayed, respectively,
α,ß-fibrinogenase and α-fibrinogenase activity [26,29].

Snake Venom Metalloproteinases (SVMPs): Several SVMPs (22 to
100 kDa) isolated from snake venoms have been characterized as
Zn2+- metalloproteinases which have components of the basement
membrane of the endothelial cells as main targets [30,31]. Hemostatic
system disorders are the most studied biological effect induced by
SVMPs [14,32]. In addition to their procoagulant and anti-coagulant
activities, SVMPs are also involved in the pathogenesis of edema,
inflammation, myonecrosis, skin damage and the development of
cardiovascular shock [32-37]. They are able to inhibit platelet
aggregation which potentiates the effect of bleeding [38]. SVMPs are
also able to degrade the extracellular matrix components (collagen,
proteoglycans, laminin and fibronectin) inducing massive
extravasation of blood [36,39]. These metalloproteinases are
responsible of the induced local and systemic bleeding after bites;
affecting various organs (heart, liver, lungs, intestines and brain), so
they are called hemorragins. They can also cause swelling, blisters and
necrosis. These enzymes are, therefore, widely involved in the
pathogenesis of tissue necrosis [40]. SVMPs are synthesized in vivo as
inactive zymogens, organized into domains containing a signal
peptide, a pro-domain and a conserved catalytic domain with a
binding site for zinc, disintegrin-type or lectin-domain can be
associated at these domains [15,32,41-43]. SVMPs, Zn2+- or both
Zn2+/Ca2+-dependent, are characterized by a required sequence
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(HEXXHXXGXXH) for the Zn2+ binding, which is essential for their
proteolytic activity [44-47]. Histidyl residues are involved in zinc
binding, while the glutamate residue allows the polarization of water
molecule by zinc. Based on their structures and molecular masses,
SVMPs were previously classified into four classes [47-50]. However,
further investigations on SVMPs structure updated this classification
into only three classes. The mature P-I class contains only a
metalloproteinase domain. This domain is followed by disintegrin
domain in class P-II while in the P-III class these two domains are
linked to disintegrin-like and cysteine-rich domains [51-53]. Isolated
metalloproteinases from snake venoms are able also to disrupt

hemostatic system since they exhibit α or β-fibrinogenase activities or
inhibit platelet aggregation enhancing bleeding effect [15,32,38].

Disintegrins and C-type Lectins
Protein components of snake venoms belong to families of

disintegrins and C-type lectins are, increasingly, used in biomedical
research, in diagnostic or/and therapeutic purposes. Due to their
effects on various platelet receptors (GPIb, GPIIb/IIIa, GPVI, α2β1
….), disintegrins and C-type lectin domains have been considered as
modulators of the platelet aggregation (Figure 3).

Figure 3: Agonists of platelet receptors involved in adhesion and aggregation, the relationship with C-type lectin proteins (CLPs) as
anticoagulant, procoagulant and modulator of platelets.

By binding to αIIbβ3 integrin on activated platelets, and thus
preventing its interaction with fibrinogen, RGD disintegrins inhibit
platelet aggregation induced by a wide range of agonists, e.g. ADP, α-
thrombin, collagen and arachidonic acid. Based on their ability to
inhibit adhesion, migration, proliferation and invasion of different
cancer cell lines some of these disintegrins and C-type lectins have
been described as anti-tumoral potential effect. C-type lectins have
also in vivo and in vitro an anti-angiogenic powerful by interacting
with integrins of endothelial cells [54,55]. Several disintegrins have
been identified in vitro and in vivo as potent inhibitors of platelet
aggregation, their structures served also as a model in drug design.
Some of them are clinically used as anti-platelets for coronary artery

diseases, such as Eptifibatide (Integrilin) and Tirofiban. Eptifibatide is
a cycle peptide derivative of the disintegrin barbourin isolated from
dusky pigmy rattlesnake (Sistrusus barbouri), while, Tirofiban, is a
synthetic molecule mimicking the disintegrin Echistatin from Echis
carinatus [56,57]. The possibility to identify lectins using new
receptors (other than GPIb, GPVI and α2β1) could be for help to
develop and provide new opportunities in the diagnosis and treatment
of hemostasis. Meanwhile, new anti-tumor and anti-angiogenic
activities of some lectins (lebecetin, lebectin and BJcuL) open new
therapeutic perspectives in the field of cancer treatment.
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Phospholipases A2 (PLA2s)
Snake venoms are one of the richest sources of PLA2s. They often

contain a large number of iso-enzymes such as in Naja naja, Vipera
russelli, Trimeresurus flavoviridis venoms [58]. Snake venom PLA2s
are divided into two groups according to their primary sequence and
the position of their disulfide bridges [59,60]. PLA2s of Elapidae and
Hydrophidae venoms belong to the Group I, while those of Viperinae
and Crotalinae belong to the Group II. The structure of these two
groups is very similar, it consists of 120-125 amino acid residues,
stabilized by seven disulfide bridges [59,61,62]. SV-PLA2s induced
various biological effects such as neurotoxic, myotoxic, cytolytic,
edematic, cardiotoxic and anticoagulant effects [63-67].

Figure 4: Probable mechanism of myotoxin.

Myotoxic PLA2s and myotoxic peptides: PLA2s are the most
abundant myotoxic components of snake venoms; they induce similar
degenerative events in muscle cells. The myotoxic PLA2s may be
endowed with a phospholipase activity or not [68-70]. The active site
of myotoxic PLA2s is highly conserved (His 48, Asp 49, Tyr 52 and
Asp 99). The residue Asp 49 binds to calcium, which is essential to the
PLA2 activity [66]. Myotoxins devoid in phospholipase activity, have
the same active site residues (His 48, Tyr 52 and Asp 99). The residue
Asp 49 could be substituted by Lysine or Serine. Otherwise, the
substitution of aspartate 49 could prevent the binding of calcium,
resulting in a loss of phospholipase activity. This type of molecule
nevertheless retains myotoxicity [66,71]. The region (115-129 in C-
terminus) of the Lys49 PLA2s is responsible for their ability to alter the
integrity of the bilayer membrane. The onset of muscle damage even
in the absence of phospholipase activity showed that the catalytic

domain of PLA2s differ of their biological activities, including their
myotoxic activity (Figure 4).

However, Ser49 or Lys49 PLA2s altered muscle tissue by an
independent mechanism of enzymatic hydrolysis of membrane
phospholipids [72-74].

Myotoxins without PLA2 activity are peptides of 42 to 52 amino
acid residues, stabilized by three disulfide bonds. This activity is
related to their two successive sequences at their C-terminus (Figure
4). The first cationic sequence is rich in positive charged residues,
while the second sequence is rich in hydrophobic residues; both are
bound by three to four disulfide bridges.

Toxicological Relevance of Snake Venoms:
Envenomation And Therapy

Envenomation
Biodistribution of snake venoms and their components: Many

studies on biodistribution of snake venoms were performed using
sandwich ELISA, the biodistribution could explain their induced
clinical symptoms [75]. These studies showed that snake venoms are
rapidly absorbed from the injection site and diffused to the tissue and
the vascular compartment; however, their elimination is very slow.
Conducted study on Vipera aspis venom radio-labeled with Iodine125
and injected by i.v. route (260 mg/kg of rabbit weight) showed a rapid
distribution with an estimated time of 15 ± 3.6 minutes determined by
radio-labeling and 31 ± 8.4 minutes determined by sandwich ELISA
[75]. Further study on Walterinnesia aegyptia venom showed a rapid
absorption with 20 ± 2.1 minutes and a wide distribution of venom in
vascular and tissular compartments of rabbit [76]. This biodistribution
was correlated to that of Vipera aspis venom injected by i.v. route
which [76]. Parallaly, after envenomation with Vipera aspis, observed
symptoms appeared slowly and sustainably develop [76]. Furthermore,
the toxicokinetic study of the venom injected subcutaneous is widely
distributed throughout the body, indicating that the components of
venom widely diffuse out of the vascular compartment; this would
result in very long half-life time elimination. Vipera aspis venom
injected intramuscularly revealed large volume of distribution of the
venom (Vd = 2 L.kg) and low amount of venom (less than 4%) was
excreted through the kidneys [77]. In another hand, biodistribution of
Cerastes cerastes and Vipera lebetina venoms carried out by sandwich
ELISA in the different compartments of rats revealed that rapid
diffusion of venoms from the serum to the tissues. Maximum serum
concentration is reached after 3 hours of envenomation. The kidneys,
liver, lungs, heart and pancreas, are the main target organs for Cerastes
cerastes and Vipera lebetina venoms. The absence of the venoms in the
brain is attributed to the presence of the blood- lymphatic barrier that
prevents the passage of toxins in the venom of the brain [76].

Induced pathophysiology by venom components and involved
mechanisms II.1.2.1. Inflammatory response: Involvement of
inflammatory process in the pathogenesis of snake envenomation was
reported since 90s [50,77,78]. It is well known that snake venoms
contain various activities able to activate several pathways (Figure 5).

Increase of capillary permeability was reported after snake
envenomation leading to the release of several mediators. Many
components of snake venoms (PLA2s, bioamines and proteinases)
contribute to the induced inflammatory response which is initiated by
an increase of vascular permeability followed by cell infiltration [79].
Several studies reported that SVMPs such as BaP1 from Bothrops
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asper and Jararhagin from Bothrops jararaca, are involved in the
inflammatory pathogenesis leading to an increase of pro-inflammatory
cytokine production [80,81]. The induced inflammatory response by
snake venoms particularly those of Viperidae, is amplified by the
presence of metalloproteinases, serine proteases, phospholipases A2
and other non-enzymatic proteins such as disintegrins and C-type
lectins, which alter the vessel walls and trigger tissue damage. SVMPs
play a relevant role in the complex multifactorial inflammatory
response induced by snakebite. High levels of IL-6 and IL-1β were
observed in muscular tissue of envenomed animals by Bothrops asper
venom [82]. However, a rapid increase of IL-6 levels versus a late onset
of IL-1 and TNF-α was observed after injection of Bothrops asper
venom [78]. It was reported that Promutoxin (R49sPLA2) isolated
from the venom of Probothrops muscrosquamatus, induced a release
of IL-12, TNF-α, IL-6 and IL-1β from a cell culture of human
monocytes and IL-2 cytokines, TNF and IL-6 from human T
lymphocytes. Some SV-PLA2s hydrolyze membrane phospholipids of
platelets, leading to the release of agonists, mainly arachidonic acid a

precursor of several inflammatory substances such as prostaglandins
and leukotrienes [9,11]. Activation of the complement system results
in the formation of many additional degradation products that serve as
important mediators of inflammation. Snake venoms stimulate the
activation of mast cells which lead to histamine release, inducing
vascular permeability and vasodilatation leading to extravasation.
Furthermore, the kinin system can also be activated directly by the
proteinases of snake venoms that activate the release of bradykinin
[83,84]. This system is initiated by activation of Hageman factor (FXII)
following tissue injury. This plasmatic factor activates in turn, the pre-
kalikrein into kalikrein, in presence of kininogen, leading to vasoactive
peptides causing fever and pain. Bradykinin is a nano-peptide
responsible for the increased vascular permeability due to its binding
with specific receptors on sensory neurons; it, therefore, activates the
alternative complement pathway which amplifies the inflammatory
response. SVMPs such as fibrolase isolated from Agkistrodon
contortrix contortrix venom, is described to be involved in the
biosynthesis/degradation pathways of bradykinin [85].

Figure 5: Inflammatory response induced by snake venom components (Fg: Fibrinogen, vWF: Von Willbrand Factor, GP: Glycoprotein).

Blood disorders
Coagulation and fibrinolysis: Proteolytic enzymes isolated from

snake venoms were identified as α, β or γ fibrinogenases depending on
their ability to hydrolyze the fibrinogen in vitro [10].

Several thrombin-like molecules isolated from snake venoms
induce the release of either fibrinopeptides A or B or both of them.
These fibrinopeptides act as mediators of inflammation and induce

vascular permeability and neutrophil chemotaxis [15,11]. The formed
thrombus is considered as a potent chemotactic agent for neutrophils
and in vascular permeability acting on the kinin system. Viperidae and
Crotalidae venoms are also able to induce fibrinolysis. Purification and
characterization of three procoagulant proteinases (RP34, Afaâcytin
and CC3-SPase proteinase) from Cerastes cerastes venom, showed
fibrinogenolytic activities when analyzed by SDS-PAGE, afaâcytin and
RP34 displayed, respectively, α,ß-fibrinogenase and α-fibrinogenase
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activity [9,10,25]. Like afaâcytin, CC3-SPase is also characterized as an
α,β-fibrinogenase due to the release of both A and B fibrinopeptides.
TSV-PA, a serine proteinase purified from the venom of Trimeresurus
stejnegeri, plays a role of plasminogen activator. It shares about 70% of
homology with other serine proteases and has significant structural
similarities with the t-PA, it converts plasminogen to plasmin in the
same way that the latter by the cleavage of bond Arg561-Val562
[86,87].

Hemorrhage: Spontaneous systemic bleeding is caused by
hemorrhagins which damage vascular endothelium. Additional effects
caused by snake envenomations (coagulopathies, hemorrhage,
impaired and few platelets, and vessel wall damage) can result in
severe bleeding, a common cause of death after bites by Viperidae,
Elapidae and Colubridae. SVMPs through their disintegrin domain
may have multiple roles; it would allow to the amplification of
hemorragin action affecting platelet aggregation [9,50]. Disintegrins
interact and block platelets integrins via their integrin-binding tri-
peptide motifs; RGD (Arginine-Glycine-Aspartate) is the most
common motif between many disintegrins, while other variants of
motifs can also be found in some disintegrins e.g., KGD, WGD, MGD,
KTS, RTS and MLD [88]. These motifs can act and inhibit platelet
aggregation through their selective binding to integrins such as GPIIb/
IIIa or αIIBβ3. SVMPs degrade also platelet membrane glycoproteins
and their ligands such as collagen, GPIb and Von Willbrand factor
[89,90].

Myotoxicity
Snake envenomation induces prominent local tissue damage that

often results in permanent disability and systemic alterations
associated with haemorrhage, coagulopathies, cardiovascular shock
and renal failure. Clinical reports indicate that, in humans, the main
invalidating effect is the irreversible disruption of muscle tissue [91].
Tissue necrosis is a relevant local effect caused after snakebites, it is
considered as a serious consequence in severe cases of envenomation.
When myonecrosis appears tissues are altered leading to the gangrene
and infections. This type of complication can be the cause of
amputation. Indeed, myotoxins of snake venoms affect mainly the
plasma membrane of muscle cells to which they bind through their
cationic sequence [73,92]. Molecular mechanism by which they caused
the muscle tissue damage is not yet fully elucidated. Myonecrosis is
due to the myotoxins that induce irreversible damage of skeletal
muscle fibers. These molecules bind to the plasma membrane of
muscle cells and alter its permeability and integrity (Figure 4). The
induced muscle tissue damage could be due to the penetration of
myotoxins into muscle cells by endocytosis, probably through
membrane receptors onto the surface of muscle cells or following
hydrolysis of phospholipids causing membrane disruption. These
molecules enter into the cytosol, reach and alter the membrane of
mitochondria and sarcoplasmic reticulum of muscle cells. The
intracellular effect of these toxins occurs only after their initial action
on the plasma membrane, which marks the onset of degenerative
events [93,94].

Treatment
The complexity of the snake venoms and their induced effects after

envenomation makes difficult their treatment. However, more
attention was given to loco-regional disorders that sometimes lead to
amputations and permanent disabilities. Human suffering attributable
to snake bites remains a public health problem in many countries of

the world, several people over the world are known to be envenomed
and some them are killed or maimed by snakes every year. Preventive
efforts should be aimed towards education of regions at-risk to reduce
contact with snakes and to understand snakes’ behavior [88].
Whatever the therapy used, it should include not only the
neutralization of toxicity but also the other effects induced by venoms
(hemorrhage and necrosis…). To treat snake envenoming, the
production and clinical use of antivenom must be improved. Although
antivenom was effective in the neutralization of systemic
complications. It has limited effectiveness against the development of
local damage, metabolic dysfunctions and tissue damage caused by
venom components that are responsible for its health hazards due to
their fast distribution and effects such as hemorrhage, myotoxicity and
edema-forming [93]. Collaboration between physicians,
epidemiologists and toxinologists should enhance the understanding
and treatment of envenoming [88].

Beneficial Effects of Isolated Components from Snake
Venoms

Most of venom compounds acquire interesting properties
increasingly used in biomedical research and as tools in diagnosis
and/or therapies. Indeed, the specific nature of coagulant or anti-
coagulant properties of venoms makes them useful to better
understand the haemostatic mechanisms [10,11]. Some of these
components act synergistically at different stages of the coagulation
cascade [95]. SVSPs and SVMPs present an interest as biomedicines
and may be used as diagnostic tools; they act on this system as pro-
coagulants, anticoagulants, and on platelet aggregation as pro- or anti-
platelet [10]. Some of these molecules are used in the diagnosis and
treatment of thrombotic and heart diseases. Components of snake
venoms contain two categories of components that act antagonistically
through activation or inhibition of coagulation factors and platelet
aggregation. These compounds, able to hydrolyze the coagulation
factors with high specificity, are divided into serine proteinases and
metalloproteinases. Plasma defibrinogenation induced by snake
venom components is of interest. Indeed, Arvin “ancrod”, isolated
from Agkistrodon rhodostoma venom, is one of the molecules used in
patients treated with anti-coagulants. It is also used to lower the levels
of fibrinogen in the treatment of peripheral vascular disorders.
Botroxobin, another molecule isolated from the venom of Bothrops
atrox and Bothrops moojeni, converts fibrinogen into fibrin by
releasing only fibrinopeptide A. It is used for its defibrinogenating
effect in the treatment of thrombotic diseases. The coagulating
properties of Afaâcytin (Bothrops asper), insensitive to specific plasma
thrombin inhibitors could be useful as hemostatic agent in some cases
of bleeding and thrombocytopenia such as observed in post-operative
situations [4,28]. The fibrinogenase RP34 could serve as
defibrinogenating agent in the case of certain diseases [24,28,96]. All
these defibrinogenating biomolecules share their properties, may be
used as tools in clinical applications or in basic research. More in-
depth studies in pharmacology, toxicology of these biomolecules are to
be undertaken to determine their mode of action in vivo.

Conclusion
Snake venoms, considered to be one of the most important bio-

resources, include pharmacologically active molecules. To better
understand the diversity of biological actions of snake venoms and
propose new treatment for some pathologies, many studies focused on
purification and characterization of new bioactive compounds from
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venoms. Currently, biomolecules of snake venoms are of great
fundamental diagnostic and therapeutic interest. Characterization,
biological properties establishment of these bioactive molecules and
investigation on their mechanisms, may lead to their eventual use for
therapeutic purposes. Therapeutically, proteinases, disintegrins and C-
type lectins from snake venoms are widely used as anticoagulants
or/and anti-platelets. Furthermore, they are valuable tools for
understanding the different mechanisms of hemostasis and are also
used in the diagnosis of dysfunctions related to coagulation factors
such as enzyme activity in thrombin-like venoms that are used for the
fibrinogenopathy screening. Venom compounds are also used for
diagnostic analysis of various coagulation factors (factors V, VII, X,
platelet factor III, protein C and factor of Willbrand).
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