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Abstract

Background: The standard view of blood coagulation is based on a mechanism whereby cascade interactions of
clotting factors generate thrombin, which converts soluble fibrinogen into an insoluble clot.

Objective: Review the modalities by which soluble fibrinogen transforms into an insoluble matrix, the basis of
blood coagulation.

New concept: An alternate process is operative that can transform fibrinogen, based on reactions with free
radicals. Such could be generated by the release of ascorbate by activated platelets. Ions of multivalent metals,
such as Cu+2 or Fe+2 bound to fibrinogen, react with the ascorbate (a reductant in a Fenton reaction) to generate
H2O2 and reactive oxygen species. Alternately, γ-irradiation which generates H2O2 could generate such species.
Supportive evidence and references are cited.

Conclusion: An expanded blood clotting schema is presented that incorporates the classic (via thrombin) as well
as alternate (free radical) pathways by which fibrinogen can be converted into an insoluble clot. This new schema is
discussed within the context of γ-irradiation or dietary ascorbate as instigants of free-radical induced clotting events,
of particular relevance to airplane pilots, divers, submariners, astronauts and patients not responding to classic anti-
coagulation (heparin, Coumadin) therapy.

Keywords: Mechanisms; Thrombin; Vitamin C; Free radicals;
Neofib; Thrombosis

Abbreviations
Cβ, preCγ and CαE: Synthetic Peptide Analogues (19-21 AA) of the

β, γ and αE Chain C-termini of Fibrinogen; FA: Fatty Acids; D-D:
Binding Contact between the D-domains of 2 Different Fibrin
Monomers; Fib340: Fibrinogen with MW 340 kDa; Fib420: Fibrinogen
with Extended α Chain MW 420 kDa; [Fib]min: Minimal Fibrinogen
Concentration required for Coagulation (Phase Change) to occur;
FPA: Fibrinopeptide A released (Cleaved) from Fibrinogen by
Thrombin; FPB: Fibrinopeptide B released (Cleaved) from Fibrinogen
by Thrombin; Haptides: Fibrino-Peptides Homologous to the
Carboxy-Terminal Sequences of the β-, γ-, and αE Chains (i.e.
Peptides Cβ, preCγ and CαE respectively), which can elicit Haptotactic
(Attachment) responses from Cells of Mesenchymal Origin; SEM:
Scanning Electron Microscopy; TEM: Transmission Electron
Microscopy

Background
The standard view of blood coagulation is based on the idea that a

“cascade” of enzymatic events, the “intrinsic” and “extrinsic” pathways
of coagulation both generating thrombin, which converts fibrinogen
into an insoluble fibrin clot [1-7].

Figure 1: A relatively simple schematic of the “intrinsic” and
“extrinsic” cascade pathways of coagulation, from the perspective of
fibrinogen transformation into a clot. The clotting time (CT) is the
basis for many of the standard blood clotting tests (APTT, PT, TT)

Consequently, much of the biomedical focus relating to blood
coagulation has been on the clotting factor thrombin (clotting factor
IIa), resulting from the “trypsinic” cleavage of prothrombin (clotting
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factor II) into thrombin (clotting factor IIa). For example, citrate is
added to donated blood units to chelate Ca(II) , which prevents the
activation of carboxylated pro-factors (clotting factors II,VII, IX, X)
into enzymatically functioning proteins (factors IIa, VIIa, IXa, Xa
respectively). For medical purposes, strategies for preventing thrombin
formation include dosing with anti-thrombotic drugs, based on the
idea of preventing the biosynthesis of carboxylated enzyme precursors
of thrombin (with coumadins) or inhibiting thrombin activity (such as
with heparin). A simplified schema of the ‘classic’ cascade is presented
in Figure 1.

Fibrinogen Molecular Features

Structure and composition
Fibrinogen is the plasma protein responsible for blood clot

formation. Normal fibrinogen (Fib 340) is a complex of 2 each of 3
chains (α, β and γ ), with a MW 340 kDa. A variant of fibrinogen, with
a longer α chain and greater MW (known as fibrinogen αE in Fib420 ;
MW 420 kDa), constitutes about 1% of the total fibrinogen in adult
humans. Thus, the three normal fibrinogen chains are composed of
610, 483, 411 amino acids and the aE chains are 866 aa (the numbering
based on the Gene-bank database, accessible at ncbi.nlm.nih.gov).

Two molecular representation of Fib340 and Fib420 are shown in
Figure 2

Figure 2: Schematic diagram of fibrinogens A: Fib 340 and B: Fib
420. [ 8], Figure 1, reproduced with permission)

The α chains in Fib340 fold back over the molecule, hovering near
the central E-domain. The much longer αE chain of Fib420 also folded
back, but presents globular features over the E-domain.

Fibrinogen has a strong affinity for divalent metal cations, notably
Ca (II) and Zn (II), which at physiologic levels (around 2 mM and 10
uM respectively) can each modulate the rate of fibrinogen coagulation
(discussed further below) and the physical properties of the resultant
fibrin clot, such as viscoelasticity or breaking strength [9-13].
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Figure 3: Schematic representation of fibrinogen (as pseudo
“Newman projections”), showing the various epitopes affecting the
structure and function of the parent molecule (graphic by Marx,
unpublished)

New graphic icons of fibrinogen are presented below (Figure 3) as
pseudo “Newman projections” used by organic chemists to describe
isomeric sugars. The E domain of fibrinogen is represented by a filled
circle with 2 sets of A & B “knobs” emanating from the E-domain
surface. In fibrinogen, these “knobs” are covered by the terminating
epitopes which are released as fibrinopeptides (FPA and FPB),
following activation by thrombin. The D-domain is drawn as 2 circles,
a hydrophobic region (yellow) within the other, representing the 2
receptor “holes”, into which the “knobs” from the E-domain of other
monomers become inserted (D:E contacts).

The Haptide epitopes terminating the β and γ chains are functional
in terms of assembling fibrin monomers and complexing them with
fibrinogen. Synthetic peptide analogues were shown to strongly self-
aggregate and to penetrate the membranes of mesenchymal cells [14].
Thus, fibrinogen, which expresses 4 such epitopes, may attach directly
to the membranes of mesenchymal cells, without the intervention of
integrin receptors. This may underlie the cell attraction properties of
matrices fabricated from native or denatured fibrinogen [15,16] used
to harvest or culture mesenchymal cells.

Thrombin activation
The addition of thrombin to a solution of fibrinogen results in

sudden phase change determined to be clot time (CT) (Figure 4)
which has been monitored by turbidity, viscoelasticity, confocal and
electron microscopy (SEM, TEM).

From a mechanistic perspective, following the addition of thrombin
to fibrinogen, intermediate multimer assemblies of monomers
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(protofibrils) with degrees of polymerization (DP) ranging between 2
to over 40 fibrin(ogen) units have been observed by electron
microscopy. Such soluble protofibrils were shown to become
coagulated by divalent cations, such as Ca (II) and Zn (II) [12,13].

Figure 4: Conversion of clear fibrinogen solution into a turbid,
viscoelastic clot, by mixing with thrombin (A). (B) Clot time (CT)
is measured as the time to phase change (coagulation) after
thrombin addition. C and D are images from scanning electron
microscope (SEM) and transmission electron microscope (TEM)
examination of fibrin (Marx unpublished)

Kinetics
An unusual feature of thrombin (or reptilase a snake venom that

acts similar to thrombin) induced fibrin clot formation that it is
biphasic as seen below (Figure 5).

Figure 5: Typical experimental log-log CT-Fib curves at a fixed level
of enzyme (thrombin or reptilase at 1 U/ml), showing the biphasic
dependency of CT on fibrinogen concentration. [Fib] min=0.2 μM
was determined from the concentration below which coagulation
could not be detected (i.e. CT >600 sec) [17]

Attempts to describe such biphasic fibrin coagulation kinetics by
classical polymeric kinetics had been unsuccessful in predicting the
experimental clot times (CT) over a large range of initial fibrinogen
levels of clinical whole blood or plasma samples or with more
concentrated fibrin sealants (>50 mg/ml). Thus, there was general
agreement about the overall mechanism of gelation, but a credible
simulation of fibrin coagulation rates (clotting time, CT) eluded
exposition.

A simple reaction equation might be as in reaction 1:

In the interest of simulating the time to phase change (CT), one
would like to know the minimal concentration of fibrinogen
([Fib]min) required to be able to detect a fibrin clot.

Thus, the above reaction equation 1 generates straight (negative
slope) lines in terms of dependency of CT on fibrinogen concentration
([Fib]) and thus do not reflect the whole story implied by the biphasic
curve.

A more appropriate equation for the transformation of soluble
fibrinogen into the insoluble, thrombin-activated, fibrin clot (Equation
2) can be described [9] as follows:

Equation 2:

Fibrinogen Fibrin Protofibril Fibmin

Complex

Linear contact Lateral contactthr

FPA, FPB

Clot

Soluble aggregates

Monomer

The minimal concentration of fibrinogen required for thrombin-
induced clot formation (measured as clotting time) was experimentally
determined to be [Fib] min=0.2 ± 0.05 μM [17]. The Haptide epitopes
at the termini of the β and γ chains attract each other and help
assemble soluble fibrin-fibrinogen complexes. The Haptide (chain
termini) binding interactions help establish both linear and lateral D:D
contacts required for the formation of the minimal 3-D clot
characterized by “clotting time”. The flexibility of the hydrated
fibrinogen molecule ensures that once a “knob-hole” bond is
established, minor conformational contortions (flexing) permit
Haptide epitope contacts to more firmly dock one fibrin monomer to
another, resulting in the formation of linear protofibrils, followed by
lateral types of bonding, all leading to the formation of a fibrin clot
with characteristic banding and branching ultrastructure (Figure 4C).
A simulation of this type of reaction scheme along with inclusion of
the parameter [Fib] min generated a biphasic curve that mimicked the
experimental data [17].

In whole blood thrombin is generated on the surface of platelets.
The physicality of the clot is further affected by the presence of red
blood cells (RBC) which form rouleaux (like stacks of poker chips)
[18,19]. These add mechanical strength to the clot, much like gravel
and stones add to the mechanical strength of concrete (Figure 6).

In whole blood, platelets act as cellular instigators of the
coagulation. They bind fibrinogen via integrins (GP IIb IIIa) and their
lipidic surface provides the basis on which the various clotting factors
activate each other.
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Figure 6: Drawing of RBC rouleaux [18,19] entrapped in a fibrin
clot (drawing for Marx by Georgette Batlle circa)

The above Figure 1 encapsulates the standard view of blood
coagulation – based on the cascade interactions of pro-enzymes and
co-factors which generate thrombin, which in turn converts soluble
fibrinogen into an insoluble fibrin clot.

New coagulation paradigm
However a redundant system is available to perform a near-

equivalent transformation of fibrinogen, based on a redox reaction
with vitamin C, as follows:

It is generally overlooked that platelets store high levels of vitamin
C (ascorbate) in vesicles or granules (Table 1), which they release upon
activation (as by exposure to a foreign surface). One might ask: What
does this have to do with blood coagulation?

Scurvy, a nutritional disorder due to a deficiency of vitamin C, was
the scourge of sailors who did not eat uncooked fruits and vegetables
on long voyages (before 1800 when limes and citrus fruits were
discovered to arrest this problem , hence the term “limey” for English
sailors). The earliest symptoms of scurvy are bleeding of the gums and
hematomas. As most people in our society eat some fresh fruits
(juices) and vegetables regularly, scurvy or ascorbate deficiency is not
an endemic problem and its connection to blood coagulation has been
noted, but generally overlooked as a key pathway [20-22].

Figure 7: A Reaction of fibrinogen with Cu+2 and Vitamin C
(Ascorbate) in a series of test tubes, obeserved as protein
precipitation and turbidity (generating insoluble neofib). B. Peptide
release during typical reaction of fibrinogen with ascorbate. Peptide
FPA-epitope release was determined by immuno-HPLC, keto
carbonyl (C=O) detection by DNPH (Marx, unpublished). C.
Electrophoresis SDS-PAGE (reduced) of human fibrinogen and
albumin which had been exposed to such Fenton-type reaction
cycles with 100 uM ascorbate, up to 10X for albumin, which did not
precipitate but became degraded as indicated by the smearing of the
parent molecule into smaller fragments (Marx, unpublished)

Neofib
The Fenton reaction [23-29] is one wherein a multivalent metal

such as Cu or Fe reacts with an reductant such as vitamin C, to
generate H2O2 and reactive oxygen species, as described in the
extensive literature only slightly cited here.
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Ascorbate reaction with fibrinogen
A series of experiments was designed to explore the possibility that

a Fenton-type reactions could instigate the coagulation of fibrinogen,
as follows. Pure fibrinogen solution was mixed with a trace amount of
Ca+2 or Cu+2 or Zn+2 (10 uM) in a tris/saline buffer so as not to
chelate the metals. Addition of small quantities of vitamin C
(ascorbate) resulted in the immediate turbidity only with Cu+2
reflecting a Fenton-reaction resulting in protein phase change
(precipitation). Further examination of this phenomenon revealed that
the fibrinogen had been substantially modified by chain breaks,
peptide release and the formation of new carbonyl groups both in the
precipitate and in the soluble peptides in the supernatant that could be
identified by SDS-PAGE analysis and reactions with
dinitrophenylhydrazine (DNPH) (Figure 7) [30-34].

A consideration of these results suggests a scheme whereby
fibrinogen complexed with a trace amount of Cu+2 can be modified
by a Fenton reaction instigated by ascorbate, as shown in Figure 8. The
figure also indicates that other sources of H2O2 could also instigate a
Fenton reaction to generate OH. Radicals which rapidly modify
proteins as described above. For example it is known that fibrinogen is
quite sensitive to redox modifications as well as to irradiation, which
induce protein chain breaks, precipitation and new C=O formation
[15,16,30-50].
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soluble
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Figure 8: Schematic representation of Fenton-type reaction with
either Cu+2 or Fe +3, wherein vit C generates H2O2 (or derived
from irradiation) resulting in reactive oxygen species (i.e. OH
radicals), which react vigorously with the fibrinogen, converting it
to insoluble neofib and releasing peptides (Marx unpublished)

The Schema (Figure 8) shows how the vitamin C reduces the C(II)
to Cu(I), which can react itself becoming the Asc’ radical that converts
oxygen and water into H2O2, the basis for Cu(I) generating the OH’.
Alternately, H2O2 formed by irradiation could in turn generate OH’.
As far as fibrinogen is concerned, either mode could render it
insoluble.

Conclusion
From the point of view of hemostasis, any phase change (such as

gelation or precipitation) which occurs in blood can be termed
“coagulation”.

“Coagulation” is defined here as a phase change, wherein free-
flowing soluble protein (such as fibrinogen) can become induced to
“gel or precipitate”.

Thus, it is important to take into consideration that fibrinogen can
be induced to precipitate or clot by multiple modes. The
characterization of free radical reactions with fibrinogen, and their
role in physiologic blood coagulation, is far from complete. The
Fenton reaction is a well-established reaction with thousands of
references thereto, only a few of which are cited here. Interestingly,
this reaction also in used to instigate in the coagulation of sewage [51].
The realization that ascorbate accumulation by platelets which permits
the generation of free radicals after platelet activation [2-7] provides a
biologic context for considering the reaction of vitamin C with
fibrinogen as relevant to blood coagulation, as summarized below.

Trace components in blood (51-56)

Ascorbate Copper

Blood plasma 0.085 mM to 1.6 uM

Platelets 2-490 mM not reported*

Table 1: Summarizes the distribution of ascorbate and copper in blood
plasma and platelets.

Figure 9: New blood coagulation schema via multiple mechanisms:
A: Classic clotting cascades (extrinsic/intrinsic) which generate
thrombin which converts soluble fibrinogen into an insoluble fibrin
clot. B: Fenton reaction with vitamin C (Ascorbate) and Cu+2,
which generates reactive oxygen species, such as OH. Radicals,
transforming the fibrinogen into insoluble neofib (unpublished
TEM images, Marx circa 1991). ¥ irradiation of a Cu+2-fibrinogen
solution, under conditions that form H2O2 could result in reactive
oxygen species, transforming soluble fibrinogen into insoluble
precipitate (neofib) (Marx, unpublished)

The values indicate that extremely high levels of ascorbate are
accumulated in platelets, which are released upon activation to further
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coagulation. *While analytic data is not available for platelet copper
stores (due to inappropriate fixation of samples with gluteraldehyde)
[55], results showing high Ca and phosphate levels suggest that Cu is
also stored in the dense granules, secreted upon activation.

A new blood clotting schema (Figure 9) is presented, that
incorporates both the classic cascade pathways (via thrombin) as well
as an alternate (via free radical) pathways by which soluble fibrinogen
can be converted into an insoluble matrix or clot.

Lessons to be learned
To conclude, blood coagulation (i.e. the conversion of soluble

fibrinogen into an insoluble protein,) is not the sole purvey of
thrombin acting on fibrinogen, but can also be instigated by reactive
oxygen species. For an organism dependent of the free flow of blood
through blood vessels, either pathway can result in a blood clot
(embolism) with potential life-threatening consequences.

The consequences of the expanded mechanism of coagulation are
suggested as follows:

1. For patients subject to run-away coagulopathies, it may be that
the standard treatments with heparin or Coumadin (warfarin) may not
be effective. Rather, one could consider metal-chelate therapy as well
as dietary reduction of vitamin C (no fruit juices).

2. Personel exposed to high oxygen concentrations (deep sea divers
or submariners) could also consider preventive metal chelate
treatments before exposure. This would minimize susceptibility to
Fenton-induced coagulation resulting in irreversible "bends-like
“symptoms (no fruit juices).

3. Personel exposed to high radiation environments (airplane pilots,
astronauts) could also consider metal chelate pre-treatment prior to
exposure (no fruit juices).
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