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Introduction
Proteomics has undisputedly revolutionized the global 

characterization of time-dependent and tissue-related gene expression 
patterns in health and disease [1]. Proteomic profiling has been 
instrumental in determining the cellular dynamics in protein 
concentration changes and post-translational modifications [2], 
making it a fundamental analytical part of the modern biosciences 
[3]. The recent establishment of a mass spectrometry-based draft map 
of the human proteome [4,5], together with antibody-based affinity 
proteomics initiatives [6] and the genome-wide characterization of 
the human proteome by chromosome-centric projects [7-9], have 
produced a large catalogue of over 18,000 proteins. This information 
has given unprecedented insight into the complexity of protein 
expression levels in different cell types, tissues and organs. However, the 
approximately 20,700 protein-coding genes [10] have been estimated 
to translate into more than 100,000 different protein isoforms during 
the formation of trillions of cells in the adult human body. The various 
proteins belonging to the dystrophin-glycoprotein complex [11], 
which are intrinsically involved in several neuromuscular diseases [12], 
are an excellent example of this diversity at the proteome level. The 
core anchoring protein dystrophin of this sarcolemmal complex exists 
in an extraordinary variety of isoforms and its associated dystroglycans 
derive as cleavage products from a single peptide chain [11]. This is due 
to the fact that multiple dystrophin gene promoters express three full-
length transcripts and four shorter isoforms in various cellular locations 
[13]. The dystroglycan proteins α-dystroglycan and β-dystroglycan are 
translated from a single mRNA molecule as a 97 kDa protein that is 
subsequently cleaved into 2 proteolytic protein products [14]. 

Another illustration of how differential splicing results in a single 
gene coding for more than one muscle protein product, in conjunction 

with an added layer of complexity due to different types of post-
translational modifications, is the abundant class of Ca2+-pumping 
ATPases from the sarcoplasmic reticulum [15]. Of the 3 genes that 
encode the protein family of sarco(endo)plasmic reticulum Ca2+-
ATPases (SERCA), skeletal muscle fibers express the SERCA1 and 
SERCA2 genes [16]. These 2 SERCA genes produce more than 10 
distinguishable SERCA protein isoforms [17] via alternative splicing 
of the transcripts and various post-translational modifications. This 
exemplifies the point that distinct genes may produce several fold 
more muscle protein isoforms and thereby complicate the relationship 
between genome biology and skeletal muscle proteomics. Since primary 
or secondary changes in dystrophin and its associated glycoproteins are 
linked to the most frequent forms of inherited muscular dystrophies, 
tissue proteomics suggests itself as a highly suitable bioanalytical tool to 
study dystrophinopathies [11]. Here, we outline biological issues and 
common bioanalytical problems that are frequently associated with 
the systematic utilization of tissue specimens for studying muscular 
dystrophy and related neuromuscular disorders by comparative 
proteomics.

Abstract
Over the past decade, mass spectrometry-based proteomics has been instrumental for the detailed elucidation 

of pathobiochemical mechanisms involved in major neuromuscular diseases. Although the identification of muscle-
derived proteins in biofluids is the main focus of diagnostic biomarker research, the large-scale proteomic analysis 
of pathological muscle tissue is of central importance for furthering our general understanding of the dysregulation 
that underlies complex muscle diseases. Here, we discuss intrinsic biological issues and bioanalytical difficulties that 
are generally associated with comparative muscle tissue proteomics. The systematic utilization of cellular mixtures 
or whole tissue specimens as starting material for studying neuromuscular pathology is seriously complicated by the 
cellular heterogeneity and physiological plasticity of contractile tissues. The comprehensive biochemical analysis 
of the skeletal muscle proteome is often hampered by the wide dynamic expression range of proteins, the greatly 
differing physicochemical properties of dissimilar muscle protein species and the potential cross-contamination of 
samples by highly abundant proteins. Thus, neither gel electrophoretic methodology nor liquid chromatography, is 
capable of appropriately separating all constituents of the skeletal muscle proteome. However, the application of 
advanced extraction strategies, the usage of subcellular fractionation protocols to reduce sample complexity and the 
affinity purification of distinct protein fractions prior to mass spectrometric analysis promises to overcome some of 
the inherent problems associated with muscle tissue proteomics.
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Diagnostic and investigative value of skeletal muscle biopsies

Although magnetic resonance imaging and spectroscopy is 
increasingly used to substantiate the diagnosis of certain neuromuscular 
pathologies by non-invasive means [18], the requirement for specialized 
facilities and relatively high costs make this advanced approach not 
yet suitable for routine diagnostic or prognostic screening in muscle 
pathology. The histological, histochemical and immunohistochemical 
assessment of muscle biopsy specimens is still of central importance 
for the conventional diagnosis of muscular abnormalities [19]. Ideally 
the portion of a skeletal muscle selected for a biopsy procedure should 
be free of unrelated pathologies, not be affected by previous trauma 
and show moderate weakness for accurate testing. In conjunction with 
physical examinations, genetic testing, the evaluation of clinical history 
and routine tests of motor assessment, studying histological changes 
in patient muscle samples is crucial for the overall determination of 
the pathological status of the neuromuscular system. In early-onset 
muscular dystrophies, histological hallmarks include considerable 
variations in fiber diameter, extensive connective tissue proliferation 
in the perimysium and endomysium, increased numbers of central 
nuclei and other cytoarchitectural alterations, fiber splitting and 
degeneration-regeneration cycles in affected myofibers [12].

Biochemical tests are regularly employed in the form of enzyme 
assays for the detection of tissue damage markers, which usually 
includes muscle enzyme-related serum activity [20,21]. However, 
these muscle-derived biomarkers are relatively non-specific [22] and 
there is a major research drive to identify novel disease-specific protein 
indicators that can be employed for the improved diagnosis, prognosis 
and/or therapy monitoring of common muscle diseases [23]. The recent 
development of high-throughput biochemical screening methods that 
combine large-scale separation techniques, such as gel electrophoresis 
and/or liquid chromatography, with highly sensitive mass spectrometry 
have given skeletal muscle biopsies a greater investigative value [24]. 
Routine proteomic screening can now be carried out with relatively 
small amounts of contractile tissue to generate meaningful data on 
global changes in the entire protein constellation of pathological 
muscle fibers [25,26]. As outlined in the flowchart of Figure 1, the 
systematic screening of the assessable muscle proteome can be used 
both for the swift identification of a new biomarker signature and 

the pathobiochemical analysis of cellular dysregulation and potential 
compensatory processes. Due to its unparalleled capacity to identify 
changes in distinct protein isoforms, mass spectrometry-based 
proteomics is especially suitable for the establishment of potential 
differences between moderately versus severely affected muscle tissues. 

Tissue complexity and heterogeneity in skeletal muscles

Voluntary contractile tissues, representing one of the most 
abundant cellular entities in the human body, maintain the excitation-
contraction-relaxation cycle via the biochemical conversion of 
potential chemical energy into mechanical filament sliding [27]. Other 
major biochemical tasks include the regulation of heat homeostasis and 
metabolic integration. The fact that skeletal muscles are an extremely 
tough type of tissue that consists of overlapping filamentous structures 
surrounded by several layers of connective tissue, makes it difficult 
to study certain pathological changes in biopsy samples by routine 
homogenization approaches, extraction methods and biochemical 
separation techniques. Muscle fiber populations are characterized by 
their physiological and metabolic heterogeneity spanning from fast-
glycolytic to slow-oxidative cell types [28]. Besides the main type I, 
type IIa and type IIb/x fibers [29], most muscles also contain a variety 
of hybrid fibers and a myo-specific stem cell pool consisting of satellite 
cells [30]. Thus, the cellular complexity of crude muscle samples has 
to be taken into consideration when the results from biochemical 
analyses of human biopsy, autopsy material or operational remnants 
are interpreted. Besides the highly complex combination of muscle 
fiber types within an individual skeletal muscle, other tissue classes 
are represented by capillaries, the epimysium, the perimysium, the 
endomysium and the abundant motor neuron system (Figure 2).

For example, extensive fibrosis or infiltration by fatty cells in 
diseased muscle tissue might make the direct biochemical comparison 
of normal versus affected specimens difficult due to the introduction of 
potential artifacts during the homogenization procedure or subcellular 
fractionation steps. The appearance of extensive amounts of collagen 
fibrils or fatty deposits in tissue homogenates may cause differential 
protein adsorption or entrapment processes in control versus 
pathological samples. It is therefore crucial to verify biochemical and 

Diagnosis of Skeletal Muscle Disorders
Clinical symptoms  - Family history  - Disease progression
Histological testing  - Genetic testing  - Biochemical testing

Skeletal muscle tissue specimens
- Histological analysis
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- Mechanisms of molecular pathogenesis
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Figure 1: Summary of routine analyses performed with muscle biopsy 
specimens and the new bioanalytical value of skeletal muscle samples for the 
proteomic profiling of neuromuscular diseases.
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Figure 2: Diagram outlining the cellular complexity of skeletal muscle tissue 
and the physiological heterogeneity of muscle fibre populations used in the 
analysis of human biopsy material or biochemical studies with animal models 
of neuromuscular disorders.
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proteomic findings from routine screening studies by independent 
bioanalytical methods, such as immunofluorescence microscopy, 
immunoblotting surveys or functional assays [24]. In the case of studies 
with genetic animal models of human muscle diseases the differing fine 
structure of the neuromuscular system, but also dissimilarities in the 
immune system, physiological adaptations and metabolic regulation, 
have to be taken into account when attempting to properly extrapolate 
findings from animal testing to human pathology [31].

Complexity of the skeletal muscle proteome 

In biological terms, it is difficult to precisely delineate the exact 
protein constellation that defines the skeletal muscle proteome, since 
muscle tissue is exceedingly heterogeneous in its composition and 
highly plastic with respect to quickly adapting to changed functional 
and metabolic demands. Hence, in contrast to the comparatively 
stable genome, the muscle tissue proteome is constantly fluctuating 
to adjust its protein repertoire to the physiological challenges of the 
body. Numerous attempts have been made to separate the assessable 
protein constellation from total muscle extracts in order to establish 
the near-to-complete proteome of distinct skeletal muscles [32-35]. 
Both two-dimensional gel electrophoresis and liquid chromatography 
were used for the large-scale protein separation from human muscle 
specimens and various animal muscle preparations of biomedical 
or agricultural importance. The systematic application of tissue 
proteomics has so far resulted in the identification of more than 
2,000 muscle-associated proteins [34]. Interestingly, mitochondrial 
proteins accounted for 22% of the accessible skeletal muscle proteome, 
including 55 subunits of the respiratory complexes I to V [32], 
clearly confirming the crucial importance of oxidative metabolism 
in muscle tissue [36]. The comparative analysis of predominantly 
fast-twitching versus slow-twitching muscle has shown that several 
hundred proteins are differentially expressed in contractile tissue with 
differing fiber specification [37-40]. Fiber type-specific expression 
patterns were shown to encompass especially protein families involved 
in the contraction-relaxation cycle, ion handling, glycolysis, oxidative 
phosphorylation and cellular signaling [40]. Numerous studies have 
catalogued a large cohort of organelle-specific muscle proteins [41], 
including protein isoforms expressed predominantly in mitochondria 
[42,43], the sarcoplasmic reticulum [44,45] or the sarcolemma [46]. The 
most abundant proteins of the diffusible fraction of the skeletal muscle 
proteome were shown to be the enzymes that mediate the glycolytic 
pathway [47,48] and recent studies have revealed that the skeletal 
muscle secretome contains a highly complex mixture of fiber-derived 
proteins and a novel class of signaling proteins named myokines [49-
51]. 

Bioanalytical challenges and opportunities in comparative 
tissue proteomics

Since no single set of protein biochemical methods is currently 
capable of separating and analyzing the entire spectrum of proteins 
contained in a complex tissue proteome, this technical obstacle is the 
most significant limiting factor in most comparative proteomic studies. 
The wide range of concentration levels of individual protein species 
and the greatly differing physicochemical properties of proteins with 
respect to hydrophobicity make global biochemical analyses technically 
challenging. The large-scale protein separation by gel electrophoresis 
or liquid chromatography is inevitably biased towards certain subtypes 
of proteins based mostly on their molecular size and overall electric 
charge. Although two-dimensional gel electrophoresis can readily 
separate a large portion of the skeletal muscle proteome, including 

contractile proteins, metabolic enzymes and molecular chaperones [52-
54], this standard technique of proteomics underrepresents low copy 
number proteins, integral membrane proteins and high-molecular-
mass proteins [55-57]. An additional problem encountered with 
routine gel electrophoresis is the fact that proteins with extensive post-
translational modifications are often presented by less defined spots or 
bands, and that proteins exhibiting extreme pI-values do not properly 
resolve at the edge of analytical gels with a wide pH-range [58]. 

Cross-contamination of separated low copy number proteins 
by highly abundant proteins is also a potential problem in muscle 
proteomics. This includes the presence of myosin heavy and light 
chains, actins, tropomyosins and troponins in crude tissue extracts or 
highly abundant organelle-specific proteins such as the sarcoplasmic 
reticulum Ca2+-ATPases in subcellular membrane fractions. To 
overcome some of these technical issues, the comprehensive proteomic 
screening of muscle specimens should ideally be carried out with both 
crude tissue extracts and isolated organelles as starting material. Figure 
3 outlines the most commonly employed proteomic workflows and 
analytical techniques for comparative muscle tissue proteomics. For 
the analysis of the near-to-complete proteome, the urea- or detergent-
based extraction of total tissue specimens is usually employed and 
can be combined with a variety of label-free or label-based strategies 
for protein identification. In order to reduce sample complexity, 
subcellular fractionation protocols are commonly used in organelle 
proteomics [41,59-61] and affinity purification methods are highly 
suitable to enrich supramolecular protein complexes prior to their 
mass spectrometric analysis [44,46,62-65]. The protein composition of 
crude extracts can be determined by label-free mass spectrometry or 
electrophoretic labeling approaches combined with mass spectrometry. 

Comparative Muscle Tissue Proteomics
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Subproteomic
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Figure 3: Flow chart outlining the various bioanalytical strategies used in 
comparative muscle tissue proteomics. Cellular analyses are often carried 
out by relative quantitation methods such as SILAC (Stable Isotope Labeling 
with Amino acids in Cell culture), iTRAQ (isobaric Tags for Relative and 
Absolute Quantitation) or ICAT (Isotope-Coded Affinity Tag). Organelle 
proteomics encompasses LOPIT (Localization of Organelle Proteins by Isotope 
Tagging), laser capture microscopy (LCM) and differential centrifugation 
(DC) approaches. The most powerful two-dimensional gel electrophoresis 
(2D-GE) technique used in comparative muscle proteomics is represented 
by fluorescence difference in-gel electrophoresis (DIGE). Protein affinity 
purification methods include immuno precipitation (IP), chemical crosslinking 
(XL) and the TI-DIRT method (Transient Isotopic Differentiation of Interactions 
as Random or Targeted). Distinct protein populations can also be conveniently 
analyzed by a combination of one-dimensional gel electrophoresis and liquid 
chromatography (LC), followed by mass spectrometry (MS).
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The fluorescence difference in-gel electrophoresis method [66] has 
been widely applied to study neuromuscular disorders [52-54,67].

Quantitative proteomic analyses can be performed with metabolic 
or chemical labeling and often involve the isotopic tagging of peptides 
or proteins prior to differential analysis by mass spectrometry [68]. 
Cellular analyses are frequently carried out by relative quantitation 
methods such as SILAC (Stable Isotope Labeling with Amino acids 
in Cell culture), iTRAQ (isobaric Tags for Relative and Absolute 
Quantitation) or ICAT (Isotope-Coded Affinity Tag) [69]. Organelle 
proteomics employing isotope tagging is known as LOPIT (localization 
of organelle proteins by isotope tagging) [61,70]. Interestingly, laser 
capture microscopy has been successfully used for pre-fractionation 
steps in subproteomic studies [71], positioning this technique as 
a suitable alternative to differential centrifugation in the field of 
subproteomics. Technical details on the application of specific peptide 
mass analyzers using linear ion traps, quadrupole, orbitrap, fourier 
transform ion cyclotron resonance or time-of-flight methodology have 
been described in several extensive reviews [72-74]. The performance 
comparison of individual classes of mass spectrometers with respect to 
resolving power, mass accuracy, sensitivity, dynamic range, throughput 
capacity and available fragmentation modes has been recently discussed 
by Zhang et al. [69]. For the proteomic analysis of protein complexes 
involved in muscular dystrophy, both affinity purification and co-
immuno precipitation techniques have been employed [46,75,76]. A 
new approach for the identification of transiently interacting proteins is 
represented by the TI-DIRT method (transient isotopic differentiation 
of interactions as random or targeted) [64], which future application 
in muscle proteomics might identify novel transient binding partners 
of the membrane cytoskeletal protein dystrophin [11]. A widely used 
protein biochemical method, chemical crosslinking [62], has also been 
applied to the mass spectrometric analysis of distinct coupling sites 
within the structure of proteins and protein complexes [63,65]. In the 
field of muscle biology, the usuage of a trifunctional crosslinker agent 
has helped in the elucidation of the interactions between the Ca2+-
dependent complex between calmodulin and the C-terminal sequence 
of the skeletal muscle myosin light chain kinase [77]. Combining 
chemical crosslinking analysis and advanced mass spectrometry will 
hopefully also be useful for the detailed analysis of changes in the 
dystrophin-associated glycoprotein complex in X-linked muscular 
dystrophy. 

Successful applications of tissue proteomics for studying 
muscular dystrophy

Despite the above outlined technical problems and biological issues 
that may complicate comprehensive tissue profiling by comparative 
proteomics, large-scale protein separation in combination with mass 
spectrometry was successfully applied for studying many crucial aspects 
of muscular dystrophy [23]. Over the last few years, the systematic 
usage of gel electrophoresis, liquid chromatography and various mass 
spectrometric techniques has decisively advanced the field of muscular 
dystrophy research [11]. The identification of novel proteome-wide 
changes in dystrophic tissues has drastically increased our general 
understanding of the molecular pathogenesis of dystrophinopathies. 
The proteomic characterization of isolated sarcolemma vesicles and the 
mass spectrometric analysis of the purified dystrophin-glycoprotein 
complex from skeletal muscle has confirmed the close interactions 
between dystrophin and dystroglycans, sarcoglycans, dystrobrevins, 
syntrophins and sarcospan [46,76]. Interestingly, the proteomic 
analysis of the immunoprecipitated cardiac dystrophin complex 
revealed no interactions with the signaling enzyme nNOS, differing 

compositions of dystrobrevins and syntrophins and additional binding 
partners, such as Cypher, Cryab, Cavin-1 and Ahnak-1 [75]. Thus, 
proteomics was extremely useful in determining differences between 
the compositions of dystrophin-associated complexes from skeletal 
muscles versus the heart.

The proteomic survey of total tissue extracts from dystrophic mdx 
hindlimb muscle showed elevated levels of the AK1 isoform of the 
enzyme adenylate kinase [78,79], which had not previously been shown 
by the conventional biochemical analysis of dystrophin-deficient 
muscles. This finding suggests abnormal nucleotide ratios and an 
impaired regulation of bioenergetic processes in muscular dystrophy. 
Biochemical surveys focusing on ion-regulatory proteins have shown 
drastic reductions in the Ca2+-binding proteins calsequestrin of the 
sarcoplasmic reticulum [54,80] and regucalcin [81] and parvalbumin 
of the cytosol [67]. These altered expression levels of important Ca2+-
handling proteins agree with pathophysiological impairments of 
cytosolic ion cycling and a considerably lower capacity for luminal 
Ca2+-buffering [82]. The diminished ability to properly sequester excess 
Ca2+-ions in dystrophic fibers, in conjunction with chronic Ca2+-leakage 
through the ruptured and inadequately repaired plasma membrane 
[83] and an enhanced proteolytic degradation of sensitive muscle 
proteins [84], probably exacerbates the dystrophic phenotype [85]. The 
proteomic analysis of total tissue extracts from young mdx hindlimb 
muscle revealed changes in vimentin, desmin, tubulin, annexin, 
glycolytic enzymes and mitochondrial proteins involved in oxidative 
phosphorylation [86,87]. These findings suggest alterations in energy 
metabolism and compensatory remodeling of the cytoskeletal network 
in dystrophin-deficient muscle cells.

In stark contrast to mildly affected extraocular and interosseus mdx 
muscles [88,89], the severely dystrophic mdx diaphragm exhibited 
considerable changes in many proteins involved in energy metabolism, 
the contractile apparatus and the cellular stress response [52,54,67]. 
The up-regulation of molecular chaperones was shown to be a general 
hallmark of muscular dystrophy [52,90] and suggests high levels of 
cellular stress in dystrophinopathy with the constant need for refolding 
or efficient removal of misfolded proteins [91]. The proteomic 
analysis of experimental skipping of exon 23 in the mdx mouse 
model of Duchenne muscular dystrophy demonstrated that this novel 
therapeutic approach reversed the high concentration levels of muscle-
specific heat shock proteins [54]. Although this is an encouraging 
finding with respect to developing new treatment strategies, one of 
the major obstacles for successful delivery of pharmacological or gene 
therapeutic agents is muscular dystrophy-associated fibrosis [92-94]. 
Exon skipping therapy might be seriously complicated by the presence 
of muscle tissue scarring. Proteomics has clearly confirmed the 
extensive accumulation of collagen in the extracellular matrix region of 
dystrophin-deficient muscle [67], whereby aging exacerbates the extent 
of fibrotic changes [95,96]. An extensive deposition of extracellular 
matrix proteins was also shown to occur in laminin α2 chain-deficient 
muscle by quantitative proteomics [97], confirming that congenital 
muscular dystrophy is associated with widespread fibrosis [98]. Besides 
extensively studying the established mdx mouse model by proteomics, 
the vastus lateralis muscle from the dystrophic grmd golden retriever 
was also evaluated by mass spectrometric surveys. Interestingly, several 
metabolic proteins that are regulated by PGC1-α, were shown to be 
altered in grmd muscle fibers, suggesting considerable bioenergetics 
disturbances in the absence of dystrophin [99].

Since changes in post-translational modifications play an important 
role during muscle development, fiber maturation, physiological 
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adaptations, neuromuscular pathology and the natural aging process, 
the global evaluation of changes in glycosylation [100], phosphorylation 
[101], carbonylation [102], nitrosylation [103] and acetylation [104] is 
becoming increasingly important in the areas of muscle biochemistry 
and proteomic biomarker discovery research [21]. With the exception 
of a recent mass spectrometric analysis of carbonylation of the 
molecular chaperone Hsp70 in Duchenne muscle samples [105], 
post-translational modifications have not been intensively studied in 
dystrophic muscle tissue samples from X-linked muscular dystrophy. 
However, changes in phosphorylation, glycosylation, carbonylation 
and nitrosylation have been documented in a variety of neuromuscular 
pathologies. This included alterations in the phosphorylation patterns 
of the mitochondrial ATP synthase in insulin-resistant muscle [106] 
and a changed concentration of the phosphorylated form of myosin 
light chain MLC2f in hyperexcitability-related myotonic muscle 
[107]. Drastic alterations in post-translational modifications were 
shown to be involved in age-related muscle degeneration, affecting 
especially metabolic enzymes [108,109]. For example, the rate-limiting 
glycolytic enzyme pyruvate kinase was shown to exhibit a drastically 
reduced activity in aged muscle tissues and this functional impairment 
appears to be directly related to enhanced levels of N-glycosylation 
[110] and tyrosine nitration [111,112]. Changes in post-translational 
modifications probably influence overall protein stability, subcellular 
protein targeting, intra- and intermolecular interactions, and the 
biochemical coupling efficiency between substrate and active site in 
metabolic enzymes. In the future, the detailed bioanalytical assessment 
of changes in critical post-translational modifications will also be 
applied to the study of dystrophic fibers and hopefully enhance 
our understanding of the role of phosphorylation, glycosylation, 
carbonylation, nitrosylation, acetylation and ubiquitination in 
dystrophinopathy.

Conclusions
Muscle tissue proteomics is concerned with the global biochemical 

analysis of the protein constellation of contractile fibers and their 
associated cellular structures. In comparative pathoproteomic studies, 
the systematic extraction of the assessable protein repertoire from crude 
tissue extracts has the clear advantage of using a defined starting material 
that represents the near-to-complete muscle proteome. This approach, 
although it may underrepresent the presence of certain types of 
protein, avoids the introduction of artifacts due to extensive subcellular 
fractionation steps. Proteome-wide studies should ideally be carried 
out in conjunction with organelle and membrane proteomics that 
uses distinct fractions with reduced sample complexity. Importantly, 
since pathoproteomics measures concentration levels of proteins and 
identifies distinct protein isoforms, this information usually focuses on 
the status of distinct subspecies of proteins at a given point of time 
during a disease process. It is therefore not readily possible to deduce 
from proteomic data sets any indications on the actual mechanisms 
that change regulatory processes. Proteomic findings should therefore 
not be over-interpreted. For example, the reduction of a specific protein 
as determined by comparative proteomics might be due to down-
regulation, controlled loss via secretion, tissue damage-related leakage 
or non-specific degradation. Thus, to make more broadly applicable 
conclusions based on proteomic data, additional cell biological and 
physiological characterization should be performed. Overall, tissue 
proteomics has clearly progressed the field of basic and applied myology 
and the recent development of more advanced peptide mass analyzers 
will certainly improve the sensitivity to detect even smaller amounts 
of distinct protein species in muscle biopsy samples. In the future the 
combination of crude tissue proteomics, organelle proteomics and 

affinity proteomics of isolated protein complexes promises to be the 
most suitable bioanalytical strategy for the comprehensive screening of 
pathological muscle specimens. This should result in the identification 
of novel biomarkers of muscle diseases and a vastly improved 
knowledge of the molecular pathogenesis of common disorders of the 
neuromuscular system.
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