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Abstract
The accumulation of misfolded proteins disrupts the functioning of endoplasmic reticulum (ER), leading 

to induction of the unfolded protein response (UPR) that protect cells against the toxic buildup of such proteins. 
However, prolonged stress due to the buildup of these toxic proteins induces specific cell death pathways. There is 
accumulating evidence implicating ER stress in the development and progression of neurodegenerative diseases. 
With the improved understanding of the underlying molecular mechanisms, therapeutic interventions that target the 
ER stress response would be potential strategies to treat neurodegenerative diseases.
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Introduction
The accumulation and aggregation of misfolded proteins is linked 

to occurrence of several neurodegenerative disorders, including 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic 
lateral sclerosis (ALS), Huntington’s disease (HD) and prion diseases 
[1-3]. The presence of misfolded proteins elicits cellular responses, 
including endoplasmic reticulum (ER) stress response that protects cells 
against the toxic buildup of misfolded proteins [3-6]. Accumulation of 
these proteins in excessive amounts, however, impairs the protective 
mechanisms designed to promote correct folding and degrade faulty 
proteins, ultimately leading to organelle dysfunction and cell death [3-
6]. Emerging evidences have indicated that ER stress plays a pivotal 
role in the pathogenesis of neurodegenerative diseases.

Endoplasmic Reticulum Stress Response
The ER is a specialized organelle that plays crucial roles in cell 

homeostasis and survival, including protein folding, lipid biosynthesis, 
and calcium and redox homeostasis [7-9]. The lumen of the ER is the 
major site for proper protein folding and contains molecular chaperones 
and folding enzymes including GRP78 (also known as Immunogloblin 
binding protein, BiP), GRP94, protein disulfide isomerase (PDI), 
calnexin, and calreticulin. Only properly folded proteins are exported 
to the Golgi organelle, while incompletely folded proteins are retained 
in the ER to complete the folding process or are delivered to the cytosol 
to undergo endoplasmic reticulum associated degradation (ERAD). 
Under physiological conditions, there is equilibrium between ER 
protein load and folding capacity. Disturbances in ER homeostasis due 
to increased protein synthesis, accumulation of misfolded proteins, 
or alterations in the calcium or redox balance of the ER can cause a 
condition called ER stress [10-15]. 

In response to ER stress, cells have developed an adaptive signaling 
pathway called the unfolded protein response (UPR) or ER stress 
response [10,12,16]. Activation of the UPR causes a shutdown of global 
protein synthesis and activates mechanisms that allow the cells to 
deal with the accumulation of unfolded proteins. The protein folding 
capacity is enhanced by increasing the expression of ER chaperones, 
and the degradation of misfolded proteins is also upregulated. The 
coordinated biochemical response to ER stress allows cells to cope with 
ER stress. However, if the stress is prolonged or excessive, the UPR 
initiates apoptosis [8,10,12,16]. There are three major branches of UPR, 
which are each activated by a dedicated ER localized transmembrane 
molecule: IRE1 (Inositol Requiring Enzyme-1), PERK (Protein Kinase 
RNA- like ER Kinase) and ATF6 (Activating Transcription Factor 6) 
[8,17]. IRE1 and PERK are type I transmembrane proteins with protein 
kinase activity, whereas ATF6 is a type II transmembrane protein 
encoding a transcription factor [12]. Activation of IRE1, PERK and 

ATF6 initiates a network of intracellular signalling pathways during 
the UPR [13,14].  

IRE1 is the conserved ER stress sensor from yeast to mammalian. 
Under physiologic conditions, it is in inactive form through an 
interaction with GRP78/BiP [12-14]. Upon accumulation of unfolded 
proteins in the ER lumen, GRP78/BiP dissociates from IRE1, leading 
to its activation by trans-autophosphorylation [17]. IRE1 has a 
cytoplasmic endoribonuclease domain, which, upon activation, 
splices and enables the translation of the mRNA encoding X-box 
binding protein–1 (XBP1). Spliced XBP1 is a transcription factor that 
induces many essential UPR genes that increase ER folding capacity 
and expand ER membrane surface area [7,8,13,14]. Recently IRE1 
has been shown to be required for cleavage and post-transcriptional 
degradation of mRNAs, which may function as another mechanism 
to reduce protein load on the ER [18]. The other functions of IRE1 
are related to the triggering of apoptosis. Upon activation, IRE1 binds 
the adaptor protein, TNF receptor–associated factor 2 (TRAF2), which 
then promotes activation of c-Jun N-terminal kinase (JNK) through 
apoptosis signal–regulating kinase–1 (ASK1) [19]. Additionally, IRE1 
activation has been shown to trigger the recruitment of a proapoptotic 
ER-resident cysteine protease, caspase 12 [20]. 

PERK is a serine threonine kinase and similar to IRE1. It has a 
luminal ER stress-sensing domain and is activated through trans-
autophosphorylation. Activated PERK phosphorylates eukaryotic 
translation initiation factor 2α (eIF2α), which results in global 
translational attenuation and reduced ER protein load [12-14]. 
However, phosphorylated eIF2α promotes the translation of ATF4, 
which induces the UPR effector CHOP (C/EBPα-homologous protein, 
also known as GADD153). In pathological settings, prolonged CHOP 
expression triggers apoptosis through a number of mechanisms, 
including down-regulation of the anti apoptotic factor B cell 
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lymphoma-2 (Bcl-2) and induction of a calcium-mediated apoptosis 
pathway triggered by the CHOP transcriptional target, ER oxidase–1α 
[11,13,14]. 

ATF6, once activated under ER stress condition, translocates to the 
Golgi complex, where it gets cleaved by site 1 and site 2 proteases. The 
resultant N-terminal fragment of ATF6 migrates to the nucleus, and 
function as transcription factor, which activates transcription of XBP1 
and molecular chaperones such as GRP78/BiP and GRP94 [9,12-14].  

Endoplasmic Reticulum Stress and Pathogenesis of 
Neurodegenerative Disorders

The ER has essential roles in physiologic regulation of many 
processes. Accumulating evidence indicates that pathological 
conditions that interfere with ER homeostasis give rise to chronic 
activation of ER stress response/UPR, which contributes to the 
pathogenesis of neurodegenerative disorders [3,4,6,21,22].

Alzheimer’s disease

AD is a progressive neurologic disorder characterized by a decline 
in cognitive processes, eventually leading to dementia. The hallmarks 
of this disease are accumulation of extracellular amyloid-β peptides 
and intracellular aggregates of phosphorylated tau proteins, along 
with the perturbation of calcium homeostasis and neuronal death 
[23,24]. Genetic studies have revealed that there are three causative 
genes associated with the familial forms of the disease, which are 
amyloid-β precursor protein (APP), presenilin1 (PS1) and presenilin2 
(PS2). Mutations in these proteins lead to alterations in the processing 
of amyloid-β peptides from APP, resulting in more toxic forms of 
amyloid-β peptides in the plaques. Intraneuronal accumulation of 
amyloid-β, an early pathological change in Alzheimer’s disease, has 
been shown to cause cell death by inducing ER stress, endosomal/
lysosomal leakage, and mitochondrial dysfunction [25]. Mutations 
in the PS1 gene interfere with the physiologic functions of ER stress 
reponse and render cells more susceptible to ER stress induced death 
[26]. In mice with mutant PS1, ER stress response is enhanced and 
level of CHOP is elevated, and contributes to the pathogenic actions 
of PS1 mutations [27]. ER stress response is activated in the brain 
of AD patients [28,29]. The UPR activation markers are observed 
in neurons with diffuse staining of phosphorylated tau protein. 
The ER stress response in AD neurons occurs at an early stage of 
neurofibrillary degeneration, suggesting that the prolonged activation 
of ER stress response is involved in both tau phosphorylation and 
neurodegeneration in AD pathogenesis [28,29]. One recent study 
further suggested that ER stress and hyperphosphorylation of tau could 
be induced by each other, thus a vicious cycle is formed to propagate 
neurodegeneration associated with AD [30]. However, the exact role 
of ER stress response in the pathogenesis of AD must await further 
studies in suitable animal models.

Parkinson’s disease

PD is a neurodegenerative disorder characterized by the death 
of dopaminergic neurons and accumulation of protein aggregates 
(Lewy bodies, LBs) in a distinct brain region. Currently, studies have 
shown that dysfunction of ER stress response have essential roles in 
the pathogenesis of this disease [28,31,32]. Missense mutations in the 
gene coding for α-synuclein cause dominant familial PD. The A53T 
mutation is associated with ER stress response as evidenced by increased 
expression of CHOP and GRP78/BiP and increased phosphorylation 
of eIF2α, suggesting ER stress response is active in these cells [33]. 
Inhibition of phosphorylation of eIF2α protected the A53T α-synuclein 

over expressing cells from cell death, suggesting that ER stress response 
was shifting the balance towards apoptosis [33]. Recent studies further 
indicate that the accumulation of α-synuclein within ER leads to 
chronic ER stress conditions that contribute to neurodegeneration in 
PD and other alpha-synucleinopathies [34,35]. Similarly, evidences 
have indicated that protein products of genes mutated in PD, such 
as ubiquitin carboxyl-terminal esterase L1 (UCHL1), leucine-rich 
repeat kinase 2 (LRRK2), Parkinson protein 2 (Parkin), PTEN-
induced kinase 1 (PINK1) and DJ-1, play a role in regulating protein 
stability and ER stress response [22,31,32]. Additionally, drugs such as 
6-hydroxydopamine (6-OHDA) and 1-methyl-4- phenylpyridinium
(MPP+) which are used to develop animal models of PD, induce ER
stress [36-38]. Therefore, ER stress response is a key cellular function
that is disrupted and this dysfunction leads to neuronal cell death in
familial and sporadic PD.

Amyotrophic lateral sclerosis

ALS is characterized by muscle weakness, atrophy, and paralysis. 
The pathologic feature of ALS is the selective degeneration of motor 
neurons in brain and spinal cord [39,40]. Mutations in the superoxide 
dismutase–1 (SOD1) gene have been linked to the familial form of ALS. In 
transgenic mice of mutated SOD1 (mSOD1), misfolding and aggregates 
of mutated SOD1 induces ER stress response and causes apoptosis 
[39,41] and has been implicated in the development of ALS. PDI (also 
functions as an ER chaperon) was increased and co-localized with 
aggregated mSOD1 protein [42]. Activation of ATF6alpha and XBP1 
and phosphorylation of eIF2α were also detectable in mSOD1(G93A) 
motor neurons [43]. Furthermore, motor neurons were shown to be 
selectively prone to ER stress response and axonal degeneration [40]. 
Dysfunction of ERAD, causing ER stress has been shown to occur in 
mSOD1 containing motor neurons through Derlin-1. The mSOD1 
was shown to interact with Derlin-1, causing dysregulation of ERAD 
which leads to ER stress induced ASK1 activation, apoptosis and 
disease progression [44]. Mutation of the vesicle-associated membrane 
protein B (VAPB), an ER transmembrane protein involved in ER 
stress regulation, cause some cases of familial ALS [45]. Expression of 
wild-type and ALS linked mutant VAPB selectively triggers death of 
motor neurons through a Ca2+ dependent ER associated pathway [46]. 
Development of ALS may occur due to the disruption of the ER stress 
response caused by the mutation in VAPB, resulting in accumulation 
of misfolded protein in the ER [47]. Native VAPB has been implicated 
in the UPR via the IRE1/XBP1[47], and ATF6 pathways [48], a function 
that is lost for misfolded mutant VAPB (P56S) [47,48]. It was found 
that both VAPB and mutant VAPB (P56S) directly interact with ATF6 
and reduce the ability of ATF6 to promote transcription of XBP1, with 
the mutant as a more potent ATF6 inhibitor [48]. The induction of ER 
stress response has been observed in human sporadic ALS [49]. The 
ER stress sensors IRE1, PERK and ATF6 show increased expression in 
spinal cord from sporadic ALS patients [49]. However, further studies 
are needed to elucidate the exact mechanisms responsible for ER stress 
response and its pathological consequences in ALS. 

Huntington’s disease

HD is an autosomal dominant neurodegenerative disease 
characterized by motor abnormalities, and onset of psychiatric 
symptoms and dementia in early- to mid-adult life. It represents 
one of polyglutamine (polyQ) repeat diseases that cause region-
specific neuronal degeneration [50,51]. The glutamine expansion 
of approximately more than 40 repeats within the Huntingtin 
(Htt) protein confers a dominant gain of toxic function, leading to 
progressive accumulation of misfolded mutant Htt (mHtt) in the 
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form of intracellular oligomers and inclusions, and to neuronal loss 
[1,52,53]. Although the mechanisms through which misfolded mHtt 
cause neuronal toxicity are still controversial, recent studies in cellular 
and animal models of HD suggest a direct correlation between disease 
progression and ER stress [5,53]. It has been demonstrated that 
inhibition of wild-type Htt expression drastically alters the structure of 
the ER network and trafficking, suggesting that its biological function 
is related to this organelle [54]. The expression of mHtt or expanded 
polyQ peptides leads to ER stress mediated apoptosis in cellular models 
of HD [55-58]. The expression of ER stress related markers, including 
GRP78/BiP, CHOP and HERP, is increased at the mRNA level in 
postmortem brains of HD patients [59]. The increase of ER stress was 
also observed in HD mouse models even at the early stage of the disease 
[59,60]. In addition, altered ER calcium homeostasis was found in HD 
mouse models [61]. Notably, processing of ATF6alpha is impaired 
in both animal models and in post-mortem tissue from HD patients, 
which may reduce the ability of neurons to adapt to ER stress [62]. 
Activation of the PERK/eIF2a UPR branch triggers the degradation of 
polyQ peptides by autophagy, a process for degradation of HD-linked 
protein aggregates [56]. However, the autophagy activity is impaired in 
mHtt expressing neurons partially due to a failure of autophagosomes 
to recognize their cargos, which may result in general alterations in 
protein homeostasis [63]. Although the progression of HD correlates 
with the occurrence of ER stress response, the actual characterization 
of ER stress in HD is still incomplete.

Prion diseases

Prion diseases, also known as transmissible spongiform 
encephalopathies (TSEs), are a group of fatal and infectious 
neurodegenerative diseases. The central event in prion diseases is the 
misfolding, aggregation, and brain accumulation of the prion protein 
[64, 65]. Prion protein (PrP) exists in at least two conformational 
states, the normal cellular form (PrPc) and an abnormal infective form 
(PrPSc). The abnormal PrPSc differs from the normal cellular form 
only in its three-dimensional conformation, having a higher β-sheet 
structure than the native protein [64-66]. Both PrPc and PrPSc are 
involved in neurodegeneration associated with prion diseases [67-71]. 
The expression of ER stress markers, such as GRP78/BiP, GRP94 and 
GRP58, is upregulated in the cerebral cortex of prion disease patients, 
suggesting that ER stress response may participate in the pathogenesis 
of prion diseases [70]. PrPSc purified from brains of scrapie-infected 
mice can induce ER stress response and apoptosis. Alteration of ER 
Ca2+ homeostasis and subsequent ER stress has also been implicated in 
the progression of prion diseases [69,70]. PrPSc induces the release of 
cytosolic Ca2+ mainly from the ER, which leads to loss of mitochondrial 
membrane potential, increased ROS and cell death. This release of Ca2+ 
is dependent on the apoptosis triggering domain (residues 106–126) of 
prion protein [67-69]. Autophagy plays an important role in targeting 
cellular proteins, protein aggregates and organelles for degradation 
for cell survival. Reticulon 3 (RTN3), an ER-localized protein, which 
is activated under ER stress in prion diseases, attenuates the clearance 
of cytosolic prion aggregates via inhibiting autophagy and thus may 
further enhance ER stress [72]. These studies suggest that ER stress is 
involved in neurodegeneration associated with prion disease. 

Therapeutic Implications
The ER function is perturbed in many pathological processes. 

Alleviating ER stress through enhancement of ER function may 
protect cells from damage and ameliorate disease. Valproate, a drug 
used in epilepsy treatment, increases the expression of ER chaperones, 
such as GRP78/BiP and GRP94, and has shown beneficial effects in 

models of neurodegenerative diseases [73]. Consistent with the model 
in which components of the ER stress response favor neurotoxicity, 
targeting individual molecules in UPR Pathways could be an option for 
treatment of neurodegenerative diseases. Glycogen synthase kinase-3 
(GSK3) plays a central role in signaling downstream effects of ER stress. 
It was found that valproate can protect cells from ER stress-induced 
apoptosis by inhibiting GSK3 [74]. Salubrinal, a small molecule which 
inhibits dephosphorylation of eIF2α and protects cells from ER stress 
[75], also attenuates the neurodegeneration in mouse model of familial 
ALS [40]. The XBP1 deficiency in the nervous system has been shown 
to be protective in a mouse model of ALS due to an enhanced clearance 
of mutant SOD1 aggregates by autophagy [76]. The protective effects 
of XBP1 deficiency have also been seen in both cellular and animal 
models of HD. The protective effects are associated with enhanced 
autophagy [77]. ASK1 is a key element in ER stress-induced cell death 
that plays an important role in the neuropathological alterations in 
polyQ diseases [57]. Inhibition of ASK1 reduces ER stress and nuclear 
Htt fragments in a mouse model of HD [60]. Down-regulation of RTN3 
promotes the clearance of cytoplasmic PrP aggregates and alleviates ER 
stress, the apoptosis due to the cytoplasmic PrP aggregates is inhibited 
accordingly, suggesting that RTN3 negatively regulates autophagy to 
block the clearance of cytoplasmic PrP aggregates and may serve as a 
target for inducing autophagy to treat prion diseases [72]. These studies 
thus provide evidence for therapeutic potentials of targeting ER stress 
response in neurodegenerative disorders.

Conclusions
There are compelling evidences suggesting that signal pathways 

of ER stress response are important in the pathogenesis of 
neurodegenerative diseases. However, many unanswered questions 
remain [5,8,78]. Understanding the pathways by which misfolded 
proteins cause neurodegeneration is essential for developing efficient 
treatments for neurodegenerative disorders. On the other hand, 
although targeting ER stress may be beneficial for patients with 
neurodegenerative disorders, new therapeutic agents must be carefully 
screened and tested in appropriate disease models to avoid possible 
adverse effects [5,21,22,34].
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