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Abstract

The microbiome is shown to have important roles in human health. Recent studies in mice show intestinal
microbes stimulate host neuropeptide oxytocin and immune physiology in a mind-body paradigm with diverse
outputs improved systemic wound-healing capacity. Oxytocin is best known for roles in reproduction and immunity,
but is more recently implicated in obesity, human bonding, and trust. Microbial reprogramming of host oxytocin may
offer far-reaching benefits in physical, mental, and social health for healthful longevity.
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Introduction
The potential of the microbiome to optimize mammalian health is

only now being recognized [1-4]. In a series of recent manuscripts,
Poutahidis et al. has shown that model intestinal micro-organisms
may stimulate host hormones and immunity to improve wound-
healing capacity [5], inhibit obesity [6], and sustain reproductive
functions [7]. Although a microbial pathway to stimulate oxytocin
production is without precedent, alliances between gut microbes and
CD4+ regulatory T lymphocytes have been shown to influence diverse
inflammatory processes including body fat deposition [8]. Indeed,
consuming a purified probiotic microbe lowers risk for obesity in
human subjects [9]. Substantial indirect support also exists in scientific
and epidemiological studies interconnecting microbes with systemic
health [1-4,10-22]. Despite enormous potential to improve quality of
life, exogenous administrations of pluripotent hormones such as
oxytocin conveying wellness have proven difficult. Beneficial microbes
may overcome this, and, as a result, have far-reaching potential
benefits for human physical, mental, and social health.

Probiotic Microbes Stimulate Beneficial Immune
Tolerance

It is widely recognized that alliances between gut microbes and
CD4+ regulatory T (Treg) lymphocytes dramatically influence whole
body health outcomes [8,11,23-26]. Immune tolerance prevents over-
reactivity to self or environmental factors that otherwise elicit an
unfavorable inflammatory response. Tolerance is conveyed by a subset
of CD4+ lymphocytes, namely Treg cells, which serve to dampen
deleterious inflammatory responses. In this way, an increased capacity
for immune tolerance helps the body recover after injury, at least in
part due to rapid clearance of damaging chronic inflammation in the
form of neutrophils and mast cells [6,27]. It was recently found that
oral purified probiotic model organism Lactobacillus reuteri (LR)
supplementation led to complete re-epithelialization of a wound site in
half the time needed for untreated controls, in an oxytocin-dependent
manner, leaving afterwards only minimal scar tissue [5]. Likewise,
feeding of LR induced immune tolerance and reduced mammary

cancer burden in mouse models [28]. Parallels between wound healing
and cancer are logical, recognizing that ‘cancer is a wound that does
not heal’ [29]. That oxytocin upregulates interferon gamma (IFN-γ)
expression with tightly controlled immunity may help explain
beneficial roles protecting from cancer [5,30-32].

Substantial mechanistic insight has been gained by the observation
that cell transfer of highly purified cells of immune tolerance,
CD4+CD25+Foxp3+ Treg cells, were sufficient to recreate the
microbe-induced wound-healing boost [5]. Transplantable Treg cells
were found to be sufficient ablate age-associated weight gain [6] and
cancer burden [28]. In mouse models, the potency of microbe-induced
Treg relied upon presence of neuropeptide hormone oxytocin [5]. This
suggests that edible microbes may be used prophylactically or
therapeutically to induce dramatic hormonal and immune changes
within host animals. It is tempting to extrapolate these findings in
mice to encompass broader microbial ecology. However, many recent
discoveries of microbe-host interactions remain to be proven in
human subjects.

Microbes Up-regulate Neuropeptide Hormone
Oxytocin with Improved Wound Healing Capacity

Oxytocin is a neuropeptide hormone fundamental in mammalian
social bonding and reproduction. In addition to key physiological roles
in childbirth and nursing, it is now widely recognized in metabolism,
the immune system, plus central nervous system (CNS)-related
functions, such as social memory and attachment, sexual behavior,
aggression, human bonding and trust, learning ability, creativity,
anxiety, feeding behavior, and pain cognition, in both male and female
subjects[17-22,30,31,33]. Oxytocin was recently discovered to be
integral in microbe-induced immune benefits during the wound
healing process by a vagus nerve-mediated pathway [5]. An ability to
heal wounds effectively ranges from recovery after minor injuries to
diabetes and some types of cancer [2,3,10-12], together contributing to
more healthful aging.

Recent discovery that gut microbes may stimulate oxytocin for
improved wound healing and healthful longevity [5] builds on a solid
foundation of science. Oxytocin was recently shown to reduce
debilitating conditions and sarcopenia in aging animals, leading to
more robust skeletal musculature [34]. Oxytocin has also recently
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gained traction as a pivotal molecule in not only generalized immune
system balance and health, but also feelings of social well-being, love,
spirituality, and satisfying life experiences. Such fulfilling social bonds
are known to improve human wound repair processes [35].

Finally, oxytocin also increases generosity and empathy [17-22],
contributing not only to a longer life, but also to the experience of a
more meaningful life.

Wound Healing, Oxytocin, and the Mind-body
Connection

Human civilization has long postulated psychological wellness and
a mind-body connection as the basis for healthful aging. Freedom
from diseases throughout life is based upon the host ability to respond
efficiently to injury, infectious agents, and social stress, with whole
body homeostatic balance resulting in minimal pathology [36-39].
Discovery that beneficial bacteria improve recovery after tissue injury
integrates oxytocin and immune tolerance highlights in a mind-body
connection (Figure 1) [5]. This is comprised of effects whereby
oxytocin reinforces immune tolerance, preventing over-reactivity to
self or environmental factors that otherwise elicit an unfavorable
inflammatory response. Tolerance is conveyed by a subset of CD4+
lymphocytes, namely T regulatory (Treg) cells, which serve to dampen
deleterious inflammatory responses. An increased capacity for
immune tolerance in the presence of oxytocin in mice helps to heal
their skin wounds, at least in part due to rapid clearance of neutrophils
and chronic inflammation [5, 27]. Although this overly simplifies a
complicated process, it has been established that oxytocin up-regulates
IFN-γ to elicit robust yet tightly regulated immunity integral in good
health [5,30-32]. The sum of which is re-epithelialization in half the
time needed for untreated controls, leaving afterwards only minimal
scar tissue [6].

It’s What Mammals are Made of: Symbiotic Microbes,
Immune tolerance, and Oxytocin

It is well established that a microbe-hormone connection begins
before birth. In eutherian mammals, microbes stimulate immune
tolerance via sex steroid hormones, oxytocin, and Interleukin (IL)-10
to sustain a prolonged placental pregnancy [40]. Upon birth oxytocin
simultaneously up-regulates IFN-γ and CD25 expression establishing
self vs. non-self [30-32]. Later in life, this same oxytocin interchange
sustains immune and integumentary homeostasis, biasing the immune
system toward IL-10 and IFN-γ, and subsequently minimizing the
deleterious systemic effects of IL-6 and IL-17 that hasten morbidity
and premature death [6]. Oxytocin also regulates neurotransmitter
Gamma-Aminobutyric Acid (GABA) signaling in the central nervous
system [41] providing a favorable mood reward [16] for social and
gluttary gratification. Emerging data connect oxytocin with obesity, fat
metabolism [42,43] [6], musculoskeletal fitness [34] and the immune
system [5,30,31,33], establishing its role as a global regulatory
hormone.

Figure 1: Gut microbes stimulate hormonal and immune signaling
for healthful longevity. Healthful aging is generally associated with
host ability to respond to tissue damage with efficient homeostatic
balance and minimal pathology. Efficient injury repair and lifelong
good health are regulated by hypothalamic hormones (e.g.,
oxytocin) integrated with peripheral endocrine glands (i.e., adrenal
cortex, thyroid gland, and gonads) in conjunction with the systemic
immune system. Beneficial gut microbes were recently found to
stimulate oxytocin that up-regulates Interferon (IFN)-γ and CD25
expression for immune tolerance in a transplantable fashion.
Together this prevents over-reactivity to self or environmental
factors that otherwise lead to premature death.

These diverse probiotic microbe–induced phenotypes impart
perinatal impact that may span generations. Oxytocin, for example, is
inversely linked with post-partum depression and maternal neglect in
human females [44]. While oxytocin enhances cooperation within kin
groups, it promotes aggression towards competitors [45]. These inter-
related roles for oxytocin may impact a natural selection process
favoring complex social organizations required for mutual
evolutionary success. Through actions of microbe-induced hormones
such as oxytocin, gut bacteria may influence our desires and identity as
human beings. Harnessing microbes for healthful longevity

In adulthood, these micro-organisms stimulate immune tolerance
and the hypothalamic-pituitary axis to improve host fitness and lessen
impairments of aging. Features typical of superb physical fitness and
youth include mucocutaneous hyperacidity and follicular anagenesis
[46]. All of this is well reasoned from an evolutionary perspective, in
that symbiotic microbes co-evolved with mammals by exploiting host
immunity and endocrinology for mutual gain [46,47]. During periods
of fertility, immune and hormonal effects of probiotic organisms
dominate environmental interfaces and facilitate host survival and
reproductive success [46]. Probiotic-enhanced immune tolerance
permits prolonged placental pregnancy [40], while hyperacidic mucus
inhibits pathogens that otherwise impedes GI tract health, fertilization
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and pregnancy. Breaking this natural symbiotic cycle with compulsive
social hygiene practices leads to insufficient levels of mucosal IL-10
[24,25], contributing to immune dysregulation with elevated risk for
premature death under favorable conditions, these probiotic bacteria
are then passed from mother to naïve offspring during vaginal birth
and nursing, imparting evolutionary success to both the symbiotic
bacteria and their mammalian hosts.

In conclusion, orally administered microbes may lessen
impairments of aging and impart healthful resiliency typical of much
younger individuals [5,7,46], providing the psychological and
physiological cornerstones of healthful longevity. Microbes have been
shown in preclinical models to ablate age-associated weight gain [6]
and cancer burden [28] that contributes to premature aging.
Quantifiable benefits in wound healing capacity directly translate to
nearly every aspect of traditional health and medicine [42,48],
simultaneously unifying social support networks with improved injury
repair for a healthy and meaningful life [49]. In practical terms, this
microbe-endocrine-immune linkage has the potential to reduce
hospitalizations, improve healing, lower risk for certain cancers, and
bestow wellness and active participation in society throughout life. It’s
unknown with certainty whether findings in animal models will
translate directly to human subjects. Nonetheless, peoples around the
world have cultivated and consumed similar food-grade organisms in
fermented beverages and active yogurt drinks for thousands of years,
supporting a low-risk population-based approach for a long, healthy,
and meaningful life.
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