

Adherence Capability to Different Cultured Cell Lines of *Streptococcus sp.* Strains Isolated from Pozol a Prehispanic Mexican Fermented Beverage

Ramírez-Chavarín NL¹, Salazar-Jiménez P^{1,2}, Flores-Campusano L¹, Wacher-Rodarte C³, Díaz-Ruiz G³, Hernández-Chiñas U^{1,2}, Xicohtencatl-Cortes J⁴ and Eslava Campos Carlos A^{1,2*}

¹Department of Public Health, Faculty of Medicine, National Autonomous University of Mexico, Ciudad Universitaria Coyoacán, México

²Bacterial Pathogenicity Laboratory, Hematology - Oncology and Research Unit Hospital Infantil de Mexico Federico Gomez, Mexico, UNAM Faculty of Medicine, Mexico ³Department of Food and Biotechnology, Faculty of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Coyoacán, México

⁴Intestinal Bacteriology Laboratory, Hematology – Oncology and Research Unit Hospital Infantil de Mexico Federico Gomez Research, Mexico City, Mexico

*Corresponding author: Eslava Campos Carlos A, Faculty of Medicine, National Autonomous University of Mexico, Hospital Infantil de Mexico Federico Gomez, Mexico, Tel: 52289917-4501/4502; E-mail: eslava@unam.mx; carlos_01eslava@yahoo.com.mx

Rec date: Oct 29, 2014; Acc date: Dec 16, 2014; Pub date: Dec 23, 2014

Copyright: © 2014 Ramírez-Chavarín NL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Pozol is an acid fermented pre-hispanic beverage, consumed as part of the diet of ethnic groups in Southern and Southeastern Mexico. *Streptococcus sp.* a major component of pozol microbiota, was analyzed to assess their in vitro adherence ability to HEp-2, HeLa, HT-29 and Caco-2 cell lines. Adhesion tests were performed in 35 strains, and four of them with adherence to the different cell lines were analyzed using a Scanning Electron Microscope (SEM). Thirty-one (89%) strains could adherent to at least one of the cell lines, adherence on Caco-2 cells was the most frequently observed (63%). Diffuse and aggregative adherence phenotypes similar patterns to those described for *Escherichia coli*, were observed in the trial. The SEM analysis showed in one of the strains, an amorphous structure in which a large number of bacteria were included. The SEM images of other three strains, showed the presence of bacterial projections that connect them with each other and with the cells. The results showed that *Streptococcus sp.* strains isolated from pozol, adhere to different epithelial cell lines likely through structures which may correspond to exopolysaccharides and/or surface adhesins in bacteria. The adherence ability of these bacteria to different cultured cells could be associated with different epithelial cell colonization and the possible use of these lactic acid bacteria as probiotics if the safe use is confirmed.

Keywords: Streptococcus sp; Cell lines; SEM

Introduction

"Pozol" is a pre-Hispanic, fermented drink prepared by cooking corn grain with 1% lime solution (nixtamalization). The corn grains are washed and ground to obtain a dough, which is made into balls, wrapped in banana leaves and left to ferment at room temperature during two to seven days. The fermented dough is dissolved in water and consumed as food or a refreshing drink, as much by the indigenous population as by the mixed-race population in the Southeast of Mexico (Yucatán, Quintana Roo, Campeche, Tabasco, Chiapas and Oaxaca) and Guatemala [1]. Different microorganisms including fungi, yeasts and Lactic Acid Bacteria (LAB), have been isolated from different pozol samples [2-4]. LAB are comprised of Gram-positive bacteria whose main characteristic is lactic acid production during sugar fermentation [5]. Studies relating to the characterization of microorganism components of the "pozol" biota, have shown that species of the genus Streptococcus constitute between 25 and 75% of the above-mentioned biota [2,6,7].

Analysis of the 16S subunit from the ribosomal DNA (rDNA) of Streptococcus strains isolated from "pozol" identified the existence of four different species of which *S. infantarius* was the predominant group [8]. LAB adapt very well to conditions in the gastrointestinal tract, in particular those microorganisms defined as probiotics that are ingested in adequate quantities and promote a positive effect on health [9,10]. One important characteristic that allows colonization of host epithelial cells is the adherence ability of microorganisms. However, the characteristics, origin of the structures and events that occur during interaction between bacteria and cells when LAB adherence is taking place are not fully defined [11-13].

Related to the factors that contribute to Gram-positive bacterial adherence is limited. Studies of some oral bacteria, such as *Actinomyces naeslundii* [14], *S. parasanguinis* [15] and *S. salivarius* [16-18] suggest that fimbriae may participate in the adherence process of such microorganisms.

In this study the in vitro adherence to different cultured cells lines of *Streptococcus sp.* strains isolated from "pozol", was evaluated, and the cell adherence patterns of the bacteria, were also analyzed by Scanning Electron Microscope (SEM).

Methods

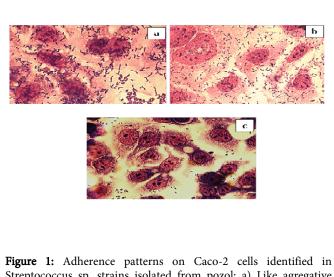
Thirty-five strains of *Streptococcus sp.* (not completely characterized) isolated from different "pozol" samples [8], were they evaluated in vitro to determine their cell adherence ability. In the assay *Escherichia coli* O42 (aggregative adherence), E. coli E2348/69 (localized adherence), E. coli 55784 (diffuse adherence), and *E. coli* HB101 (non-adherent) were used as control strains [19,20].

Adherence tests

The adherence assay described by Cravioto et al. [21] with some modifications was used. Briefly, HEp-2 (pharyngeal carcinoma), HeLa

(cervical carcinoma), HT-29 (human colon adenocarcinoma) and Caco-2 (human colon carcinoma) cultured cells, were utilized in the study. Briefly, cells were grown on 72 cm² plastic bottles in MEM (Minimum Essential Medium) (GIBCO, New York, USA) media for HEp-2 and HeLa cells; likewise, DMEM (Dulbecco's Modified Eagle Medium) (Sigma, St. Louis, USA) to HT-29 and Caco-2 cells. In 24well plates (Corning, New York, USA) containing 10 mm plastic lentils (Thermo Scientific, New York, USA) was added 1 ml of a cellular suspension (2.5 X 105 cells ml⁻¹) by well and then incubated at 37°C for 24 hours in 5% CO₂ and 85% humidity atmosphere. At the same time Streptococcus sp. strains were grown in MRS broth (Difco, Detroit, Mch., USA) with 1% D-Mannose (final concentration) and incubated at $35^{\circ}C \pm 2^{\circ}C$ for 18 hours. The wells containing cells where washed and then added 900µL of MEM or DMEM media without serum or antibiotics together with 1% D-Mannose. The bacterial cultures were centrifuged (2000 g) for 15 min and the pellet suspended in 1 ml of MEM or DMEM media without serum or antibiotics and 1% D-Mannose. The bacterial suspension (1.0 X 108 cfu ml⁻¹), in a 100 μ L volume was added to each plate well and incubated at 37°C for 3 hours in a 5% CO₂ atmosphere. Then the liquid was eliminated from each well and washed three times (PBS 1X), fixed with methanol (1 ml) for 1 min and stained with 1 ml of Giemsa (Química Meyer, México, D.F) during 10 min. Afterwards, Giemsa stain was removed and the wells washed three times with deionized water. A treatment with acetone, acetone-xilol 50/50, xilol was used to dehydrate the cells, and then each plastic lentil with the cells was resin fixed (Fisher Chemicals New Jersey, USA) on a glass slide. The slides were they observed under a light microscope (100X). An adherence test was it considered positive if at least 25% of 400 cells showed 10 or more adhered bacteria. The adherence tests were they carried out in two technical duplicates and by triplicate.

Scanning Electron Microscopy (SEM)


An ultrastructural analysis of the adherence assays was carried out using SEM according to previously reported methodology [22]. The preparations were obtained from an adherence assay in Caco-2 cells (as previously stated), of Streptococcus sp. strains 25245, A12203, 15124, and 25137 (adherent to the four cell lines used); while, the strain 25109 was used as a non-adherent control. The preparations were treated with 5% glutaraldehyde (Sigma, St. Louis, USA) for 48 hours and washed with a phosphate buffer solution (0.1M, pH7.3) continued until the glutaraldehyde remaining residues were removed. Later, with diluted osmium tetraoxide (2%) in phosphate buffer (0.1M, pH 7.3) the samples were they fixed. In addition, the preparations were dehydrated using from 30% to absolute alcohol with 10% increments. The samples were dehydrated to critical point, placing them on amyl acetate (10°C) and adding liquid CO2 for two times. Finally, the samples were placed on supports fixing them with colloidal silver before putting them in a gold bath. The preparations were observed under SEM (JEOL JSM-5900LV, North Billerica, MA) with an acceleration voltage of 13KV and Secondary Electron Imaging (SEI).

Results

Adherence to cultured cells

Of the 35 Streptococcus sp. strains analyzed, 89% (31/39) showed adherence and of these 13% (4/31) adhered to all four-cell lines, 19% (6/31) to three, 13% (4/31) to two, and 55% (17/31) only to one cell line (Table 1). Analysis of each of the cell lines showed that 13 (37%) strains adhered to HEp-2 cells, 10 (29%) to HeLa cells, 14 (40%) to HT-29 cells, and 22 (63%) to Caco-2 cells (Table 2). Qualitative analysis by light Microscopy at the different preparations showed phenotypes like to diffuse (LDA), and aggregative (LAA) adherences (Table 1); which, were similar to those described to Escherichia coli [19]. In HEp-2 cells, in nine of the isolates the identified patterns were similar to diffuse adherence (LDA) and aggregative adherence (LAA) in four strains. For HeLa cells, seven strains showed LDA and three LAA patterns. In Caco-2 cells, 12 isolates showed LDA patterns (Figure 1a) and 10 LAA patterns (Figure 1b). In the HT-29 cells (Figure 1c), the 15414 strain displayed an adherence pattern that is similar to localized adherence (LLA) reported previously in E. coli diarrheogenic strains [19].

Page 2 of 6

Figure 1: Adherence patterns on Caco-2 cells identified in Streptococcus sp. strains isolated from pozol; a) Like agregative adherence pattern with chain formation of 25245 strain; b) Like diffuse adherence of A12203 strain; c) Like localized adherence on HT29 cells of 15414 strain. Preparations were Giemsa stained and observed under light microscopy 100X.

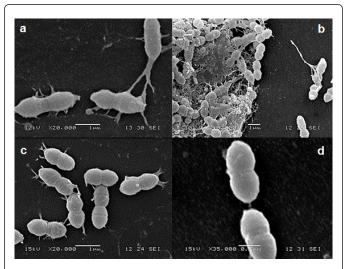
Cell Cultured Lines					
	Hep-2	HeLa-3	HT-29	Caco-2	
Strains	Adherence Pattern				
15133	-	LDA	LDA	LAA	

Page 3 of 6

15430	-	-	-	LAA
15220	-	LDA	-	-
25245	LDA	LDA	LDA	LAA
15124	LAA	LAA	LAA	LAA
25113	-	-	-	LAA
25148	LDA	LDA	-	LAA
25139	-	-	LDA	LDA
25233	LDA	-	LDA	LAA
25421	LDA	-	LDA	LDA
25137	LAA	LAA	LDA	LAA
15125	-	-	-	LAA
15414	-	LDA	LLA	LDA
25124	-	LDA	-	LDA
A56203	LDA	-	-	-
A57103	LDA	-	LAA	LDA
A57206	-	-	LAA	LDA
A45208	LAA	-	-	-
A37103	-	-	-	LDA
A37202	-	-	LDA	-
A36111	LDA	-	-	-
A12203	LAA	LAA	LAA	LDA
A56101	-	-	LAA	-
A56201	-	-	-	LAA
15319	-	LDA	-	-
A46112	-	-	LDA	-
A46113	-	-	-	LAA
A47212	-	-	-	LDA
A56208	LDA	-	-	-
A45201	LDA	-	-	LAA
A45226	-	-	-	LDA

Table 1: Adherence on different cultured cells of Streptococcus sp. strains isolated from pozol samples, LDA=Like Diffuse Adherence, LAA=Like

 Aggregative Adherence, LLA=Like Localized Adherence, - =Non Adherent.


Adherence Phenotypes (%)					
Cell Culture	LDA	LAA	LLA	Total (%)	
Hep-2	9	4	0	13 (37)	
HeLa	7	3	0	10 (29)	

HT-29	8	5	1	14 (40)
Caco-2	10	12	0	22 (63)
Non-adherent	-	-	-	4 (11)

Table 2: Adherence phenotypes of Streptococcus sp. on different cultured cell lines. LDA=Like Diffuse Adherence, LAA=Like Aggregative Adherence, LLA=Like Localized Adherence.

Scanning Electron Microscopy (SEM)

strains 25137, 25245, A12203, and 15124 adherent to the four cell lines (Table 1), showed elongated fiber pilus-like interconnecting to bacteria; likewise, some cells of strain 25137 (LAA) forming microcolonies appeared deeply embedded in the brush border to mucosal cells (Figure 2b). In addition, elongated fiber that connect bacteria to the cell (Figure 2a and 2c, respectively), were observed in strains A12203 (LDA) and 25245 (LAA). With regard to strain 15124 (LAA), extended structures were observed that connect bacteria to the rand other smaller ones that link these bacteria to the cell. In the non-adherent strain 25109, no structures or prolongations it were identified (Figure 2d).

Figure 2: Scanning Electron Microscopy of Streptococcus sp. strains isolated from pozol. Adherence assays to Caco cells of: a) A12203; b) 25137; c) 25245 positive adherent strains and d) 25109 non-adherent strain.

Discussion

Adherence to intestinal mucosa is a prerequisite of probiotic microorganisms to colonize the epithelium and compete with enteropathogenic bacteria found in such spaces [23,24]. Adherence of lactic bacteria in animal models is complicated and on occasion, difficult to evaluate. Bearing this in mind, some different in vitro systems have been adopted [25-27] and of these cultured intestinal epithelial cells are the more common [24,28-30]. In the current study, 89% of the *Streptococcus sp.* strains studied were adherent to different cell lines but with a higher frequency on intestinal HT-29 (40%) and Caco-2 (63%) cell lines. These results are similar to those reported by Sung-Mee and Dung-Soon [31] and Lee et al. [32], when they

examined the adherence properties of LAB to Caco-2 and HT-29 cells and *Lactobacillus* strains to HT-29 cells. They observed that 28 (49%) of their samples adhered with a superior adhesion ability to that observed in *L. rhamnosus GG* [33]. These results and the observed in this current study, show that in general, LAB showed structures that contribute to the adherence of bacteria to intestinal cells.

Results of adherence test to HEp-2 (37%) and HeLa (29%) cells, demonstrate that *Streptococcus sp.* strains isolated from pozol, are able to colonize both the intestinal epithelium and others as the pharyngeal and cervical epithelia. The fact that the analyzed bacteria showed adherence in the presence of D-Manosse indicates that the elements related to adherence are resistant to manosse, probably in a similar way to that described for Gram-negative bacteria [19,21,34]. The adherence tests also revealed the presence of diffuse, aggregative and localized phenotypes, similar to those described for *E. coli* [19,34,35]. These same adherence phenotypes, have been identified in lactic acid bacteria strains isolated from cooked meat products [36], and in strains of *Lactobacillus paracasei* isolated from a fermented drink (honey water) obtained from an agave plant (Hernández-Ramírez – personal communication).

The strains described as 15124, 25139, 25421 and 25142 displayed adherence of the LDA (Like Difuse) and LAA (Like Aggregative) phenotypes in the four epithelial cell lines; however, some other (15133, 25245, 25148, 25233, 25137, 15414, A57103, A57206, A12203, and A45201) strains, showed different adherence patterns. Regarding adhesion of bacteria to intestinal, epithelial cells, passive electrostatic, and hydrophobic type forces, as well as covalent types of interactions induced by specific adhesins and their respective receptors may are playing a role [37]. In relation to adherence of Lactobacillus as probiotic, has not yet been well defined the adherence factors and therefore has been suggested that proteins, glycoproteins, teichoic or lipoteichoic acids mediate the interaction bacteria-cells [38-40]. With this in mind, it has been proposed that some components of the cell wall induce different types of bacteria-cell interactions, explaining the presence of different adherence phenotypes [41-43]. Lévesque, et al. [17] reported in a strain of *S. salivarius*, the presence of genes that code for a protein related to bacterial adherence. On the other hand, Sara and Uwe [44], Logan, et al. [45], Ossowski, et al. [33] and Sanchez, et al. [46] in different BAL strains, also have described the participation of bacteria surface proteins in promoting adhesion to intestinal tissues.

SEM conducted as part of this current study, revealed that strain 25137 forms a matrix that consists probably of exopolysaccharides with bacteria aggregates (Figure 2b). Maldonado, et al. [47] reported that LAB strains secrete polysaccharides, involved with the adhesion to intestinal mucosa, the formation of bacterial agglomerates, and prolongations that contribute to the cells adhesion. However, is possible the participation of different structures in the bacteria cell adherence, this because the same procedure with strains 25245 (LAA), A12203 (LDA) and 15124 (LAA), showed the presence of filament-

Page 5 of 6

type structures that connect bacteria to each other and to epithelial cells (Figure 2a and 2c). The results of this study indicate that even between bacteria of the same genus and species, adherence could be related to different structures and events making the characterization of these adhesins important to determine.

The biochemical characterization of *Streptococcus sp.* of the strains of our study show that them are members of *Streptococcus bovis/ Streptococcus equinus* complex (SBSEC) species, however, molecular studies are necessaries to define the species. Overall SBSEC group members are considered as putative pathogens, however, PCR and Southern blotting analyses of *S. macedonicus* ACA-DC 198, indicated the absence of several *Streptococcus pyogenes* pathogenicity genes [48]. PCR test conducted in our strains to identify *emm* (M protein), *SpeA/SpeC* (erythrogenic toxin), *sic* (complement inhibitory protein) and *of* (opacity factor), showed negative results in all strains.

Although it requires more studies, one could propose that our strains can be considered as potential probiotic bacteria.

Acknowledgement

The authors would like to thank the General Office of Academic Personnel Affairs – UNAM (DGAPA) and the project "Uso Potencial como Probióticos de Bacterias Lácticas Aisladas del Pozol Bebida Fermentada de Uso Tradicional en México" (PAPIIT-IN219611-3) for their support.

In addition, N.L. Ramírez-Chavarin and C.A. Eslava-Campos are grateful for the support of the Program for Post-Doctoral Grants at the Faculty of Medicine, UNAM-DGAPA and UNAM-CONACYT.

References

- 1. Ulloa M (1974) Mycofloral succession in pozol from Tabasco, Mexico. Bol Soc Mex Micol 8: 17-48.
- Wacher C, Cañas A, Cook PE, Barzana E, Owens JD (1993) Sources of microorganisms in pozol, a traditional Mexican fermented maize dough. World J Microbiol Biotechnol 9: 269-274.
- Ampe F, Omar NB, Moizan C, Wacher C, Guyot JP (1999) Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, fermented maize dough, demonstrates the need for cultivation-indepent methods to investigate traditional fermentations. Appl Environ Microbiol 65: 5464-5473.
- 4. Ben Omar N, Ampe F (2000) Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl Environ Microbiol 66: 3664-3673.
- Axelsson L (2004) Lactic acid bacteria: Classification and Physiology. In: Microbiological and functional aspects, Salminen S, von Wright A, Ouwehand A (Ed.) (3rd edn), Marcel Dekker Inc. New York, USA, 1-66.
- Axelsson L (1998) Lactic acid Bacteria: Classification and Physiology. In: Microbiology and Functional aspects Salmines S, von Wright A (Ed.) (2nd edn), Marcel Dekker Inc. New York, USA, 1-72.
- 7. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28: 281-370.
- Díaz RG, Guyot JP, Ruiz TF, Morlon GJ, Wacher RC (2003) Microbial and physiological characterization of weakly amylolytic but fast-growing lactic acid bacteria: a functional role in supporting microbial diversity in pozol, a Mexican fermented maize beverage. Appl Environ Microbiol 69: 4367-4374.
- 9. Nitisinprasert S, Nilphai V, Bunyun P, Sukyai P, Doi K, et al. (2000) Screening and identification of effective thermotolerant lactic acid bacteria producing antimicrobial activity against Escherichia coli and Salmonella sp. resistant to antibiotics. Nat Sci 34: 387-400.

- 10. Schrezenmeir J, de Vrese M (2001) Probiotics, prebiotics, and synbiotics--approaching a definition. Am J Clin Nutr 73: 361S-364S.
- 11. Fontaine JF, Aissi EA, Bouquelet SJ (1994) In vitro binding of Bifidobacterium bifidum DSM 20082 to mucosal glycoproteins and hemagglutinating activity. Curr Microbiol 28: 325-330.
- Greene JD, Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl Environ Microbiol 60: 4487-4494.
- Pérez PF, Minnaard Y, Disalvo EA, De Antoni GL (1998) Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64: 21-26.
- Yeung MK (2000) Actinomyces: surface macromolecules and bacteriahost interactions. In: Gram-Positive Pathogens, Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (Ed.), American Society for Microbiology, Washington DC, 583-593.
- 15. Wu H, Fives-Taylor PM (2001) Molecular strategies for fimbrial expression and assembly. Crit Rev Oral Biol Med 12: 101-115.
- 16. Handley PS, Carter PL, Fielding J (1984) Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface. J Bacteriol 157: 64-72.
- Lévesque C, Vadeboncoeur C, Frenette M (2004) The csp operon of Streptococcus salivarius encodes two predicted cell-surface proteins, one of which, CspB, is associated with the fimbriae. Microbiology 150: 189-198.
- Lévesque C, Lamothe J, Frenette M (2003) Coaggregation of Streptococcus salivarius with periodontopathogens: evidence for involvement of fimbriae in the interaction with Prevotella intermedia. Oral Microbiol Immunol 18: 333-337.
- Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11: 142-201.
- 20. Sainz T, Pérez J, Villaseca J, Hernández U, Eslava C, et al. (2005) Survival to different acid challenges and outer membrane protein profiles of pathogenic Escherichia coli strains isolated from pozol, a Mexican typical maize fermented food. Int J Food Microbiol 105: 357-367.
- Cravioto A, Gross RJ, Scotland SM, Rowe B (1979) An adhesive factor found in strains of Escherichia coli belonging to the traditional infantile enteropathogenic serotypes. Curr Microbiol 3: 95-99.
- Julavittayanukul O, Benjakul S, Visessanguan W (2006) Effect of phosphate compounds on gel-forming ability of surimi from bigeye snapper (Priacanthus tayenus). Food Hydrocol 20: 1153-1163.
- Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82: 279-289.
- 24. Pennacchia C, Vaughan EE, Villani F (2006) Potential probiotic Lactobacillus strains from fermented sausages: Further investigations on their probiotic properties. Meat Sci 73: 90-101.
- Stickler DJ, Lear JC, Morris NS, Macleod SM, Downer A, et al. (2006) Observations on the adherence of Proteus mirabilis onto polymer surfaces. J Appl Microbiol 100: 1028-1033.
- Ma YL, Guo T, Xu ZR, You P, Ma JF (2006) Effect of Lactobacillus isolates on the adhesion of pathogens to chicken intestinal mucus in vitro. Lett Appl Microbiol 42: 369-374.
- 27. Vesterlund S, Karp M, Salminen S, Ouwehand AC (2006) Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 152: 1819-1826.
- Forestier C, De Champs C, Vatoux C, Joly B (2001) Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol 152: 167-173.
- 29. Benga L, Friedl P, Valentin-Weigand P (2005) Adherence of Streptococcus suis to porcine endothelial cells. J Vet Med B Infect Dis Vet Public Health 52: 392-395.
- Delgado S, O'Sullivan E, Fitzgerald G, Mayo B (2008) In vitro evaluation of the probiotic properties of human intestinal Bifidobacterium species and selection of new probiotic candidates. J Appl Microbiol 104: 1119-1127.

Page 6 of 6

- Lim SM, Im DS (2009) Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J Microbiol Biotechnol 19: 178-186.
- 32. Lee J, Yun HS, Cho KW, Oh S, Kim SH, et al. (2011) Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: immune modulation and longevity. Int J Food Microbiol 148: 80-86.
- 33. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, et al. (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76: 2049-2057.
- 34. Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8: 26-38.
- 35. Huang DB, Mohanty A, DuPont HL, Okhuysen PC, Chiang T (2006) A review of an emerging enteric pathogen: enteroaggregative Escherichia coli. J Med Microbiol 55: 1303-1311.
- Ramírez NL, Wacher C, Eslava CA, Pérez ML (2013) Probiotic potential of thermotolerant lactic acid bacteria strain isolated from cook meat products. Int Food Res J 20: 991-1000.
- Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63: 174-229.
- Goh YJ, Klaenhammer TR (2010) Functional roles of aggregationpromoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 76: 5005-5012.
- 39. Kapczynski DR, Meinersmann RJ, Lee MD (2000) Adherence of Lactobacillus to intestinal 407 cells in culture correlates with fibronectin binding. Curr Microbiol 41: 136-141.

- 40. Ståhl S, Uhlén M (1997) Bacterial surface display: trends and progress. Trends Biotechnol 15: 185-192.
- Masuda K, Kawata T (1983) Distribution and chemical characterization of regular arrays in the cell walls of strains of the genus Lactobacillus. FEMS Microbiol Lett 20: 145-150.
- 42. Leenhouts K, Buist G, Kok J (1999) Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek 76: 367-376.
- 43. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, et al. (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl Environ Microbiol 65: 1071-1077.
- 44. Sára M, Sleytr UB (2000) S-Layer proteins. J Bacteriol 182: 859-868.
- Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71: 8344-8351.
- 46. Sánchez B, Urdaci MC, Margolles A (2010) Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. Microbiology 156: 3232-3242.
- Maldonado NC, de Ruiz CS, Otero MC, Sesma F, Nader-Macías ME (2012) Lactic acid bacteria isolated from young calves--characterization and potential as probiotics. Res Vet Sci 92: 342-349.
- 48. Papadimitriou K, Anastasiou R, Mavrogonatou E, Blom J, Papandreou NC, et al. (2014) Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex. BMC Genomics 15: 272.