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Introduction
The skin is the largest organ in the body. Its primary function is 

to serve as a barrier protecting the internal organs from physical and 
chemical attack, invasion of pathogens and excessive water loss. As the 
primary immunological barrier to the external environment, the skin 
is rich in immune cells, forming a complex network called the “skin 
immune system” [1] comprising both innate and adaptive immune 
cells [2]. The skin is colonized by a diverse milieu of microorganisms 
[3,4]; reciprocal interactions between the skin microbiota and immune 
system play a role in determining the nature of immune responses 
generated in the skin [5-8]. This review highlights recent insights 
into cells of the skin immune system and interplay between the skin 
microbiome, the immune system, and cutaneous inflammatory disease. 

The Innate Immune System
The skin has constitutive innate immune mechanisms that help to 

protect against pathogens. The uppermost layer of the epidermis, the 
corneal layer, is a unique layer not present in other epithelia exposed to 
the external environment (such as the gut and lung epithelia) [2,9]. The 
corneal layer is comprised of dead keratinocytes that provide a physical 
barrier to the skin [2,9]. Keratinocytes produce antimicrobial peptides 
(AMPs) in response to infection, including human β-defensins, 
cathelicidins and RNases [10,11], which can be found in the corneal 
layer. 

Beneath the corneal layer of the epidermis are the granular, 
spinous and basal layers. These layers consist of keratinocytes 
expressing pattern recognition receptors (PRRs) which can detect 
invading microorganisms via pathogen-associated molecular patterns 
(PAMPs) expressed on the invading microorganism cell surface; this 
interaction initiates early immune responses in the skin [12]. Dendritic 
cells (DC) of the epidermis, known as Langerhans’ cells (LC) also 
express PRRs to initiate early immune responses. The underlying 
dermis is anatomically more complicated, with greater cell diversity. 
Immune cells present in the dermis also express PRRs for detection of 
invading pathogens and include DC, macrophages, mast cells, B and 
T-cells, plasma cells, natural killer (NK) cells, fibroblasts and innate
lymphocytes γδ T-cells and invariant natural killer T-cells (iNKT-
cells) [2,9]. Although a crucial function of these cells is detection of
invading microorganisms via PRRs, another important function is to
maintain the balance between the host and the skin microbiome. It has

been hypothesised that, perhaps like commensal microbes found in 
the gastro-intestinal (GI) tract, these skin microbes have a beneficial 
role in preventing pathogenic microbes from occupying these unique 
microenvironments [8]. 

Interaction of innate immune cells or their products influences 
their function. However for the purpose of this review, for this section 
we will focus on the functional roles of innate immune cells and their 
interactions with DC specifically. Although DC have specific innate 
properties, they are unique in their potency at generating T-cell 
mediated immune responses and can therefore be thought of as a link 
between the innate and the adaptive immune systems. 

Dendritic cells

Dendritic cells (DC) are professional antigen-presenting cells, and 
the main gate-keepers of the immune system. However, in this section 
we will focus on the innate properties of DC only (see section 3 for 
adaptive properties of skin DC). DC are mononuclear phagocytes, and 
act as immune sentinels, patrolling the peripheral tissues for antigens. 
DC recognize antigen via a diverse array of PRRs that can sense PAMPs 
on invading pathogens [13,14]. These PRRs recognize a wide range of 
PAMPs which leads to DC activation [14-16]. 

In addition to recognizing a wide range of microbial products, 
innate DC receptors also recognize so-called endogenous ligands from 
host cellular debris, in particular from injured or dying tissue, termed 
DAMPs (damage-associated molecular patterns) [17-19]. Therefore, 
as well as recognizing invading pathogens, DC can also recognize 
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Abstract
The skin immune system comprises a complex network of cells, functioning both in immunity against invading 

pathogens but also tolerogenic mechanisms to ensure maintenance of immune homeostasis. The nature of antigens 
present and interplay between the cutaneous innate and adaptive immune systems determine the type of immune 
response generated. Dendritic cells are the key players in bridging innate and adaptive immune responses due to 
their inherent plasticity, direct roles in both type of immune responses, and cross-talk with other immune cells. This 
review dissects the functional roles of components of both innate and adaptive immune systems in the skin, with a 
special focus on cutaneous dendritic cells as the only cells capable of inducing primary immune responses, their ability 
to generate either immunogenic or tolerogenic immune responses, and ability to direct effector cells back to the skin 
via imprinting of skin-homing properties on T-cells. Finally the reciprocal interactions between the skin microbiota and 
immune system and their role in host defence and disease have been discussed. 
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a wide range of self-antigens that are released during tissue damage, 
inflammation, or necrosis, leading to inappropriate activation resulting 
in sterile inflammation or autoimmune responses [17-20]. 

DC recognise whether to initiate an immunogenic immune 
response (to pathogenic antigens) or tolerogenic immune response 
(to self antigen or commensal microbiota) via antigen recognition 
involving PAMP recognitions by PRRs and presence of cytokines or 
other inflammatory/non-inflammatory mediators. There are three 
subsets of human skin DC in the steady state; Langerhans’ cells (LC), 
dermal DC (dDC) and plasmacytoid DC (pDC) [21].

Langerhans’ cells: LC are interspersed throughout the epidermis, 
where they mediate immune surveillance of substances in the external 
environment that come into contact with the skin. LC are a unique 
subset of DC, originally identified by their characteristic organelle, the 
Birbeck granule. The function of the Birbeck granule is unclear, but 
is likely to include receptor-mediated endocytosis and transport of 
cellular materials into the extracellular space [22]. LC are now defined 
by their location in the epidermis, combined with expression of CD207 
(langerin) and CD1a [23]. Langerin is a membrane-bound C-type lectin 
receptor (CLR) [24] that recognises mannosylated ligands (PAMPs) on 
the surface of a wide range of pathogens, including viruses, bacteria, 
fungi and protozoa [25]. Upon antigen encounter, receptor-mediated 
endocytosis by the LC occurs, followed by trafficking of CD1a and 
langerin to the Birbeck granule where they play a role in antigen 
processing [26]. 

 Due to their location in the epidermis, LC are in intimate 
contact with keratinocytes, and are the first DC to come into contact 
with microbial antigens in the skin. Studies of skin biopsies from 
atopic dermatitis (AD) patients have demonstrated the presence 
of DC expressing the high affinity surface receptor for IgE (FcεRI). 
Engagement of FcεRI on LC promotes the release of chemokines CCL2, 
CCL17 and CCL22, attracting cells expressing chemokine receptors, 
and perhaps enhancing allergen presentation to T-cells and supporting 
Th2 differentiation [27]. However, LC have also been implicated in 
immune tolerance in the skin. This is partly due to the expression of 
surface molecules involved in inhibition of T-cell responses such as 
inducible co-stimulatory molecule ligand ICOS-L or the production of 
immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) [28]. 
There is still significant debate regarding the functional role of LC in 
humans which will be discussed in further detail in section 3.2.

Dermal dendritic cells (dDC): myeloid: Dermal DC (dDC) are 
considered analogous to interstitial DC found in connective tissue and 
the stroma of other organs [29-31]. Various DC subsets reside in the 
dermis in humans; CD1c (BDCA-1) is often used to describe dermis 
based myeloid DC (mDC) [29,30,32]. dDC can exist in an immature 
state with cytoplasmic ruffles and express various PRRs [33]. More 
mature dDC (post-antigen stimulation) have cytoplasmic veils and 
express higher levels of co-stimulatory molecules such as CD83, and 
lower levels of PRRs [34] (limiting their involvement in innate immune 
responses). 

Mature dermal mDC rapidly migrate to the skin-draining lymph 
nodes, to prime T-cell responses [35,36], but activated dDC also 
participate in the innate immune response by secretion of cytokines 
and chemokines [37]. Chemokine and cytokine production can be 
beneficial when responding towards invading pathogens, but can also 
underlie persistent inflammation in chronic inflammatory disease. 
Tumour necrosis factor (TNF) and inducible nitric oxide synthase 
(iNOS) are produced by a subset of dDC called TIP-DC (TNF and 

iNOS-producing DC) [38,39], and exhibit pro-inflammatory effects in 
psoriasis [39]. 

Dermal dendritic cells: plasmacytoid: Plasmacytoid DC (pDC) 
are rare in human skin, but are mainly found in the dermis. pDC 
express CD123 and BDCA-2, and are CD11c- [40]. They are mainly 
characterised by their ability to produce large amounts of type 1 IFN 
during viral infections, 10,000x more than any other cell type [40,41]. 
Early activation of pDC triggers an innate immune response via 
crosstalk with keratinocytes (discussed in more detail in section 2.2) 
leading to ligation of TLR9 on pDC with resulting IFN-α production 
[42]. This pathway has been implicated in the pathogenesis of systemic 
lupus erythematosus and psoriasis [43,44]. 

Keratinocytes

Epidermal keratinocytes are pro-inflammatory effector cells 
strategically positioned at the outermost layer of the body to respond 
to invading pathogens by coordinated production of anti-microbial 
peptides (AMPs), proinflammatory cytokines and chemokines. 
Keratinocytes in the skin are an important source of β-defensins and 
cathelicidins; local production of AMPs during skin infections can be 
increased by T-cell derived cytokines, in particular IL-17A and IL-22, 
which are produced by Th17 cells [45]. Keratinocytes express several 
PRRs including TLRs [46,47]. TLR expression by keratinocytes may be 
crucial for promoting skin immune responses; strong TLR activation of 
keratinocytes leads to polarisation of Th1 responses and production of 
inflammatory type I interferons (IFNs) [48]. 

AMPs are expressed at high levels in the skin of psoriasis patients, 
and thought to be responsible for lack of skin infections in these patients 
[49]. Keratinocytes can also contribute to loss of immune tolerance to 
self-antigens in psoriasis patients via production of a cathelicidin AMP 
called LL37 [42]. In addition to AMPs, keratinocytes constitutively 
produce numerous cytokines [50] including IL-1, which has a broad 
range of biological effects [51]. A role for IL-1α in skin disease was 
suggested by a transgenic mouse model [52], with overexpression of 
IL-1F6 by keratinocytes leading to skin inflammation [53]. Expression 
of IL-1F6 was also increased in psoriatic epithelium. Other studies have 
shown epidermal keratinocytes can instigate cutaneous inflammation 
[54-57] and that dysregulation of keratinocyte function can trigger 
systemic autoimmune responses by lymphocytes [58,59].

Keratinocytes also express chemokines and can therefore modulate 
immune responses by attracting different cell types into the skin e.g. 
recruitment of effector T-cells during disease characterised by T-cell 
infiltration such as psoriasis and T-cell lymphoma [50]. Keratinocytes 
can also recruit neutrophils to the inflamed epidermis, but this property 
will be discussed in further detail in section 2.2.

Keratinocyte: DC crosstalk: Keratinocytes of the skin produce 
cytokines including IL-1 which has a broad range of biological effects, 
including DC activation [51]. Keratinocytes may also condition 
DC to promote a dysregulated immune response, for example, 
through secretion of thymic stromal lymphopoietin (TSL) in allergic 
inflammation [60]. Another important function of keratinocytes is 
their role in the activation and migration of Langerhans’ cells (LC). 
Keratinocytes constitutively express TGFβ, a cytokine indispensable 
for immigration of LC precursors in the epidermis; the epidermis 
of TGFβ knockout mice does not contain LC [61]. Immigration of 
LC precursors into the epidermis induces keratinocytes to secrete 
MCP-1/CCL2, which constitutively recruits LC (and other DC) to 
the skin [62]. MCP-1/CCL2 production is increased in psoriatic skin 
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[9]. Acute upregulation of retinoic acid early transcript 1 (RAE1), 
expressed on keratinocytes in the skin, leads to inflammation 
involving redistribution of LC (and γδ T-cells) within the epidermal 
compartment (via interaction with RAE1 receptor natural killer group 
2, member D known as NKG2D on LC), followed by an influx of innate 
αβ T-cells [63].

Keratinocytes also interact with pDC in the skin; early activation 
of pDC triggers increased expression of AMP LL37 (cathelicidin) by 
keratinocytes [64]. Cathelicidin LL37 bound to self-DNA fragments 
are released from dead/dying keratinocytes and in turn trigger TLR9 
activation in pDC, resulting in IFN-α production and activation of 
adaptive immune responses [42]. Studies have raised the possibility 
that high levels of cathelicidins expressed by keratinocytes in psoriatic 
skin can break tolerance to self DNA, leading to sustained activation of 
pDC and type I IFN production [42]. 

Neutrophils 

Neutrophils express a variety of PRRs and are a key component 
of innate immunity and are essential for protection from bacterial 
infections due to their ability to recognize, phagocytose and 
ultimately destroy pathogenic organisms [65-68]. The protective 
role of neutrophils is associated with rapid recruitment to sites of 
tissue damage and pathogen entry; neutrophil recruitment from the 
circulation to the skin is mediated by multiple factors, including pro-
inflammatory cytokines such as IL-1α, IL-1β, tumour necrosis factor 
(TNF) and IL-6, and chemokines. Chemokines produced by activated 
keratinocytes recruit neutrophils to inflamed areas of the skin (e.g. the 
inflamed epidermis in patients with psoriasis [50]. Adhesion molecules 
are also required for neutrophil recruitment to the skin; these molecules 
promote neutrophil rolling, adhesion and diapedesis [69]. Chemokines 
and adhesion molecules involved in neutrophil recruitment to the skin 
are summarised in Table 1. 

Once neutrophils encounter pathogens in the skin, they use multiple 
mechanisms to facilitate bacterial killing, including phagocytosis to 
engulf the bacteria and oxidative burst to generate reactive oxygen 
species that mediate bacterial killing. They also produce AMPs (such as 
cathelicidins, lysozyme and α-defensins) that have direct microbicidal 
activity, and proteinases (such as cathepsin G, neutrophil elastase 
and proteinase 3/myeloblastin) with acid hydrolases that degrade 
bacterial components. Neutrophils also express proteins that sequester 
essential nutrients to limit bacterial growth, including lactoferrin, 
transcobalamin II, neutrophil gelatinase-associated lipocalin (NGAL) 
and calpotectin [66,70,71]. Subsequent clearance of recruited 
neutrophils is then carried out by macrophage/monocyte populations. 

A hallmark of Staphylococcus aureus infections in the skin is 
neutrophil abscess formation, which is required for bacterial clearance 
[72]. Impaired neutrophil function in humans leads to uncontrolled 
dermal infections caused by group A Streptococcus or Staphylococcus 
aureus [73-75], highlighting the importance of neutrophils for 
immunity in the skin. 

Neutrophil: DC crosstalk: Neutrophils can induce maturation 
of DC through contact-dependent interactions involving CD18 and 
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 
1) on neutrophils [76-78] and DC-SIGN (DC-specific ICAM3-
grabbing non integrin) on DC [77,78]. Neutrophil-matured DC acquire 
potential to induce T-cell proliferation and polarization towards Th1 
responses [76,78], implicating a role for neutrophil: DC crosstalk in 
inflammatory skin disorders with increased DC-SIGN expression on 
skin DC, such as psoriasis [79].

Macrophages

Macrophages are mononuclear phagocytes and are also deemed 
professional antigen-presenting cells due to their ability to present 
antigen to T-cells; however, macrophages do not possess the potency 
of DC to initiate primary immune responses [80-82]. The innate 
functions of macrophages play a crucial role in human host defence 
via phagocytosis and clearance of infectious agents by secretion 
of cytokines and chemokines. Resident macrophages in the skin 
maintain tissue homeostasis and dampen initiation of inflammation by 
clearance of allergens, whilst bone marrow-derived monocytes leave 
the circulation and migrate towards sites of inflammation in the skin 
where they differentiate into mature macrophages [83]. 

Classically activated macrophages: The biological functions of 
activated macrophages involve migration to sites of inflammation to 
encounter pathogens and degrade them; activated macrophages display 
no enhanced phagocytosis compared to resting cells [84] but they do 
possess a markedly enhanced ability to kill and degrade intracellular 
microorganisms via production of toxic intermediates (nitric oxide NO 
and reactive oxygen intermediates ROI). Macrophages are activated 
through ligation of PRRs such as TLRs via microbial PAMPs [85,86]; 
in the classically activated macrophage this involves production of pro-
inflammatory cytokines that induce inflammatory cytokine production 
by T-cells (Table 1) which in turn acts on the macrophage to enhance 
cytokine secretion, antigen-presentation and bactericidal activity 
[87,88]. Such cytokine activity is critical for establishment of effective 
host defence against intracellular pathogens [89]. Classical macrophage 
activation is characterized by a heightened ability to produce IL-12 and 
IL-23 [90] and toxic intermediates; these cells are commonly referred 
to as M1 macrophages (mirroring Th1 nomenclature) [91]. 

Classically activated macrophages in the dermis display enhanced 
production of inflammatory cytokines IL-12 and IL-23 in psoriasis 
(Fuentes- Duculan J; Zaba LC J Invest Dermatol 2010), likely to 
contribute to the pathogenic inflammation in this disease. However, 
the pro-inflammatory properties of classically activated macrophages 
are useful in wound healing; during the short inflammatory stage, 
classically activated macrophages exert functions like antigen-
presentation, phagocytosis and production of inflammatory cytokines 
and growth factors that facilitate the wound healing process [92].

Alternatively activated macrophages: Th2 cytokines IL-4 and 
IL-13 induce a distinct activation program in macrophages, referred 
to as “alternately activated macrophages” [93,94]. Alternatively 
activated macrophages are sometimes referred to as “type II activated 
macrophages” due to their ability to preferentially induce Th2 responses 
[95], and are generated upon exposure to two signals; a macrophage 
stimulatory signal which may include TLR signalling or signalling via 
CD40 or CD44, and FcγR ligation by immune complexes (IC) [95,96]. 
Alternatively activated macrophages exert potent anti-inflammatory 
effects due to their production of IL-10 [96] and lack of IL-12 
production [97]; they have a suppressive effect on T-cell proliferation 
[98] and inflammatory responses [99]. These cells fail to make toxic 
intermediates [100] and are therefore compromised in their ability to 
kill intracellular microbes. 

Recent studies on alternatively activated macrophages have 
focused on their potential to mediate wound-healing, angiogenesis 
and ECM deposition; these cells produce high levels of fibronectin and 
matrix-associated protein βIG-H3 [101], promote fibrogenesis from 
fibroblastoid cells [102] and induction of arginine in these cells may lead 
to polyamine and proline biosynthesis, promoting cell growth, collagen 
formation and tissue repair [103]. However, alternatively activated 
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Innate cell PRRs/activating receptors Products/molecules Innate function

DC (general) TLRs, CLRs, RLRs, NLRs Various Immune sentinels; proinflammatory or anti-
inflammatory effects 

LC
Langerin/CD207 (CLR)
FcγR and FcεR
DEC205 

Chemokines CCL2, CCL17 and CCL22 Attraction of other leukocytes to sites of 
inflammation

Surface molecules ICOS-L Inhibition of T-cell responses (immune tolerance)
Enzyme IDO Immunoregulatory activity

dDC (mDC) TLR2, TLR4, CD206, DC-SIGN (CD209) 
CCL17, CCL22 Attraction of other leukocytes to sites of 

inflammation 
TNF and iNOS Proinflammatory effects

dDC (pDC) TLR7, TLR9 Type 1 IFNs Immunity against viral infections and promote 
function of T-cells, B-cells, NK cells

Keratinocyte
TLR1, TLR2, TLR4, TLR5, TLR6 (cell 
surface) and TLR3, TLR9 (endosomes) 

AMPs: β-defensins and cathelicidin Anti-microbial defence
AMP: LL37 Loss of immune tolerance
IL-1, IL-6, IL-10, TNF, TGFβ Broad range of effects

CXCL1, CXCL8 Mediate attraction of neutrophils and other immune 
cells to inflamed skin via CXCR2 expression 

Neutrophil TLRs (excluding TLR3 and TLR7) 

IL-1α, IL-1β, TNF, IL-6 Host defence

Chemokine CXCR2 Migration towards CXCL1- and 
CXCL8-expressing keratinocytes in inflamed skin

Adhesion molecules L-selectin and LFA-1 (αLβ2) Promote neutrophil rolling, adhesion and 
diapedesis for recruitment to skin

AMPs: cathelicidins, lysozyme, α-defensins Direct microbicidal activity
Proteinases: cathepsin G, neutrphil elastase and 
proteinase 3/myeloblastin 

Contain acid hydrolases to degrade bacterial 
components

Proteins: lactoferrin, transcobalamin II, NGAL and 
calpotectin 

Sequester essential nutrients to limit bacterial 
growth 

Classically 
activated 

macrophage

TLRs (T-cell/NK cell-derived IFNγ and 
macrophage-derived TNF needed 
in combination with TLR ligation for 
macrophage activation) 

IL-12 Induces IFNγ production from T-cells and NK cells
TNF Activates macrophage (second signal)

IL-23 Promotes inflammatory immune responses 

Toxic intermediates (NO and ROI) Bactericidal activity

Alternatively 
activated 

macrophage

TLRs (CD40/CD44 signalling can occur 
instead of TLR ligation). FcγR ligation 
by IC required in combination with TLR 
ligation for activation 

IL-10/no IL-12/no toxic intermediates Potent anti-inflammatory effects

G-CSF Anti-inflammatory effects via DC modulation

Fibronectin, βIG-H3 Fibrogenesis promoting tissue repair and collagen 
formation

Arginine Polyamine and proline synthesis promoting cell 
growth and tissue repair 

Mast cell TLRs (murine skin MC express TLR3, 
TLR7, TLR9) 

TNFα, IL-1, IL-6, IL-10, lipid mediators (PG and 
LT) Contribute to allergic and inflammatory responses

Chemokines Recruitment to skin

NK cell NKG2A, NKG2D (stressed/dying cells)
TLR3, TLR9 (exogenous microbes)

IFNγ, TNFα Cytotoxicity and inflammation 

IL-22 (in response to IL-23) AMP production, host defence, constraint of 
inflammation

IL-17 (in response to zymosan) AMP production and host defence

Chemokines CXCR3, CCR5 and CCR6 Migration towards CXCL10, CCL5 and CCL20 on 
keratinocytes of inflamed skin

NKT cell Invariant TCRα chain combined with 
limited set of TCRβ chains 

IFNγ, IL-4, IL-2, IL-5, IL-10, IL-13, TNFα Inflammatory and allergic responses
Perforin, granzymes, FasL, TRAIL, granulysin Cytotoxicity 

γδ T-cell

TLRs (microbial recognition)
 Vδ1 receptor (stressed/dying cells and 
tumour cells)
 NKG2D (stressed/dying cells and tumour 
cells) 

IL-2, IFNγ, TNFα Inflammation
CCL3, CCL4, CCL5, XCL1 Chemotaxis to recruit cells to site of damage 
KGF Tissue repair/wound healing
IGF-1, IL-2 Epidermal maintenance and development
IL-17 Host defence 

Table 1: Innate immune cells of the skin

macrophages also infiltrate fibrotic areas of the skin in the connective 
tissue disorder localized scleroderma [104]; their potential to produce 
fibrosis-inducing cytokines and ability to promote fibrogenesis and 
collagen formation is likely to play a crucial role in the pathogenesis 
of this disease.

Macrophage: DC crosstalk: Although data is limited regarding 
direct crosstalk of macrophages with DC via cell contact, the local 

cytokine milieu produced by macrophages may affect DC activation and 
in turn, skew T-cell responses towards Th1, Th2, Th17 or tolerogenic 
T-cell responses, depending on the cytokines present. For example, the 
ability of classically activated macrophages to produce IL-12 and IL-
23 [90] is enhanced in the psoriatic dermis [105]. IL-12 and IL-23 can 
alter DC activation and skew T-cell responses towards inflammatory 
Th1/Th17 responses, likely to contribute to disease pathogenesis in 
psoriasis. 
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Granulocyte colony stimulating factor (G-CSF) is produced by 
macrophages under certain conditions e.g. conditioning with probiotic 
bacteria [106]; G-CSF elicits anti-inflammatory effects mediated 
through modulation of DC [107], highlighting the relevance of the 
skin microbiome in maintaining the balance between immunity and 
immune tolerance in the skin (discussed in section 4). Reciprocally, 
DC-produced cytokines can affect the function of macrophages e.g. DC 
production of IL-15 (in response to IFN-α) controls the responsiveness 
of macrophages to TLR4 ligands [108] suggesting a role for crosstalk 
between skin macrophages and DC in bacterial skin infections and/or 
response to commensal bacteria. 

Mast cells

Mast cells (MC) are innate immune cells involved in clearing 
bacterial [109-113] and parasitic [114-117] infections but are also 
thought to contribute to allergic and inflammatory responses via 
release of cytokines, chemokines, lipid mediators, proteases and 
biogenic amines upon cross-linking of cell-bound IgE by allergens. 
MC originate from bone marrow stem cells [118-120] and circulate 
as immature MC progenitor cells, completing their maturation upon 
recruitment into the peripheral tissues [121,122] e.g. the skin. 

Human MC can be categorized into two different subtypes 
depending on the presence of different protease granules [123,124]. 
Cells containing tryptase alone are called MCT, whereas MC with only 
chymase are called MCC; MC with both tryptase and chymase are called 
MCTC, and it is this subset that is present in large amounts in the skin 
[125-127]. MC express different types of TLRs depending on the type 
and location of the MC; MC in murine skin specifically express TLRs 
3,7 and 9 and upon stimulation via these TLRs, produce inflammatory 
mediators TNF-α and IL-6, amongst others [128]. 

Mast cell: DC crosstalk: MC have a direct effect on other immune 
cells such as DC; MC or MC products can induce cutaneous DC 
maturation and migration [129-131]. However, the action of MC 
on DC in the onset of inflammation is dependent on the context, as 
prostaglandin (PG) is produced by MC in response to allergens [132] 
which inhibits LC (epidermal DC) migration [133]. The functional 
role of MC in inflammatory responses such as contact hypersensitivity 
(CHS) in the skin is unclear; murine studies of MC in CHS have 
provided conflicting results with MC-deficient mice showing attenuated 
CHS responses in one study but not in another [134]. However more 
recent studies have demonstrated that activated DC induces MC 
activation, which in turn triggers migration and maturation of DC via 
cell-cell contact. This DC-MC interaction plays an essential role in the 
sensitization phase of CHS [135]. 

MC crosstalk with DC also plays an important role in regulation of 
protective adaptive immune responses against pathogens in the skin; 
recent murine studies have shown MC directly induce DC maturation 
resulting in a release of Th1 and Th17 polarising cytokines and such 
MC-primed DC stimulated efficient CD4+ Th1 and Th17 responses. 
Enhanced disease progression of MC-deficient mice in Leishmania 
major infection in the skin correlated with impaired induction of both 
Th1 and Th17 cells [136]. 

Innate immune lymphocytes

There are several lymphocyte classes that participate in innate 
immune responses in the skin; these include natural killer (NK) cells, 
natural killer T-cells (NKT-cells), invariant NKT-cells (iNKT-cells) 
and γδ T-cells. 

Natural killer cells: Natural killer (NK) cells are able to kill cells 
that are virally infected, as well as cancer cells; however, they also 
produce a range of cytokines [137]. In humans, NK cells are defined as 
CD3-CD56+ or CD3-CD16+ lymphocytes. NK cells express several TLRs 
[138]; ligation by TLR ligands induces IFN-γ production and enhances 
cytotoxicity. However activating NK receptors also include those 
recognizing stress-induced self ligands e.g. NK cell receptor NKG2D 
recognizes human ULBP and MIC molecules expressed on stressed 
or dying cells [139,140]. Although the primary function of NK cells is 
cytotoxicity towards virally infected cells and cancer cells, NK cells have 
become increasingly recognized as contributors to pathophysiological 
situations such as psoriasis and AD. NK cells are recruited to the skin 
in inflammatory conditions via expression of chemokine receptors 
corresponding to ligands (chemoattractants) expressed on cutaneous 
keratinocytes (Table 1) [141,142]. 

Two distinct NK cell populations exist in the human skin which 
have the capacity to produce either IL-22 or both IL-22 and IL-17; these 
cutaneous NK cells are therefore likely to play a role in skin-mediated 
inflammatory diseases mediated by these cytokines, including atopic 
dermatitis (AD) and psoriasis. Both IL-17 and IL-22 induce synthesis 
of AMPs including cathelicidins and β-defensins from keratinocytes, 
demonstrating their participation in the host innate immune defence 
in the skin [143-147].

IL-23, produced by activated DC and macrophages [148], is 
crucial in stimulating IL-22 production by NK cells (NK-22 cells). 
Keratinocytes can also produce IL-23 and expression of IL-23 is 
enhanced in keratinocytes of psoriatic patients [149]. NK-22 cells have 
a diminished capacity to degranulate and produce IFN-γ [150,151]; but 
although IL-22 is necessary for production of antimicrobial molecules 
in the skin [152], an excessive IL-22 response may contribute to disease 
pathogenesis in psoriasis [146,153,154]. 

The other subset of NK cells in human skin are referred to as human 
lymphoid tissue inducer-like cells (LTi-like cells). LTi-like cells are able 
to produce both IL-17 and IL-22 [143,155] and the yeast wall product 
zymosan can elicit Il-17 production by these cells in vivo [156]. It is 
likely that these cells contribute to host defence but the production of 
IL-17 also implicates LTi-like cells in autoimmunity and inflammation. 
However, data on Lti-like cells in the skin is currently scarce. 

NK cell: DC crosstalk: DC can efficiently enhance activation 
marker expression, proliferation, inflammatory cytokine production, 
and cytotoxic activity of NK cells, via the action of inflammatory 
mediators such as IL-12, TNFα and type 1 IFNs [157]. Reciprocally, NK 
cells promote DC maturation and increase their capacity to produce 
IL-12 and polarize Th1 responses [158]. NK-mediated effects on DC 
are dependent on TNFα and IFNγ. A direct contact between DC and 
NK cells was first demonstrated in skin lesions resulting from fungal 
(Malassezia) infections of the skin and was later highlighted in specific 
forms of induced dermatitis [159]. It has been hypothesised that 
dysregulation of LC: NK cell crosstalk may participate in the chronic 
inflammation observed in malignant Langerhans histiocytosis [160]. 
The reciprocal activating interaction between DC and NK cells may 
also play a pivotal role in immune defense against viral infections (and 
tumours). 

Natural killer T-cells: Natural killer T-cells (NKT-cells) coexpress 
T-cell receptor (TCR) and NK lineage markers such as CD16, CD56, 
CD57, CD94 and CD161, and unlike conventional T-cells, recognize 
glycolipid antigens in the context of MHC class I-like antigen-
presenting molecule CD1d. The most widely studied NKT-cells are 
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type 1, or classical NKT-cells (also known as invariant NKT-cells; 
iNKT cells), characterized by their ability to recognise the prototypic 
CD1d-restricted glycosphingolipid antigen α-GalCer (a marine 
sponge-derived compound with potent immunoregulatory potential). 
iNKT-cells have a highly restricted TCR repertoire as they express an 
invariant Vα24-Jα18 rearranged TCR-α chain, typically coexpressed 
with Vβ11-containing β chain [161-163]. Type II nonclassical NKT-
cells express diverse TCR-α chains, are generally not reactive with 
αGalCer but are also specific for antigens presented by CD1d [164].

NKT-cells only constitute a small proportion of lymphocytes. 
These cells can rapidly secrete large amounts of cytokines [165-167], 
but also exert cytotoxic properties through expression of perforin, 
granzymes, FasL, TRAIL and granulysin [166]. Some of these elements 
contribute to the pathogenesis of skin inflammatory disorders such as 
psoriasis [168-171]. In general, NKT-cells mediate both protective and 
regulatory immune functions including tumour rejection, protection 
against infectious microbes, maintenance of transplant tolerance and 
inhibition of autoimmune disease development [172]. However, in the 
skin, NKT-cells play an active role in diseases such as psoriasis and 
contact hypsersensitivity (CHS).

In humans, in the steady state, NKT-cells constitute a small 
proportion of lymphocytes in the skin but are expanded in psoriasis 
[173-176], although the exact role played by these cells is yet to be 
defined. Some results demonstrated a pathogenetic link between 
psoriatic keratinocytes, which overexpress CD1d and NKT-cells 
infiltrating psoriatic lesions [177,178]. Experiments in severe combined 
immunodeficient mice demonstrated that injection of human cells 
with NKT-cell characteristics into transplanted psoriatic skin could 
drive lesion development [177]. An increased NKT-cell density in 
psoriatic lesions in the epidermis compared with healthy skin was also 
confirmed, and CD1d expression was more extensive in psoriasis than 
in normal skin [179].

Activation of NKT-cells occurs during early innate stages of 
CHS, leading to a cascade of events such as complement activation; 
this generates C5a which in turn activates mast cells and platelets to 
release TNF-α and serotonin. This cascade results in the activation 
of endothelial cells to recruit T-cells locally [180]. Inhibition of the 
CD1d-antigen-presenting pathway to NKT-cells interferes with both 
initiation and effector phases of CHS [181]. NKT-cells are emerging 
as an important subset of lymphocytes, with a protective role in host 
defence and a pathogenic role in certain immune-mediated disease 
states. 

NKT-cell: DC crosstalk: As NKT-cells are CD1d-restricted, these 
cells can be directly activated by CD1d-expressing cells, able to present 
antigen. Human and mouse CD1d are expressed at detectable levels on 
most cells of haematopoietic origin with high levels of expression on 
DC [182,183]. CD1d expression on DC is increased by the presence 
of inflammatory cytokines [184,185] and TLR ligation [186], but 
is decreased by immunoregulatory cytokines [187] and various 
infections of the skin [188,189]. NKT-cells can, in turn, modulate DC 
differentiation and function. Regulation of myeloid DC by NKT-cells 
in mice controls both the transition from innate to adaptive immunity 
and the type of T-cell responses generated [190]. 

γδ T-cells: γδ T-cells with invariant or restricted TCR are 
preferentially located within epithelial tissues that are points of 
contact between the body and the external environment. The unique 
population of γδ T-cells in the mouse epidermis are called Thy-1+ 
dendritic epidermal T-cells (DETC). DETC monitor epidermal cells 

and are poised to recognize and respond to non-peptide self-antigens 
expressed by neighbouring keratinocytes following tissue stress or 
damage; this process resembles PAMP recognitions by PRRs on DC. 
One example of such a self-antigen in humans is MHC class I chain-
related protein A (MICA) which is expressed on keratinocytes [191], 
upregulated during inflammation and infection, and recognised by 
NKG2D receptor expressed on γδ T-cells. Once keratinocyte distress 
is detected, DETC respond by local secretion of chemokines, cytotoxic 
effector molecules, growth factors and cytokines that orchestrate skin 
inflammation, tumour killing and wound-healing responses [192]. 

Many factors contribute to epidermal homeostasis, including 
skin-resident γδ T-cells [193,194]. This is partly due to expression 
of insulin-like growth factor (IGF-1), which mediates epidermal 
development and maintenance via interaction with keratinocytes 
[195,196]. The localization of large numbers of γδ T-cells in the skin 
suggests they form a first line of defence against invading pathogens, as 
well as contributing to tissue homeostasis. DETC (mouse epidermal γδ 
T-cells) play a protective role against cutaneous Staphylococcus aureus 
infections [197,198] and may also respond to gram-negative bacteria 
[199]. γδ T-cells express innate PRRs such as TLRs, enabling them to 
directly recognize microbial patterns [200]; indeed, DETC upregulate 
expression of TLR4 during cutaneous inflammation [201]. 

DETC can play a regulatory role in some inflammatory skin 
disorders; TCRδ-/- mice spontaneously develop localized dermatitis 
which requires the presence of αβ T-cells. Adoptive transfer 
experiments demonstrated DETC downregulated dermatitis in 
TCRδ-/- mice [202]. The underlying mechanisms of DETC regulatory 
function are unknown, but γδ T-cells also play a regulatory role in 
other inflammatory disorders. γδ T-cells can mediate downregulation 
of both αβ and γδ effectors in contact hypersensitivity (CHS) in vivo 
and IFN-γ production by the CHS effector cells in vitro [203]. γδ 
T-cells also have the capacity to negatively regulate αβ T-cell driven 
allergic IgE responses [204]. In the context of infection, γδ T-cells can 
play a protective role e.g. murine dermal γδ T-cells rapidly produce 
IL-17 following exposure to IL-1β and IL-23 [205], therefore may 
be key source of IL-17 following skin infection. However, a novel 
proinflammatory subset of human circulating IL-17-producing γδ 
T-cells has been recently identified in psoriasis; these cells are rapidly 
recruited into perturbed human skin [206].

γδ T-cell: DC crosstalk: γδ T-cells can be directly activated by 
DC as a proportion of γδ T-cells are CD1-restricted. CD1-restricted 
T-cells can also mediate the maturation of DC. Upon recognition of 
CD1, CD1-restricted γδ T-cells secrete TNFα and other products that, 
together with LPS, induce immature DC to mature and produce pro-
inflammatory and Th1-polarizing cytokine IL-12 [207]. In human 
skin, expression of CD1 on DC increased significantly after Borrelia 
burgdorferi (the causative agent of Lyme disease) infection and in 
disease-specific skin lesions [208] which has implications for DC 
activation of γδ T-cells and bidirectional crosstalk between γδ T-cells 
and DC in this disease setting. 

The Adaptive Immune System
The innate immune system uses a combination of PRRs to detect 

microbes, induce anti-microbial defence mechanisms and maintain 
host-microbial homeostasis. However, in vertebrates, two types of 
immunity are used to protect the host from infections: innate and 
adaptive. The adaptive immune response comprises T- and B-cell 
responses and employs antigen receptors that are not encoded in 
the germ line but are generated de novo in each organism; adaptive 
immune responses are highly specific. 
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Dendritic cells drive adaptive immunity: bridging the innate 
and adaptive immune system

Although the innate properties of dendritic cells (DC) and 
expression of PRRs allows them to recognise PAMPs on invading 
pathogens and DAMPs on injured/dying tissue cells, DC also possess 
the unique ability to initiate primary adaptive cell-mediated immune 
responses, generating immunological memory. DC can determine 
whether an active or tolerogenic immune response occurs to a particular 
antigen, and whether an inflammatory or tolerogenic immune response 
predominates [80-82,209]. DC play a role in co-stimulation of B-cells 
in the humoral immune response to generate antibody-secreting 
plasma cells [210] but, for the purpose of this review we will focus on 
the role of DC as being unique from other APC in their potency at 
initiating cell-mediated immunity (T-cell responses), focusing on DC 
at cutaneous sites. 

T-cell responses initiated by skin dendritic cells

Epidermal dendritic cells: Langerhans’ cells: Langerhans’ cells 
(LC) are among the first DC to come into contact with microbial 
antigens; LC take up and process lipid antigens and microbial 
fragments for presentation to effector T-cells [211]. Human LC can 
preferentially induce differentiation of Th2 cells and can prime and 
cross-prime naive CD8+ T-cells [212]. Due to the proximity of LC to 
the external environment, LC were thought to have a potential role in 
contact hypersensitivity (CHS) reactions [213]; however removal of LC 
enhances CHS, suggesting LC may inhibit CHS responses [214].

LC are indeed dispensable for the induction of certain types of cell-
mediated immune responses, and may actually generate tolerogenic 
responses [215,216]. LC express surface molecules involved in the 
inhibition of T-cell responses such as inducible co-stimulatory molecule 
ligand ICOS-L (B7-H2) or the immunoregulatory enzyme indoleamine 
2,3-dioxygenase (IDO), both of which function as strong inducers of 
peripheral tolerance [28]. Our recent data characterising human DC 
from different tissues supports the theory of a tolerogenic role for 
epidermal DC, which exhibited a restricted stimulatory capacity for 
allogeneic T-cells compared with their blood and dermal counterparts. 
Such restricted stimulatory capacity was also reflected in gut DC. This 
is likely to be due to high antigenic load in the gut [217].

The role of LC in antimicrobial immunity has been questioned by 
the finding that LC were unable to generate CD8+ T-cell immunity 
upon cutaneous infection with herpes simplex virus (HSV) [218]. One 
explanation of such results was that HSV can induce LC apoptosis 
and therefore diminish LC function. Indeed, infection of DC with a 
number of different viruses can block their function e.g. during DC 
infection with Rauscher leukaemia virus [219], dengue virus [220], 
rhinoviruses [221], cytomegaloviruses [222] and HIV [223]. The role 
of LC in generation of T-cell responses has not yet been fully clarified, 
but it is likely that the immune response generated is dependent on the 
antigen itself and cross-talk involving other cutaneous immune cells 
e.g. keratinocytes as well as other LC and dermal DC (dDC). 

Dermal dendritic cells: myeloid: Several subpopulations of dermal 
DC (dDC) have been described in humans both in the steady state and 
in an inflammatory context. In the steady state, the majority of dDC are 
of myeloid origin and express CD1c (BDCA-1) [30]. Co-expression of 
CD1c with CD11c is a useful marker in situ to distinguish dDC from 
macrophages [32]. dDC migrate rapidly to the skin-draining lymph 
nodes (LN) to present antigen to T-cells [29-31]; however CD1c+ dDC 
can be divided into at least three discrete subsets based on their surface 
expression of CD1a and CD14 [224]. 

Ex vivo isolated CD1a+CD14- dDC have a mature phenotype 
and are potent inducers of allogeneic naive CD4+ and CD8+ T-cell 
proliferation [30,212,225,226]. In contrast CD14+ dDC are less mature 
than CD1a+CD14- and display a reduced capacity to prime naive 
T-cell proliferation [33]. However, IL-23 treatment enhances T-cell 
stimulatory capacity of CD14+ dDC and IL-23-neutralising antibody 
inhibits T-cell proliferation induced by CD14- dDC [227]. These results 
have implications in inflammatory disease, given the importance 
of IL-23 in Th17 cell immunity and that dDC produce IL-23 in skin 
pathology [228], and may partly explain the clinical benefit observed in 
psoriasis patients treated with an anti-IL-12/23p40 [229;230]. CD14+ 
dDC are also able to polarize naive CD4+ T-cells into follicular helper 
T-cells, which in turn promotes naive B-cell differentiation [212]. 

Langerin+CD103+ DC also constitute a proportion of CD1c+ DC 
in the dermis; these cells are distinct from epidermal LC in both their 
origin and function [23,231,232] and do not represent LC en route to 
skin-draining LN, as previously assumed [233]. Langerin+CD103+ dDC 
can cross-present epidermal-derived viral and self antigens to CD8+ 
T-cells [234], including keratinocyte-derived antigens. Studies on 
langerin+CD103+ dDC raised the possibility that this DC subtype may 
be broadly represented in many tissues, mainly for its function in CD8+ 
T-cell responses and tolerance. Indeed, langerin+ DC are required for 
CD8+ T-cell responses to influenza in the lung, despite the presence of 
other DC subsets [235]. 

A small population of myeloid dDC have been identified that do 
not overlap with the CD1c+ population in normal skin. These cells 
constitute approximately 10% of CD11c+ dDC and can be identified 
by expression of CD141 (BDCA-3) [32]. In blood, these cells are also 
non-overlapping with the CD1c+ population, and are thought to be the 
least immunostimulatory myeloid blood DC population. Evidence now 
suggests that these CD141+ DC may be the human equivalent of mouse 
CD8α+ DC [236], which take up dead/dying cells, process exogenous 
antigen on MHC class I molecules to present to CD8+ T-cells [237-239], 
and induce protective CD8+ responses against cancers, viruses and 
other pathogenic infections [240-243].

Activated myeloid dDC participate in the inflammatory responses 
partly by secretion of chemokines and cytokines (as mentioned in 
earlier sections) but also affect T-cell polarization. Tumour necrosis 
factor (TNF) and inducible nitric oxide synthase (iNOS)-producing 
DC (TIP-DC) play a major role in psoriasis [39], partly mediated by 
activation and differentiation of Th17 cells [21].

Dermal dendritic cells: plasmacytoid: Human plasmacytoid 
DC (pDC) represent a minor population in the blood and the skin 
and play a major role in anti-viral immunity due to their capacity to 
rapidly produce large amounts of proinflammatory type I interferons 
(IFNs) upon viral infection [244,245], thus activating inflammatory 
adaptive immune responses [246]. pDC have been implicated in the 
pathogenesis of psoriasis, and also of systemic lupus erythematosus 
(SLE) [44,247]; early activation of pDC triggers innate immune 
responses in psoriasis resulting in pDC activation via TLR9. This in 
turn leads to IFNα production and activation of inflammatory adaptive 
immune responses [42].

Inflammatory dendritic epidermal cells: Inflammatory dendritic 
epidermal cells (IDEC) can populate both the epidermis and the 
dermis during an inflammatory immune response [37,248]. IDEC 
over-express the high affinity Fc receptor for IgE (FcεRI), facilitating 
their reactivity to IgE-bound allergens, resulting in a pro-inflammatory 
allergic-specific T-cell response [249]. 
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Function of T-cells in the skin
CD4+ and CD8+ T-cells are present in approximately equal 

numbers in the skin, and most are memory T-cells [250]. The three 
main types of CD4+ Th cells have been found in the skin during various 
inflammatory diseases; Th1, Th2 and Th17 cells. Th1 cells are present 
during infections with intracellular organisms and produce IFNγ 
and lymphotoxin to kill such organisms. Although previously Th1 
responses have been associated with autoimmunity (such as psoriasis) 
and Th2 responses linked with allergic diseases (such as asthma and 
atopic dermatitis; AD), Th17 cells also play a crucial role in both 
psoriasis [228] and AD [251].

 Th17 cells are essential for first-line defence against various 
fungal and bacterial infections [45], specifically diseases which are 
characterised by recurrent and persistent infections of the skin and 
mucosal membranes [252-254]. A putative mechanism of host defence 
against microorganisms involving IL-17 and IL-22 in the skin is 
the upregulation of anti-microbial peptide (AMP) production by 
keratinocytes [144]. A subset of circulating T-cells with skin-homing 
potential that produce IL-22 but not IL-17 or IFN-γ (Th22 cells) 
[255,256] have also been identified in skin cell cultures from patients 
with AD [257], though their functional role in skin pathology and 
homeostasis is currently unclear. 

It has been proposed that skin-resident T-cells have a role in skin 
immune homeostasis and pathology [258]; normal skin contains 
twice as many T-cells as the blood and 98% of CLA+ skin-homing 
lymphocytes in the body reside in the skin in the steady state [259]. 
Skin-resident memory T-cells play a key role in skin inflammation e.g. 
psoriasis [260,261] and can be activated by skin DC resulting in local 
proliferation of antigen-specific CD8+ T-cells during HSV infection 
[262]. Skin-resident memory T-cells express CD103 and VLA-1 and 
undergo homeostatic proliferation, and provide protection from 
pathogen challenge [263]. 

Immune cell homing and migration to the skin
General principles of T-cell homing to the skin: Lymphocytes 

continuously migrate around the body to meet antigens. For T-cells 
trafficking to lymphoid and extra-lymphoid sites, this migration 
involves a multi-step process, regulated by co-ordinated interactions 
between cell surface molecules on T-cells with their respective ligands 
on the surface of vascular endothelial cells [264]. Transendothelial 
migration into cutaneous sites is dependent on T-cell adhesion to 
endothelial cells, and their subsequent migration to and through 
endothelial cell junctions [264-266]. 

The trafficking pattern of T-cells changes during their transition 
from naive to memory T-cells. Naive T-cells constitutively traffic 
through lymphoid tissue while memory T-cells acquire the ability to 
infiltrate non-lymphoid sites, such as the skin, at the site of antigen. 
Upon DC stimulation, T-cells acquire the ability to express homing 
receptors including tissue-selective integrins and chemokine receptors 
allowing migration to specific organs, such as the skin. 

T-cells localizing to the skin express cutaneous lymphocyte-
associated antigen (CLA). CLA arises from specialized glycosylation 
of P-selectin glycoprotein ligand-1 (CD162) [267], thought to be 
involved in tissue-specific localization of cutaneous T-cells within the 
skin [268,269]. CLA mediates tethering and rolling of T-cells through 
interaction with its endothelial receptor E-selectin, constitutively 
expressed on skin post-capillary venules. However, interactions of P- 
and E-selectin with their T-cell expressed ligands are not skin-specific, 
suggesting a role for other skin-homing molecules. 

The interaction between chemokine receptor CCR4 and its ligand 
CCL17 (TARC) has been implicated in skin-homing of immune cells; 
CCR4 is involved in vascular recognition by cutaneous but not intestinal 
memory T-cells [270], and is necessary for antigen-driven cutaneous 
accumulation of CD4+ T-cells under physiological conditions [271]. 
Interactions between chemokine receptor CCR10 and its ligand 
CCL27 (CTACK) has also been implicated in skin-homing [272]. The 
ligands for CCR4 and CCR10, CCL17 (TARC) and CCL27 (CTACK), 
have been found on inflamed and non-inflamed skin endothelium 
[270,273]. CCL27 (CTACK) is preferentially produced by epidermal 
keratinocytes [273]. 

Cutaneous dendritic cells imprint skin-homing properties on 
T-cells: DC not only activate naive T-cells to generate antigen-specific 
T-cell proliferation and expansion, but they also direct the T-cells to 
the site where antigen is most likely to be encountered, by imprinting 
tissue specificity. DC from skin-draining lymph nodes specifically 
induce expression of skin-homing markers on activated T-cells [274]. 
Likewise, mouse LC (epidermal DC) are specialized to target T-cells to 
inflamed skin [275] and our recent studies demonstrate human freshly 
isolated epidermal and dermal DC specifically imprint a skin-homing 
profile on stimulated T-cells [217]. In contrast, murine DC from 
secondary lymphoid tissue in the gut specifically induce gut-homing 
molecules α4β7 and CCR9 on activated T-cells [276-278], supported by 
our studies demonstrating fresh human gut DC specifically imprint a 
gut-homing profile on T-cells [217].

 Vitamin D may promote development of DC that stimulates 
T-cells to express skin-homing markers. In humans, in vitro studies 
show vitamin D3, a pre-vitamin produced by sunlight in the skin, 
is itself inactive but efficiently processed to DC to its active form, 
1,25(OH)2D3, which induces surface expression of the skin T-cell 
associated chemokine receptor CCR10. Expression of CCR10 confers 
an attraction to the epidermal chemokine CCL27 [272]. However, the 
role of vitamin D in leucocyte migration to the skin is unclear as it 
also downregulates CLA expression [279]. Although vitamin D can 
confer expression of particular skin-homing markers on T-cells, it also 
induces tolerogenic properties on DC [280-282]; 1,25(OH)2D3-treated 
DC stimulate hyporesponsive T-cell responses and generate regulatory 
T-cell populations (Tregs) [281-283]. These properties are likely to 
contribute to the immunosuppressive effects of UV light (specifically 
UVB) [284-286] and efficacy of UV-light therapy for inflammatory 
disorders such as psoriasis [287].

Migratory properties of skin dendritic cells: DC themselves 
must also exhibit tissue-specific properties since they control 
trafficking of lymphocytes (that they stimulate) and deal with different 
microenvironments at different sites. However, information about 
expression of tissue-homing markers on DC themselves is scarce, 
particularly in humans, primarily due to the methodological difficulties 
in studying human tissue. 

Antigen encounter causes DC maturation and subsequent 
migration of DC to the peripheral LN to generate a T-cell mediated 
immune response [288-291]. Most models of DC migration are based 
on epidermal LC migration following administration of skin-sensitising 
agents [292], carcinogens, or upon infection [293,294]. Human studies 
demonstrate a dramatic change in chemokine receptor expression on 
DC can be induced by TLR-mediated stimulation and maturation of 
DC [295]. This includes up-regulation of LN-homing marker CCR7, 
enabling migration to secondary lymphoid organs [296]. 

Little information was previously available regarding the homing 
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profile of tissue-resident DC in humans, in the steady state. However, 
we recently demonstrated that fresh human DC express tissue-specific 
homing profiles, with the ability to induce specific homing properties 
on T-cells. Both epidermal and dermal DC lacked expression of gut-
homing markers β7 integrin and CCR9 but expressed skin-homing 
markers CLA and CCR4, and skin-associated homing marker CCR10. 
The opposite was true of gut DC which expressed gut-homing markers 
only [217]. However, there were skin DC present that did not express 
skin-homing markers, suggesting skin-homing marker expression may 
not be essential for retention of DC within cutaneous compartments. 

Epidermal LC display some unique characteristics compared 
with other DC. LC express particular proteinases allowing them to 
pass through the basement membrane, including metalloproteinases 
(MMPs) [297]. MMP-9 is expressed by LC and up-regulated by 
inflammatory cytokines TNF-α and IL-1β [298]. Migration of both LC 
and dermal DC (dDC) can be prevented by MMP inhibitors, MMP-
9 and MMP-2 antibodies, and by natural tissue inhibitors of MMPs 
(TIMPs) [299]. 

The Skin Microbiome
The skin is in constant contact with the external environment and 

hosts an ecosystem colonized by a diverse collection of microorganisms, 
including bacteria, fungi, viruses and mites [3-8]. Many of these 
microorganisms are harmless and can provide vital immunological 
functions; symbiotic microorganisms protect against host invasion 
by more pathogenic organisms. The perception of the skin as an 
ecosystem comprised of diverse microorganisms can be compared to 
the gastrointestinal (GI) tract; the GI tract is in contact with numerous 
commensal microbiota and diverse pathogens, and therefore a balance 
needs to be maintained between immunogenic or tolerogenic immune 
responses. Disruption of this balance at either site can result in skin 
disorders or infections, or inflammatory bowel diseases, infections or 
even cancer. 

Modulation of cutaneous immune responses by the skin 
microbiome

The skin can discriminate between commensal microorganisms 
and harmful pathogenic microorganisms; mechanisms of this 
discrimination are not fully clear but are likely to involve DC 
modulation. DC in the gut are central to maintaining the balance 
between immunogenic or tolerogenic immune responses [300]; 
alterations in gut DC occur in inflammatory bowel diseases [300,301]. 
DC influence peripheral tolerance by promoting negative selection in 
the thymus [302] and generation of T-cells with regulatory properties 
[303].

Staphylococcus epidermidis, a commensal bacterium, has recently 
been demonstrated to modulate the host innate immune response. S. 
epidermidis products can selectively inhibit skin pathogens such as 
Staphylococcus aureus and Group A Streptococcus, and even co-operate 
with host anti-microbial peptides (AMPs) to enhance pathogen killing 
[304,305]. Commensal bacterial-induced TLR signalling may be 
necessary for cell survival and repair during infection. Lipoteichoic 
acid produced by S. epidermidis can inhibit skin inflammation through 
a TLR2 and TLR3-mediated crosstalk mechanism [306]. S. Epidermidis 
also triggers keratinocyte expression of AMPs through a TLR2-
dependent mechanism [307]. 

The skin microbiome and disease

Skin diseases can be associated with a specific organism within the 

skin microbiome via three different mechanisms: skin disorders with a 
correlation to microbiota, skin disorders with a currently unidentified 
microbial component or a skin commensal microorganism that can 
become invasive to cause infection [308]. More than 90% of atopic 
dermatitis (AD) lesions are colonized with S. aureus on both lesional 
and non-lesional skin, compared with under 5% in skin samples from 
healthy individuals [309,310]. The most common treatments for AD 
include antibiotics and steroids. Dilute bleach baths to lower the 
bacterial load are also effective in reducing clinical severity [311].

Some skin disorders are linked with unidentified microbial 
components; commensal skin organisms can invade and become 
pathogenic in cases such as chronic wounds affecting diabetic, elderly 
and immobile individuals. Although these organisms do not cause the 
initial wound, they are thought to contribute to the lack of healing and 
persistent inflammation that is associated with chronic wounds [312-
315]. Slow-healing diabetic mouse models demonstrate correlation 
between the commensal microbiota and aberrant expression of skin 
defence and inflammatory genes [316], likely to contribute to wound 
failure. 

Some skin commensal microorganisms can become invasive 
and cause infection; S. epidermidis is a very common commensal 
microorganism on the skin, but is also the most frequent cause of 
hospital-acquired infection during administration of intrusive medical 
devices such as catheters or heart valves [317]. Once commensal 
microorganisms breach the skin barrier, virulent strains of these 
organisms can form biofilms, protecting them from the host immune 
system and antibiotics [318]. 

Conclusions
The skin immune system comprises a complex network of cells 

that all contribute not only to immunity against invading pathogens 
but also to homeostasis in the skin. The nature of immune responses 
generated in the skin depends on the types of antigen present, effects 
of environmental and genetic factors, and the interplay between 
components of the innate and adaptive immune systems. DC with 
their inherent plasticity play crucial roles in initiating and modulating 
immune responses, and are arguably the driving force bridging the 
innate and adaptive immune systems. This is due to their direct roles 
in both types of immune responses; however, the cross-talk between 
the complex network of DC subsets, skin-resident innate and adaptive 
immune sentinels, and accessory epidermal and dermal components 
also contribute to homeostasis and pathology. The role of the skin 
microbiome in modulating immune responses in the skin has started 
to be investigated; cutaneous DC are likely to play a crucial role in 
maintaining the balance between tolerance to harmless commensal 
microorganisms and immunity against harmful invading pathogens in 
the skin, as gut DC are known to, in the GI tract. Recent advances in 
the knowledge of skin DC in health and disease has led to development 
of therapies harnessing skin DC with specialized properties to control 
immunity; several therapeutic interventions targeting skin DC have 
proved beneficial to psoriasis patients [39,319]. However, further 
studies are required to fully understand the contribution of skin DC 
subsets in immunity and tolerance.
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